
Discrete Math, Fifth Problem Set (June 27)

REU 2003

Instructor: Laszlo Babai
Scribe: Ivona Bezakova

Question: How should we define 00?

Trouble: two conventions conflict: x0 = 1 and 0x = 0. We shall argue that this conflict can be
resolved and that 00 = 1 is the reasonable choice.

Argument 1: empty products. The 00 = 1 convention is consistent with the conventions∑
i∈∅ ai = 0 and

∏
i∈∅ ai = 1. (Why are these the only reasonable interpretations of empty

sums and products?) The “empty product = 1” rule is used in conventions like 0! = 1 and
a0 = 1.

Argument 2: combinatorial interpretation of powers. Let A and B be two finite sets.
The number of functions f : B → A is clearly ab. Therefore, 00 = 1 (there is only one function
f : ∅ → ∅, namely the empty function).

Argument 3: the limit of xy.

Let us consider limx,y→0+ xy. This limit does not exist. In fact, subsequences can converge
to any number between 0 and 1.

Exercise 0.1. Let 0 ≤ α ≤ 1. Prove: there exist sequences {xn}, {yn} of positive numbers
such that limn→∞ xn = limn→∞ yn = 0, and limn→∞ x

yn
n = α.

Nonetheless, the limit is “almost well defined.”

Exercise 0.2. Prove that limx,y→0+ xy equals “mostly” 1. Give a clear definition and prove
this statement based on your definition.

Number Theory

Question What is the probability that two random positive integers are relatively prime?

1



Our first problem is to make sense out of this question. We want every integer to be chosen
with equal probability, but then this probability would have to be zero, which is not very
helpful.

We need to restrict the domain to a finite segment of the integers and then let the segment
grow to infinity.

Example 0.3. Pr(a random integer is divisible by 4) = limn→∞ Pr(4 |x : 1 ≤ x ≤ n) = 1/4

Theorem 0.4 (Prime Number Theorem). Let π(x) be the number of primes ≤ x. Then,
π(x) ∼ x/ lnx. (“∼” stands for asymptotic equality, see Handout.)

Example 0.5. Pr(a random integer is a prime) = limn→∞ π(n)/n ∼ limn→∞ 1/ lnn = 0.

Definition 0.6.

ζ(s) =
∞∑
n=1

1
ns
.

It is known that ζ(2) = π2/6 (Euler).

Exercise 0.7. Let x, y ∈ N be two integers picked uniformly at random. Assuming the limit
Pr(g.c.d. (x, y) = 1) := limn→∞ Pr(g.c.d. (x, y) = 1: 1 ≤ x, y ≤ n) exists, prove that it must be
1/ζ(2). (Give a three-line proof.)

Definition 0.8. We say that the integers a1, . . . , ak are relatively prime if g.c.d. (a1, . . . , ak) =
1. (Note that this does not mean the ai are pairwise relatively prime; for instance, 6, 10, 15
are relatively prime.)

Exercise 0.9. Generalize the preceding exercise: If x1, . . . , xk are k random integers, then the
probability that they are relatively prime is 1/ζ(k).

An Extremal Problem in Discrete Geometry

Definition 0.10. A set S ⊆ Rn is called a 2-distance set if there exist α, β ∈ R such that
(∀x, y ∈ S)(x 6= y ⇒ dist(x, y) ∈ {α, β}).

Example 0.11. In the plane a regular pentagon is a 2-distance set. In 3D, an octahedron
(dual of the cube) is a 2-distance set.

Exercise 0.12. Prove that the size of a 2-distance set in the plane is at most 5.

Example 0.13. Some examples of 2-distance sets in Rn:

• Set of size n: standard orthonormal basis (vectors ei),

• Set of size 2n: hyper-octahedron (vectors ±ei),
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• Set of size
(
n
2

)
: vectors ei + ej for i 6= j.

Exercise 0.14. Find a 2-distance set in Rn of size
(
n+1

2

)
.

Hint: Add a slight idea to the
(
n
2

)
example. Understand it geometrically.

The following theorem shows that this example is asymptotically optimal.

Theorem 0.15 (Larman,Rogers,Seidel). Let m(n) be the maximum size of a 2-distance
set in Rn. Then

m(n) ≤ (n+ 1)(n+ 4)
2

The proof of this theorem is an application of the “linear algebra method:” associate m
vectors from some space V with our m objects in such a way that the constraints on our
objects imply that the vectors associated will be linearly independent. Then it will follow
that m ≤ dim(V ). Choose V such that dim(V ) will be the desired bound (in this case,
(n+ 1)(n+ 4)/2).

The trick, of course, is to find the right space V and the way of matching our objects to
vectors in V so that the constraints translate into linear independence.

Our space V will be a space of multivariate polynomials; the trick goes back to a paper by
Koornwinder.

A complete proof can be found in the “blue book” by Babai and Frankl, page 13.

Extremal Set Theory

Theorem 0.16 (Dijen K. Ray-Chaudhuri, Richard M. Wilson). Let A1, . . . , Am ⊆ {1, . . . , n}
be a set system satisfying

1. uniformity, i.e. |Ai| = k for every i,

2. s sizes of intersections, i.e. |Ai ∩Aj | ∈ {`1, . . . , `s} for every i 6= j.

Then m ≤
(
n
s

)
.

Exercise 0.17. In class we proved that m ≤
(
n
s

)
+
(
n
s−1

)
+ · · ·+

(
n
0

)
. (This proof can be found

in Babai-Frankl, section 5.) Prove the same bound on m without assumption 1.

Remark 0.18. For non-uniform set systems the above bound is tight. Simply take all sets of
size at most s.

Exercise 0.19 (R-W Theorem). Under assumptions 1 and 2 prove that m ≤
(
n
s

)
.

Hint: Let f̄1, . . . , f̄m, be the multi-linear polynomials used in the proof of m ≤
(
n
s

)
+
(
n
s−1

)
+

· · · +
(
n
0

)
. Find

(
n
s−1

)
+ · · · +

(
n
0

)
polynomials independent with the f̄i. More precisely, prove

that f̄1, . . . , f̄n and all homogeneous multi-linear monomials of degree less than s (products of
at most s− 1 variables) are linearly independent.
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Remark 0.20. The original proofs were more involved and considered matrices of size
(
n
s

)
×
(
n
s

)
.

The matrix M = (mi,j)m×n, where mi,j = 1 if j ∈ Ai and 0 otherwise, is called an incidence
matrix of A1, . . . , Am.

Ray-Chaudhuri and Wilson used so-called higher incidence matrices for their proof.

Definition 0.21. Inclusion Matrices. The s-inclusion matrix of the set systemA1, . . . , Am ⊂
[n] (where [n] = {1, . . . , n}) is an m ×

(
n
s

)
matrix Ms = (m(s)

i,j ) is defined as follows: i ranges

from 1 to m, j ranges through the subsets of [n] of size s, and m
(s)
i,j = 1 if j ⊆ Ai, and 0

otherwise.

Ray-Chaudhuri and Wilson proved that Ms has full row rank, i.e. rk(Ms) = m, by showing
that MsM

t
s is a non-singular matrix.

Exercise 0.22. Prove: the (i, j)-entry of MsM
t
s is(

|Ai ∩Aj |
s

)
.

(1 ≤ i, j ≤ m.)
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