
Discrete Math, Third Problem Set (June 25)

REU 2003

Instructor: Laszlo Babai
Scribe: David Balduzzi

1 Number Theory

Exercise 1.1. (Erdős)
If A ⊂ {1, . . . , 2n} with |A| = n+ 1, show two elements of A are relatively prime.

Exercise 1.2. (Erdős)
In the above situation; show some element of A divides another. Hint. Pigeon hole principle.

Theorem 1.3. (Dirichlet’s theorem on simultaneous Diophantine approximation)
For all (α1, . . . , αn) ∈ Rn and ε > 0 there exist p1, . . . , pn, q ∈ Z such that

1 ≤ q ≤
(

1
ε

)n
and

∣∣∣∣αi − pi
q

∣∣∣∣ < ε

q
for all i.

The proof is a striking application of the Pigeon Hole Principle.

Exercise 1.4. (Erdős)
Consider a collection of arithmetic progressions A1, . . . , Ak for k ≥ 2, with N = A1 ∪ . . . ∪Ak
and Ai ∩ Aj = ∅. Show it is not possible for all the increments to be distinct. (In fact the
largest increment must occur at least twice).

2 Linear algebra

Example 2.1. (Dissimilar matrices with same characteristic polynomial)

A =
[

1 1
0 1

]
and B =

[
1 0
0 1

]
and the characteristic polynomials are fA(x) = fB(x) = (x− 1)2.

Definition 2.2. x is an eigenvector to the geometric eigenvalue λ for matrix A if x 6= 0
and Ax = λx. An algebraic eigenvalue of A is a root of the characteristic polynomial fA(x).
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Exercise 2.3. Ax = b is an inhomogeneous system of equations. Show it has a solution iff
b ∈ span{a1, . . . ,an} iff rk A =rk (A | b).

Exercise 2.4. Ax = 0 is a homogeneous system of equations. Show it has a nontrivial solution
iff columns are linearly dependent.

Determinants - quick and dirty1.
Given an n × n matrix A, let Aij denote the matrix formed by deleting the ith row and jth

column. The determinat-expansion by the j-th column is

det A =
n∑
i=1

(−1)i+jaijdet(Aij) – the choice of j doesn’t matter,

where det
[
a b
c d

]
= ad− bc.

We could also reverse the roles of i and j in the above equation. Switching two rows or
two columns changes the sign of the determinant. Adding some linear combination of rows (or
columns) to another row (or column respectively) does not affect the determinant.

Note that the above rules are rules of calculation, not definition. It is far from obvious
that these rules actually result in a unique number regardless of the choices made along the
way. (What is the definition?)

Theorem 2.5. detA = 0 iff the columns are linearly dependent.

Exercise 2.6. λ is an eigenvalue of A iff fA(λ) = 0. (In other words the two definitions of
eigenvalue are equivalent).

Exercise 2.7. Let U = {x : Ax = 0}. This is a subspace of Fn. Show dim U = n−rk A,
where by rk A we mean the row rank.

Exercise 2.8. Show that for any matrix the row rank equals the column rank.

Definition 2.9. The algebraic multiplicity of an eigenvalue is its multiplicity as a root of
the characteristic polynomial. The geometric multiplicity of λ is dim Uλ = {x : Ax =
λx} = n− rk(λI −A).

Example 2.10.[
1 1
0 1

]
has eigenvalue 1 with algebraic multiplicity 2 and geometric multiplicity 1.

1Scribe’s adjectives are not necessarily shared by instructor.
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Example 2.11.

Rα =
[

cosα − sinα
sinα cosα

]
is a matrix with no eigenvalues over R (unless π | a).

However if we extend our base field to C then Rα has eigenvectors[
i
1

]
and

[
−i
1

]
and eigenvalues e±iα = cosα± i sinα.

Exercise 2.12. Show that over C a matrix A is diagonalizable (i. e., it has an eigenbasis) iff
the geometric and algebraic multiplicities of all its eigenvalues coincide.

3 Euclidean spaces

Let F denote C or R.

Definition 3.1. A bilinear map f : V × V → F is a Hermitian form if

• for fixed u, F (u, •) : V → F is linear

• f(u,v) = f(v,u).

Example 3.2. Define A∗ = A
t. A matrix A is Hermitian if A∗=A. Given such a matrix,

then f(u,v) = u∗Av is a Hermitian form.

Exercise 3.3. Show that any Hermitian form can be written as above for some Hermitian
matrix A.

Definition 3.4. Let Qf (u) = f(u,u) : V → R. (Why is this always real?) This is a
quadratic form.

• Qf is positive semidefinite if for all u, Qf (u) ≥ 0.

• Qf is positive definite if for all u 6= 0, Qf (u) > 0.

Definition 3.5. A Euclidean space is a pair (V, f) consisting of a vector space V (over C
or R) and a positive definite Hermitian form f .

Example 3.6. R2 with the usual dot product a·b = |a|·|b| cos θ, where θ is the angle between
a and b is an example; this is the same as a · b = a1b1 + a2b2.

Definition 3.7. u is perpendicular to v, denoted by u ⊥ v, if f(u,v) = 0. We define the
norm of u by ‖u‖ =

√
f(u,u).

Definition 3.8. An orthonormal basis is a basis e1, . . . , en such that f(ei, ej) = δij .

Theorem 3.9. Every finite-dimensional Euclidean space has an orthonormal basis.

Expressing a vector in coordinates involves solving an inhomogeneous system of equations.
However if we wish to express u in orthonormal coordinates

u = α1e1 + · · ·+ αnen, we calculate αi = f(ei,u).
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4 Isometries of Euclidean spaces

Exercise 4.1. An isometry is a linear isomorphism φ : (V, f) → (W, g) such that ‖u‖ =
‖φ(u)‖ for all u ∈ V . Show φ is an isometry iff f(u1,u2) = g(φ(u1), φ(u2)) for all vectors u1

and u2 in V .

Exercise 4.2. Show φ is an isometry iff it maps an orthonormal basis to an orthonormal basis.

Theorem 4.3. f(u,v) = [u]∗e[v]e = u1v1 + · · ·+ unvn where e is an orthonormal basis.

Exercise 4.4. Show that A : V → V is an isometry iff the columns of A form an orthonormal
basis of Fn, where n is the dimension of V .

Exercise 4.5. Show A is an isometry iff A∗A = I iff A∗ = A−1 iff AA∗ = I. Such a matrix is
called unitary.

Example 4.6. Unitary matrices living in real vector spaces are known as orthogonal ma-
trices. The rotations and reflections of last lecture are examples under the standard inner
product on R2.

When are diagonal matrices unitary?

If and only if AA∗ = I iff |λi| = 1 for all i iff all eigenvalues have unit length.

Definition 4.7. A and B are similar under unitary transforms, denoted A ∼u B, if there
exists a unitary matrix S such that

B = S−1AS = S∗AS.

Theorem 4.8. (Spectral Theorem)
A = A∗ if and only if A is similar under unitary transforms to λ1

. . .
λn

 with the λi real numbers.
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