
Discrete Math, Second Problem Set (June 24)

REU 2003

Instructor: Laszlo Babai
Scribe: D. Jeremy Copeland

1 Number Theory

Remark 1.1. For an arithmetic progression, a0, a1 = a0+d, a2 = a0+2d, · · · to have infinitely
many primes, it is necessary that gcd(d, a0) = 1.

This is true because the gcd will divide all terms. The converse is also true:

Theorem 1.2. (Dirichlet) Whenever gcd(d, a0) = 1, the arithmetic progression, a0, a1 =
a0 + d, a2 = a0 + 2d, · · · will have infinitely many primes.

This remarkable theorem is proved using complex analysis. We shall give elementary proofs
of special cases. The case d = 1 is simply the infinitude of primes.

Theorem 1.3. (Euclid) There are infinitely many primes.

Proof: For a contradiction, assume there are finitely many, p1, . . . , pn. Construct N = Πn
i=1pi.

Then for any i, pi does not divide N + 1, so N + 1 is not divisible by any prime. This is a
contradiction, since all numbers ≥ 2 are divisible by some prime. (This can be easily proved
by induction.)

Definition 1.4. We say that two numbers, a, and b are congruent mod m, or a ≡ b mod m
if m | b− a.

Lemma 1.5. If n ≡ −1 mod 4, then it must have a prime divisor ≡ −1 mod 4.

Proof: n is an odd number. Thus it is the product of odd primes. If all of these primes are
≡ 1 mod 4, then their product is also ≡ 1 mod 4, which is a contradiction.

Theorem 1.6. There are infinitely many primes ≡ −1 mod 4.

Proof: Assume that there are finitely many, p1, · · · pn. Construct N = Πn
i=1pi. Then by

the Lemma, 4N − 1 must have a prime divisor congruent to −1 mod 4. However, this is a
contradiction, since no pi divides it (why?).
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The infinitude of primes ≡ 1 mod 4 is not so straightforward. We need the following

Lemma 1.7. If p is an odd prime, and p | a2 + 1, then p ≡ 1 mod 4.

Theorem 1.8. There are infinitely many primes congruent to 1 mod 4.

Proof: Assume that there are finitely many, p1, · · · pn. Construct N = Πn
i=1pi. Then, by

the Lemma, all (odd) prime divisors of 4N2 + 1 must be congruent to 1 mod 4. This is a
contradiction, since this number is not divisible by any of the pi. (Why did we multiply by
4?)

We need to prove the Lemma. This, in turn, requires Fermat’s Little Theorem, which we now
state.

Theorem 1.9 (Fermat’s Little Theorem). If p is a prime, then p | ap − a.

• Equivalently: If p is a prime then ap ≡ a mod p.

• Equivalently: If p is a prime and p - a, then p | ap−1 − 1.

• Equivalently: If p is a prime and p - a, then ap−1 ≡ 1 mod p.

Exercise 1.10. Show that each of the last three statements is equivalent to the first.

Proof: We may, (by adding a multiple of p to a) assume that a is positive. Now consider
all strings of length p of numbers between 1 and a. For example, if p = 7, a = 4, we could
have (1, 4, 4, 3, 4, 1, 1). There are ap such strings. Call two strings equivalent if “they make
the same necklace,” i. e., they differ by cyclic rotation. That is, the above string is equivalent
to (4, 4, 3, 4, 1, 1, 1), (4, 3, 4, 1, 1, 1, 4), (3, 4, 1, 1, 1, 4, 4), etc. Now in most cases, there will be
exactly p equivalent strings. The exceptions are the strings (x, x, x, x, · · · , x), which will have
only one string (themselves) in their equivalence class. Therefore the number of equivalence
classes (“necklaces”) is (ap − a)/p+ a, so (ap − a)/p must be an integer.

Definition 1.11. a is a quadratic residue modulo the prime p if a 6≡ 0 mod p and there
exists an x such that x2 ≡ a mod p.

Proof of Lemma 1.7. The condition is that a2 ≡ −1 mod p; and by Fermat’s Little Theorem
we have ap−1 ≡ 1 mod p. Since p is odd, 1 ≡ ap−1 ≡ (a2)(p−1)/2 ≡ (−1)(p−1)/2. Now since p
is odd, −1 6≡ 1 mod p, so (p− 1)/2 must be even, or 4 | p− 1. �

Exercise 1.12. Prove: every prime greater than 3 is congruent to ±1 mod 6.

Exercise 1.13. There are infinitely many primes of the form 6k− 1. Hint. Follow the 4k− 1
case.

Exercise 1.14. There are infinitely many primes of the form 6k + 1.
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This is harder; you need a new lemma:

Exercise 1.15. If p is a prime and p | a2 + a+ 1, then p = 3 or p ≡ 1 mod 6. Hint. Prove:
a3 ≡ 1 mod p.

Definition 1.16. If p - a, the order of a mod p is the smallest positive integer k, such that
ak ≡ 1 mod p. We say k = ordp(a).

Exercise 1.17. Prove that the following statement is equivalent to Fermat’s Little Theorem,
1.9.

• If p is a prime and p - a, then ordp(a) | p− 1.

Exercise 1.18. If p is a prime number other than 2 or 5 then the decimal expansion of 1/p is
periodic with period ordp(10).

Definition 1.19. We say that a is a primitive root modulo p if ordp(a) = p− 1.

Exercise 1.20. 10 is a primitive root mod 7 if and only if 3 is a primitive root mod 7.

Exercise 1.21. Verify: {1, 3, 32, 33, 34, 35, 36} ≡ {1, 3, 2, 6, 4, 5} (mod 7), so that all numbers
from 1 to 6 appear before repetition occurs in the sequence 3k mod 7.

Exercise 1.22. Prove: a is a primitive root mod p if and only if the set {1, a, a2, · · · ap−2}
represents all numbers numbers modulo p that are not divisible by p.

Theorem 1.23. For every prime, p, there exists a primitive root mod p.

(We shall prove this important result later and will not use it in this set of exercises.)

Our next goal is to prove the following remarkable result:

Theorem 1.24 (Gauss). A prime number p can be written as a sum of two squares if and
only if p = 2 or p ≡ 1 mod 4.

The “only if” part is straightforward:

Exercise 1.25. If p ≡ −1 mod 4, then p cannot be written as the sum of two squares. Hint.
Observe that (∀x)(x2 ≡ 0 or 1 mod 4).

To prove the converse, we need to learn about polynomials, quadratic residues, and lattices.

Theorem 1.26. Assume F is a field. If f(x) is a polynomial over F then x − a is a divisor
of f(x)− f(a).
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Proof: Let f(x) =
∑n

k=0 ckx
k. Since x − a |xk − ak, and f(x) − f(a) =

∑
ck(xk − ak), we

see that (x− a) | f(x)− f(a),

Notation 1.27. F [x] is the ring of all polynomials over F .

Corollary 1.28. If f ∈ F [x], and f(a) = 0, then f(x) = (x− a)g(x) for some g ∈ F [x].

Corollary 1.29. A nonzero polynomial of degree n has at most n roots.

Proof: By induction on n.

Theorem 1.30. For an odd prime p, the following are equivalent:

(a) p ≡ 1 mod 4.

(b) −1 is a quadratic residue mod p.

Proof: We already proved that (b) ⇒ (a) (Lemma 1.7). For the other direction, assume now
that p ≡ 1 mod 4. Let f(x) = xp − x ∈ Fp[x]. By Fermat’s Little Theorem, every element of
Fp is a root of f . We factor f as xp − x = x(xp−1 − 1) = x(x(p−1)/2 − 1)(x(p−1)/2 + 1). Since
none of the factors has more roots than its degree and the total number of roots is p, each
factor must have exactly as many roots as its degree. In particular, there must exist a root a
of (x(p−1)/2 + 1). However, since p ≡ 1 mod 4, −1 ≡ a(p−1)/2 ≡ (a(p−1)/4)2 mod p. Therefore
−1 is a square mod p.

Definition 1.31. A lattice in Rn is a set Zu1 + · · ·+Zun = {a1u1 + · · ·+anun : a1, . . . , an ∈
Z}, where {u1, . . . ,un} is linearly independent over R.

Definition 1.32. The set {
∑n

i=1 aiui : 0 ≤ ai ≤ 1} is a fundamental parallelepiped of
the lattice L.

Our main interest in this section will be the two-dimensional case, so instead of the n-
dimensional parallelepipeds the reader may think of the familiar parallelograms in the plane.

Exercise 1.33. The translates of the fundamental parallelepiped by vectors in L tile Rn, i. e.,
they cover Rn without overlapping interiors.

Theorem 1.34. A fundamental parallelepiped is characterized by the fact that it is a paral-
lelepiped which intersects the lattice in exactly its 2n corners.

Recall that the area of a parallelogram spanned by u =
(
u1

u2

)
and v =

(
v1

v2

)
is

Area = |u1v2 − u2v1| = |det
(
u1 v1

u2 v2

)
|. (The analogous determinant expression works in n-

dimensions.)

Exercise 1.35. All fundamental parallelepipeds have the same area.
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Definition 1.36. A subset S of a real vector space V , is called convex if for each t ∈ R,
0 < t < 1, and each u, v in V , (1− t)u + tv ∈ S.

Theorem 1.37 (Minkowski). Let L be a lattice in Rn, and the area of a findamental par-
allelogram be A. If S is convex, centrally symmetric about the origin, and the area of S is
greater than 2nA, then L ∩ S 6= {0}.

(The proof of this fundamental result in the “Geometry of Numbers” will be given later.)
Next we use Minkowski’s Theorem to prove Gauss’ result, 1.24. The devilishly clever proof is
due to Paul Turán.

Theorem 1.38. If p ≡ 1 mod 4, then there are integers, e, and f , such that p = e2 + f2.

Proof: By Theorem 1.30, there exists a c such that p | c2 + 1. Let u =
(
c
1

)
and v =

(
p
0

)
be

vectors in R2. A general point in the lattice, L spanned by these is xu + yv =
(
xc+yp
x

)
. Note

that (xc+yp)2 +x2 ≡ x2(c2 +1) ≡ 0 mod p, so if
(
e
f

)
is in L, then p | e2 +f2. Look at the open

disk: S = {
(
e
f

)
: e2 + f2 <

√
2p}. The area of S is 2πp > 4p, and the area of the fundamental

parallelogram is |c0− 1p| = p, so by Minkowski’s Theorem, 1.37, there is some nonzero point
in the lattice and in the disk. Therefore, there exist e and f such that 0 < e2 + f2 < 2p, and
p | e2 + f2, so e2 + f2 = p.

Divisor game. Consider the following game, played by two people: Choose a number n.
Players take turns naming a factor of n. Once a factor is named, it and none of its factors may
be named again. The loser is the first player to say n.

Exercise 1.39. Find the winning strategies for the first player when n = pk, n = pkq, n =
pkqk, n = pqrs.

Exercise 1.40. Show that the first player always has a winning strategy.
Hint. Do not try to find the winning strategy for all n.

Coin placing game. Given a rectangular table and an unlimited supply of quarters, each
player takes turns placing quarters on the table (this is a “continuous” game). The quarters,
once placed, may not be moved; they may not overlap, and may not hang over the edge.

Exercise 1.41. Find a winning strategy for the first player.

2 Linear Algebra

Let F be a field. Note that the ring F [x] of univariate polynomials over F is an infinite-
dminesional vector space over F with a nice (standard) basis: {1, x, x2, x3, x4, . . . }.
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Example 2.1. Let Fn[x] denote the set of polynomials of degree ≤ n. This is an n + 1-
dimensional subspace of F [x]. We calculate the matrix representing the map d

dx : Fn[x]→ Fn[x]
with respect to the standard basis B := {1, x, . . . , xn}.

[
d

dx

]
B

=



0 1 0 0 . . . 0
0 0 2 0 . . . 0

0 0 0 3 . . .
...

0 0 0 0
. . . 0

...
...

...
...

. . . n
0 0 0 0 . . . 0


Example 2.2. Consider the rotation of the Euclidean plane E2 by angle α about the origin.
We denote this linear map by Rα : E2 → E

2. Choose as the basis a pair of perpendicular unit
vectors e and f . Then we have thatRα(e) = cos(α)e+sin(α)f , andRα(f) = − sin(α)e+cos(α)f .
Therefore the matrix for Rα in the basis e, f , is

[Rα]e,f =
[

cos(α) − sin(α)
sin(α) cos(α)

]
.

Example 2.3. Consider the reflection of the Euclidean plane E2 through the line which makes
an angle α with horizontal (e) and passes through the origin. We denote this linear map by
Fα : E2 → E

2. Then we have Fα(e) = cos(2α)e + sin(2α)f , and Fα(f) = sin(2α)e− cos(2α)f .
Therefore the matrix for Fα in the basis e, f , is

[Fα]e,f =
[

cos(2α) sin(2α)
sin(2α) − cos(2α)

]
.

Example 2.4. If in the previous example, we had chosen the basis u and v, where u is a
vector along the line of reflection, and v is perpendicular to it, then the matrix for Fα would
be:

[Fα]u,v =
[

1 0
0 −1

]
.

Definition 2.5. Given a square matrix A, define tr(A), the trace of A to be the sum of the
diagonal entries of A.

Remark 2.6. The following observations are special cases of a general principle:

• tr([Fα]e,f ) = 0 = tr([Fα]u,v).

• det([Fα]e,f ) = −1 = det([Fα]u,v).
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Definition 2.7. Let {e1, . . . , en}, and {f1, . . . , fn} be two bases for a vector space V . The
basis change transformation S : V → V is the unique (invertible) linear map defined by
S : ei 7→ fi.

Example 2.8. Let x be a vector in V . Then x =
∑
αiei =

∑
βifi. Notice that

Sx = S
∑

αiei =
∑

αiSei =
∑

αifi.

Therefore if

[x]e =

 α1
...
αn


[Sx]f = [x]e. Also, [Sx]f = [S]f [x]f by the following exercise. Thus[x]f = [S−1]f [x]e

Exercise 2.9. Let {e1, . . . , en} be a basis for V , and let {f1, . . . , fn} be a basis for W . Let
v ∈ V , and let A : V →W . Show that [A]e,f [v]e = [Av]f .

Exercise 2.10. Let V,W,Z be vector spaces over F . Let {e1, . . . , en} be a basis for V ,
{f1, . . . , fn} be a basis for W , {g1, . . . ,gn} be a basis for Z. Let A : V → W , B : W → Z.
Show that [BA]e,g = [B]f ,g[A]e,f .

Exercise 2.11. If B, C are n× k matrices that Bx = Cx for all x ∈ F k then B = C.

Remark 2.12. Let e, e′ be two bases for V with change of basis map S : ei 7→ e′i. Let f , f ′ be
two bases for W with change of basis map T : fi 7→ f ′i . Let A : V → W . We want to compare
[A]ef with [A]e′f ′ . Let x ∈ V . We have the following identities:

• [Ax]f = [A]ef [x]e

• [Ax]f ′ = [A]e′f ′ [x]e′ = [A]e′f ′ [S−1]e′e′ [x]e

• [Ax]f ′ = [T−1]f ′f ′ [Ax]f .

Therefore for all x ∈ V ,

([T−1]f ′f ′ [A]ef )[x]e = ([A]e′f ′ [S−1]e′e′)[x]e.

However, by the previous exercise, this is only possible if

[T−1]f ′f ′ [A]ef = [A]e′f ′ [S−1]e′e′ .

Remark 2.13. From the previous remark, we deduce that

[A]ef = [T ]f ′f ′ [A]e′f ′ [S−1]e′e′ = [TAS]e′f ′ .
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Corollary 2.14. Let S = A = T . Then

[S]ee = [TAS−1]ff = [S]ff .

Corollary 2.15. If V = W , e = f , then Anew = S−1Aold.S

Definition 2.16. Two n× n matrices A, B are similar if there exists some invertible S such
that B = S−1AS. We write A ∼ B.

Definition 2.17. The characteristic polynomial fA of a matrix A is the determinant
fA(x) = det(xI −A), where I is the n× n identity matrix.

Exercise 2.18. If A and B are n× n matrices, then det(AB) = det(A)det(B).

Exercise 2.19. If A ∼ B then det(A) = det(B).

Exercise 2.20. If A ∼ B then fA = fB.

Definition 2.21. If A is a matrix, the roots of fA are called the eigenvalues of A.

Definition 2.22. If T is a linear transformation, then the characteristic polynomial of T
is the characteristic polynomial of a matrix for T in some basis. The last exercise shows that
this is well-defined.

Definition 2.23. If T is a linear transformation, then the eigenvalues of T are the roots of
the characteristic polynomial.

Remark 2.24. If A is an upper triangular matrix, then the eigenvalues of A are the diagonal
entries of A, taken with multiplicity.

Exercise 2.25. Find two 2 × 2 matrices, A and B such that fA = fB but A and B are not
similar.

Exercise 2.26. If A is an n× n matrix over a field F , and fA has n distinct roots in F , then
A is “diagonalizable,” i. e., A is similar to a diagonal matrix. (What are the entries of this
diagonal matrix?)
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