next up previous
Next: Linear algebra Up: Discrete Math, Third Problem Previous: Discrete Math, Third Problem

Number Theory

Exercise 1.1   (Erdos)
If $ A\subset\{1,\ldots,2n\}$ with $ \vert A\vert=n+1$, show two elements of $ A$ are relatively prime.

Exercise 1.2   (Erdos)
In the above situation; show some element of $ A$ divides another. Hint. Pigeon hole principle.

Theorem 1.3   (Dirichlet's theorem on simultaneous Diophantine approximation)
For all $ (\alpha_1,\ldots,\alpha_n)\in\mathbb{R}^n$ and $ \epsilon>0$ there exist $ p_1,\ldots,p_n,q\in\mathbb{Z}$ such that

$\displaystyle 1\leq q\leq\left(\frac{1}{\epsilon}\right)^n$ and $\displaystyle \left\vert\alpha_i-\frac{p_i}{q}
\right\vert<\frac{\epsilon}{q}$ for all $\displaystyle i.
$

The proof is a striking application of the Pigeon Hole Principle.

Exercise 1.4   (Erdos)
Consider a collection of arithmetic progressions $ A_1,\ldots,A_k$ for $ k\geq2$, with $ \mathbb{N}=A_1\cup\ldots\cup A_k$ and $ A_i\cap A_j=\emptyset$. Show it is not possible for all the increments to be distinct. (In fact the largest increment must occur at least twice).



Varsha Dani 2003-07-25