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Exercise 0.1. Consider an infinite checkerboard. We will associate a cost of $1 to each black
square, and $(−1) to each white square. We say that a rectangle is “aligned” if its sides are
parallel to the axes of the checkerboard. For an aligned rectangle, we can define its cost to be
the sum of the costs of the checkerboard squares that it intersects. Partially covered squares
are evaluated proportionally; e. g. if say 70% of a black square is covered, the associated cost
is $ −0.7. Show that the following are equaivalent for an aligned rectangle R:

1. the cost of every translate1 of R is zero;

2. R has a side of even integer length. (The unit of length is the sidelength of a square in
the checkerboard.)

Exercise 0.2. If vertex v in the graph G has odd degree then there is a vertex w 6= v, also of
odd degree, such that G contains a v − w path.

Exercise 0.3. Let R be a rectangle. Consider a tiling of R by non-overlapping axis-parallel
rectangles. Suppose each rectangle in the tiling has at least one side of integer length. Then
R also has at least one side of integer length.

1. Prove this using Exercise 1.

2. Prove this using Exercise 2.

We now turn our attention to an algorithmic problem. Consider a lattice in Rn, specified by a
basis. We want to find the shortest non-zero vector in the lattice. Moreover, we would like to
be able to do this “efficiently,” in the sense that the number of steps taken by the algorithm
should be bounded by a polynomial function of the bit-length of the input (number of zeros
and ones needed to describe the input).

Let L =
∑n

i=1 Zbi where the bi ∈ Zn are linearly independent. Note that we restrict our
attention to bases in Zn rather than Rn because we need the number of bits in the input to
be finite. The length is the total number of bits needed to describe all entries of the matrix
[b1, b2, . . . , bn].

1The statement is not true with the words “every translate of” removed. Why not?
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Exercise 0.4. Show that the number of bits in the binary expansion of a positive integer N
is blogNc+ 1.

So for example if each coordinate has m bits, then the input length is mn2.

A polynomial time algorithm is one that takes at most C1(input length)C2 steps to execute.
For example an algorithm that runs in C(input length)3 steps is a cubic algorithm.

The shortest vector in a lattice is the zero vector. When we talk about “the shortest vector”
in a lattice, we mean the shortest non-zero vector.

Finding the shortest vector in a lattice is NP-hard (Ajtai, 2000). Roughly speaking this
means that the problem is at least as hard as any combinatorial search problem: if we could
solve it in polynomial time, we could use that to solve any other combinatorial search problem
in polynomial time. For example we could factor large numbers in polynomial time.

Lovász’s lattice reduction algorithm (1980) which we are about to see is a polynomial time
algorithm, and it does not find the shortest vector in the lattice. What it does find is a vector in
the lattice that is “short enough.” Specifically, it finds a vector x ∈ L with ‖x‖ ≤ 2(n−1)/2minL
where n is the dimension and

minL := min{‖v‖ : v ∈ L,v 6= 0}.

In fact it does more; it finds a certain “nice” basis for the lattice, called a Lovász-reduced basis.
A “nice” basis is one that is “close” to being orthogonal in some vague sense. It will turn
out that the first vector of a Lovász-reduced basis is a 2(n−1)/2-approximation to the shortest
vector in the lattice.

First we need to define a Lovász-reduced basis. Recall the Gram-Schmidt orthogonalization
process for obtaining an orthogonal basis for the span of a set of linearly independent vectors.
If b1, . . . ,bn is the original basis, and b∗1, . . . ,b

∗
n is the orthogonalized basis then we have

(∀i, 1 ≤ i ≤ n)

bi = b∗i +
∑
j<i

µi,jb∗j

 .

Now if the given basis b1, . . . ,bn is orthogonal then (∀i, j) (µi,j = 0). One possible meaning of
being “close to orthogonal” is that all the µi,j are small in absolute value; a Lovász-reduced
basis intends to meet this objective.

Additionally, we do not want the basis vector bi to be too close to the subspace Ui−1, the
span of b1, . . . ,bi−1, i. e., we do not want b∗i to have too small norm.

The following definition gives a prcise meaning to these two requirements:

Definition 0.5. A basis b1, . . . ,bn ∈ Rn is Lovász-reduced if after performing the Gram-
Schmidt orthogonalization process on it, the following conditions hold:

1. (∀i, j)
(
|µi,j | ≤ 1

2

)
;
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2. (∀i)
(
‖b∗i+1‖ ≥ 1√

2
‖b∗i ‖

)
.

Note that the definition is sensitive to order: the same basis vectors in a different order may
not form a Lovász-reduced basis.

The following lemma applies to all bases, not only to L-reduced ones. The lemma will be
our key tool to proving that in a L-reduced basis, the first basis vector is not much longer than
minL.

Lemma 0.6. For all lattices and bases, minL ≥ min1≤i≤n ‖b∗i ‖.

Proof: Let x ∈ L, x 6= 0. Then there exist αi ∈ Z not all zero, such that x =
∑n

i=1 αibi.
Let t be the largest index for which αt 6= 0, i. e., αt 6= 0 and αi = 0 for all i > t. Then
x =

∑t
i=1 αibi. Now recall that the Gram-Schmidt process on b1, . . . ,bn produces orthog-

onal vectors b∗1, . . . ,b
∗
n with the property that for all i with 1 ≤ i ≤ n, Span(b1, . . . ,bi) =

Span(b∗1, . . . ,b
∗
i ). Thus there exist βi ∈ R such that x =

∑t
i=1 βibi. Note that while the βi

do not have to be integers, the last one, βt is an integer. To see this, note that for all i with
1 ≤ i ≤ t,

αibi = αib∗i +
∑
j<i

αiµi,jb∗j .

Summing this up for i ≤ t, we obtain

x =
t∑
i=1

αibi =
t∑
i=1

αib∗i +
t∑
i=1

∑
j<i

αiµi,jb∗j .

The second term on the right hand side does not contain b∗t , so b∗t occurs only once, with
coefficient αt. Since the b∗i are linearly independent and x =

∑t
i=1 βib

∗
i it follows that βt =

αt ∈ Z. Now since the b∗i are orthogonal,

‖x‖2 =
t∑
i=1

β2
i ‖b∗i ‖2 ≥ β2

t ‖b∗t ‖2
(∗)
≥ ‖b∗t ‖2 ≥ min

1≤i≤n
‖b∗i ‖2,

where inequality (*) follows from the fact that if β ∈ Z and β 6= 0 then |β| ≥ 1. Taking the
minimum over all x ∈ L now completes the proof.

Observation 0.7. If b1, . . . ,bn is a Lovász-reduced basis for the lattice L then for all i,
‖b∗1‖ ≤ 2(i−1)/2‖b∗i ‖ (by induction, using property (2) of such a basis). Therefore

‖b∗1‖ ≤ 2(n−1)/2 min
1≤i≤n

b∗i ≤ 2(n−1)/2minL.

Since b∗1 = b1 we have
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Corollary 0.8. If b1, . . . ,bn is a Lovász-reduced basis for lattice L then ‖b1‖ ≤ 2(n−1)/2minL.

We still have to find a Lovász-reduced basis in L.

Lovász’s Algorithm

Input: [b1, . . . ,bn] ∈ Zn×n, non-singular.
Output: [b′1, . . . ,b

′
n] ∈ Zn×n, a Lovász-reduced basis of the same lattice, i. e., L =

∑n
i=1 Zbi =∑n

i=1 Zb′i.

The algorithm will make two kinds of steps, which try to achieve the two conditions in the
definitions. The first kind will perform elementary transformations on the basis (replacing bi
by bi − αbj for a suitable scalar α) with the goal to make the condition |µi,j | ≤ 1

2 hold. We
repeat this type of steps until all µi,j satisfy this inequality (so condition (1) holds).

Once condition (1) has been achieved, we check for condition (2) and will switch the order
of a pair of consecutive basis vectors where violation is found. We perform this operation only
once per round. While it is not immediately clear how this kind of rearrangement is of any
help, it is clear that such a rearrangement may destroy the condition |µi,j | ≤ 1

2 we have labored
hard to achieve, so we must return to the elementary transformations to restore condition (1).

All in all, it is not evident that such an approach will converge to anything at all; but if it
does converge, the result is a Lovász-reduced basis.

Making the µi,j s small
Let Ui denote Span(b1, . . . ,bi). If b∗1, . . .b

∗
n are the vectors produced by the Gram-Schmidt

process, then for all i, Span(b∗1, . . . ,b
∗
i ) = Ui and bi − b∗i ∈ Ui−1; and these two conditions

determine the b∗i . So the elementary transformations bi 7→ bi−αbj (j < i) do not change any
of the b∗i . b′1, . . .b

′
n will produce the same vectors b∗i . On the other hand, the µi,j will change;

we need to calculate this change to see that with the appropriate choice of the coefficient α ∈ Z,
the condition |µi,j | ≤ 1/2 will be achieved.

Here is then the first procedure:

Procedure “coefficient reduction”
for i = 2 to n

for j = i− 1 downto 1
bi := bi − bµi,jebj

Here bxe denotes the integer nearest to x. Ties are broken arbitrarily.

Exercise 0.9. Prove that the basis produced by this procedure satisfies condition (1).

Exercise 0.10. Why do we need to have the inner loop go down? Show that the procedure
would fail to achieve codition (1) if we had “for j = 1 to i − 1” in the inner loop. – Does
the order in which the outer loop goes matter? Could we use the “downto” command in the
outer loop?
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Complexity analysis: “coefficient reduction” requires
(
n
2

)
elementary basis transformations,

each of which takes O(n) arithmetic operations. One more thing to worry about: do the
integers involved grow in the process?

Exercise 0.11. Construct a simple sequence of n arithmetic operations which do not consti-
tute a polynomial-time algorithm when started from an n-digit input. Hint. Make the numbers
grow too fast.

Swapping
Now we check property 2. If it is violated, we swap a violating pair bi and bi+1. Then we start
over with coefficient reduction again. If property 2 is ever satisfied after coefficient reduction
then we are done. Here is the full algorithm in pseudocode:

Procedure “Lattice Reduction”
while basis not Lovász-reduced

if (∃i > j)(|µi,j | > 1/2) then do coefficient reduction
else find first i such that ‖b∗i+1‖ < 1√

2
‖b∗i ‖;

swap bi and bi+1;
update orthogonalized sequence.

To prove that this algorithm terminates, we use a potential function argument, a general
method of algorithm analysis which assigns a value (the “potential”) to each “configuration”
of variables in such a way that each phase of the algorithm reduces the potantial.

The Lovász potential of a basis b1, . . . ,bn is defined to be the quantity

vol (b1) · vol (b1,b2) · · · · · vol (b1, . . . ,bn),

where vol refers to the appropriate dimensional volume of the parallelepiped spanned by the
vectors in the argument.

Exercise 0.12. Show that the following quantity is equal to the Lovász potential:

‖b∗1‖n‖b∗2‖n−1 . . . ‖b∗n‖.

It follows from the exercise that the Lovász potential does not change under the “coefficient
reduction” procedure. (Why?)

Exercise 0.13. Prove that each execution of the “swap” command in the main algorithm
reduces the Lovász potential at least by a fixed constant factor, say 0.9.

Exercise 0.14. Show that for integral lattices (where all cordinates of the input vectors are
integers), the Lovász potential is the sqaure root of an integer.

Therefore, for integral lattices, the Lovász potential is ≥ 1. It follows that the algorithm
terminates in O(log I) phases, where I is the initial potential. Since each phase takes O(n2)
steps, the algorithm takes log IO(n2) steps.
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Exercise 0.15. Estimate the initial potential I. Show that log I is polynomially bounded as
a function of the bit-length of the input.

Exercise 0.16. Does the preceding exercise complete the polynomial-time analysis of the basis
reduction algorithm? Hint. No, we have only estimated the number of arithmetic operations,
and not the bit-size of the numbers on which they need to be performed. Take care of this
missing part of the analysis.
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