next up previous
Next: Isometries of Euclidean spaces Up: Discrete Math, Third Problem Previous: Linear algebra

Euclidean spaces

Let $ \mathbb{F}$ denote $ \mathbb{C}$ or $ \mathbb{R}$.

Definition 3.1   A bilinear map $ f:V\times V\rightarrow\mathbb{F}$ is a Hermitian form if

Example 3.2   Define $ A^*=\overline{A}^t$. A matrix $ A$ is Hermitian if $ A^*$=$ A$. Given such a matrix, then $ f({\mathbf{u}},{\mathbf{v}})={\mathbf{u}}^*A{\mathbf{v}}$ is a Hermitian form.

Exercise 3.3   Show that any Hermitian form can be written as above for some Hermitian matrix $ A$.

Definition 3.4   Let $ Q_f({\mathbf{u}})=f({\mathbf{u}},{\mathbf{u}}):V\rightarrow\mathbb{R}$. (Why is this always real?) This is a quadratic form.

Definition 3.5   A Euclidean space is a pair $ (V,f)$ consisting of a vector space $ V$ (over $ \mathbb{C}$ or $ \mathbb{R}$) and a positive definite Hermitian form $ f$.

Example 3.6   $ \mathbb{R}^2$ with the usual dot product $ {\mathbf{a}}\cdot{\mathbf{b}}=\vert{\mathbf{a}}\vert\cdot\vert{\mathbf{b}}\vert\cos\theta$, where $ \theta$ is the angle between $ {\mathbf{a}}$ and $ {\mathbf{b}}$ is an example; this is the same as $ {\mathbf{a}}\cdot{\mathbf{b}}=a_1b_1+a_2b_2$.

Definition 3.7   $ {\mathbf{u}}$ is perpendicular to $ {\mathbf{v}}$, denoted by $ {\mathbf{u}}\perp{\mathbf{v}}$, if $ f({\mathbf{u}},{\mathbf{v}})=0$. We define the norm of $ {\mathbf{u}}$ by $ \Vert{\mathbf{u}}\Vert=\sqrt{f({\mathbf{u}},{\mathbf{u}})}$.

Definition 3.8   An orthonormal basis is a basis $ {\mathbf{e}}_1,\ldots,{\mathbf{e}}_n$ such that $ f({\mathbf{e}}_i,{\mathbf{e_j}})=\delta_{ij}$.

Theorem 3.9   Every finite-dimensional Euclidean space has an orthonormal basis.

Expressing a vector in coordinates involves solving an inhomogeneous system of equations. However if we wish to express $ {\mathbf{u}}$ in orthonormal coordinates

$\displaystyle {\mathbf{u}}=\alpha_1{\mathbf{e}}_1+\cdots+\alpha_n{\mathbf{e}}_n$, we calculate $\displaystyle \alpha_i=f({\mathbf{e}}_i,{\mathbf{u}}).
$


next up previous
Next: Isometries of Euclidean spaces Up: Discrete Math, Third Problem Previous: Linear algebra
Varsha Dani 2003-07-25