
Discrete Math, Fourth Problem Set (June 26)

REU 2003

Instructor: Laszlo Babai
Scribe: D. Jeremy Copeland

1 Linear Algebra

Remark 1.1. Recall that if we have a polynomial over Z, f(x) = anx
n + · · · + a0, and a

rational root p/q with gcd(p, q) = 1, then p | a0, and q | an.

Theorem 1.2. If A is an n× k matrix, and B is a k × n matrix, then Tr(AB) = Tr(BA).

Corollary 1.3. If A and B are n× n matrices, and A ∼ B, then Tr(A) = Tr(B).

Proof: Tr(B) = Tr((S−1A)S) = Tr(S(S−1A)) = Tr(A).

We may also prove this by considering the characteristic polynomial of A. Let
fA(x) = xn + cn−1x

n−1 + · · ·+ c0. Then cn−1 = −Tr(A), c0 = (−1)n det(A), and generally:

ck = (−1)k
∑

M∈(nk)
det(M),

where the sum is over all k × k symmetric minors of A. A symmetric minor is a submatrix
symmetrically positioned with respect to the main diagonal, i. e., it has the same row numbers
and column numbers. Since the characteristic polynomial is preserved under similarity, all
such expressions are preserved, so specifically, the traces of similar matrices are equal.

Exercise 1.4. Prove that the trace is the sum of the eigenvalues (over C). Hint. Prove that
for any monic polynomial of degree n, the sum of the roots is the coefficient of xn−1, times
(−1).

Remark 1.5. Recall that every matrix over C is similar to an upper triangular matrix, and
the diagonal entries of an upper triangular matrix are its eigenvalues. This gives an alternative
proof of the fact that the trace of a square matrix is the sum of its eigenvalues.
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2 Graphs

Definition 2.1. A graph is a (finite) set V of vertices, and a set E of edges, where an edge
is an unordered pair of vertices.

Definition 2.2. We say that a pair of vertices v and w are adjacent (x ∼ y) if {v, w} ∈ E
and non-adjacent otherwise.

Definition 2.3. The neighbors of a vertex v are the vertices adjacent to v.

Definition 2.4. If G = (V,E), and H = (W,F ) are graphs, then we say that a function
f : V → H is an isomorphism if f preserves adjacency. That is, x ∼ y ⇐⇒ f(x) ∼ f(y). If
an isomorphism exists between two graphs, then we say they are isomorphic.

Definition 2.5. The degree of a vertex is the number of its neighbors.

Definition 2.6. A bipartite graph is a graph (V,E) such that V = V1∪̇V2, where each edge
contains exactly one element from each Vi.

Definition 2.7. A path of length n in a graph is a sequence of distinct vertices, (v0, v1, v2, . . . , vn)
where {vi−1, vi} is an edge for all i.

Definition 2.8. A walk of length n in a graph is a sequence of (not necessarily distinct)
vertices, (v0, v1, v2, · · · vn) where {vi, vi+1} is an edge for all i.

Definition 2.9. A cycle of length n ≥ 3 in a graph is a walk (v0, v1, v2, . . . , vn) where v0 = vn
but otherwise there are no repeated vertices.

Remark 2.10. Notice that a path of length n will have n+ 1 vertices, and a cycle of length
n will have n vertices.

Notation 2.11. Pn denotes the path on n vertices and Cn denotes the n-cycle (the cycle on
n vertices.

Definition 2.12. Kn will be the complete graph on n vertices, which is the graph such
that for all v 6= w, {v, w} is an edge of Kn.

Definition 2.13. Kk,` will be the complete bipartite graph on k + ` vertices, which is
the graph (V ∪̇W,E) such that V and W have k and ` elements respectively, and E = {{v, w} :
v ∈ V,w ∈W}.

Definition 2.14. The distance between any two vertices is the length of the shortest path
between them. The distance is infinite if no such path exists.

Definition 2.15. The diameter of a graph is the longest distance in the graph.

Definition 2.16. A graph is connected if there is a path between any two vertices.
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Definition 2.17. The complement of a graph G = (V,E) is the graph G = (V,E), where
E ∩ E = ∅, and E∪̇E is the set of all

(
n
2

)
pairs of vertices of G.

Remark 2.18. Notice that we have the following: C4 = 2K2, C5 = C5,P3 = P3.

Exercise 2.19. If G ∼= G then n ≡ 0, 1 mod 4.

Definition 2.20. The girth of a graph is the length of the shortest cycle.

Definition 2.21. A tree is a connected graph with no cycles.

Remark 2.22. A tree has infinite girth.

Exercise 2.23. A tree with n vertices has n− 1 edges.

Exercise 2.24. Are the two graphs from the Petersen’s graph handout isomorphic?

Theorem 2.25 (Handshake theorem).
∑

v∈V deg(v) = 2|E|.

Theorem 2.26. If G is a regular graph of degree r, and girth(G) ≥ 5, then n ≥ r2 + 1.

In what cases is this bound tight, i. e. n = r2 + 1? If r = 1, then K2 satisfies n = r2 + 1.
For r = 2, C5 satisfies this equation. For r = 3, we have Petersen’s graph. For r = 7 there is
a graph of degree r, girth 5, and n = 50 vertices called the “Hoffman-Singleton graph.”

Theorem 2.27 (Hoffman-Singleton). If a regular graph of degree r with n = r2 +1 vertices
and girth at least 5 exists then r ∈ {1, 2, 3, 7, 57}.

Remark 2.28. We have named such graphs with r ∈ {1, 2, 3, 7}. It is not known whether
such a graph with r = 57 exists. It is, however, known that if such a graph exists, it cannot
be quite as nice as the smaller ones: its automorphism group will not act transitively on its
vertices, i. e., not all vertices will be equivalent under automorphisms (self-isomorphisms) of
the graph (Aschbacher).

Exercise 2.29. Let G be a regular graph of degree r and of diameter ≤ 2.

(a) Prove: n ≤ r2 + 1.

(b) Prove: if n = r2 + 1 then r ∈ {1, 2, 3, 7, 57}.

Definition 2.30. The adjacency matrix, AG = [aij ], of a graph, G, is the n × n matrix
such that aij = 1 if {i, j} is an edge of G, and 0 otherwise, where n is the number of vertices.

Remark 2.31. Note that the diagonal and therefore the trace of the adjacency matrix is zero.

Theorem 2.32. If a graph is r-regular, then r is an eigenvalue of its adjacency matrix.

Proof: The all-ones vector is an eigenvector for the adjacency matrix with eigenvalue r.
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Remark 2.33. AG is symmetric. Recall that this and the spectral theorem imply that it is
diagonalizable over R with an orthonormal eigenbasis.

Exercise 2.34. If G is a connected regular graph, then the multiplicity of r as an eigenvalue
is one (it is a simple eigenvalue).

Exercise 2.35. If G is a regular graph of degree r then the multiplicity of r as an eigenvalue
is the number of connected componenets of G.

Exercise 2.36. If G is a regular graph and λ is an eigenvalue of G (i. e., an eigenvalue of AG)
then |λ| ≤ r.

Exercise 2.37. If G is a connected regular graph of degree r then −r is an eigenvalue if and
only if G is bipartite.

3 Discussion of Problem Sets

Definition 3.1. A subset A of Z is a module if it is closed under addition, subtraction, and
contains zero.

Remark 3.2. Closure under addition technically follows from closure under subtraction, so
is a redundant assumption in the above definition.

The following theorem follows from the fact that a subgroup of a cyclic group is necessarily
cyclic. It is also the statement that Z is a PID.

Theorem 3.3. All modules are of the form dZ.

Exercise 3.4. Consider two arithmetic progressions:

an = a0 + nda,

bn = b0 + ndb,

where a0, b0, da, db ≥ 0. Prove: the two arithmetic progressions intersect if and only if
gcd(da, db) | a0 − b0.
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