
Discrete Math, Ninth Problem Set (July 9th)

REU 2003

Instructor: Laszlo Babai
Scribe: David Balduzzi

READING: Please read the handout on irreducibility of polynomials (last chapter of “Algebra
review” handout.)

Recall that α is an algebraic number if α is a root of some nonzero polynomial f with
rational coefficients. If f has the lowest possible degree then we call f minimal polynomial
of α. The degree of α is the degree of its minimal polynomial.

Exercise 0.1. Show that the minimal polynomial is irreducible over Q.

Exercise 0.2. Lat f ∈ C[x] with f(α) = 0. Then α is a multiple root of f if and only if
f ′(α) = 0.

Exercise 0.3. Show that if f is an irreducible polynomial over Q then f has no multiple roots
in C.

The following straightforward observation is used to great effect in many arguments about
diophantine approximation and algorithm analysis.

Lemma 0.4. If z ∈ Z and z 6= 0 then |z| ≥ 1.

Theorem 0.5. Liouville
Let α be an algebraic number of degree n ≥ 2. Then∣∣∣∣α− p

q

∣∣∣∣ ≤ 1
qn+1

has only a finite number of solutions (p, q) (p, q ∈ Z).

Sketch of proof:
By assumption we have f ∈ Z[x], deg(f) = n, f(α) = 0 and α is a simple roort of f . Therefore
f can be written as f(x) = (x− α)g(x), where g ∈ C[x] and g(α) 6= 0. Now

∣∣∣∣α− p

q

∣∣∣∣ =

∣∣∣f (pq)∣∣∣∣∣∣g (pq)∣∣∣ =

∣∣∣qnf (pq)∣∣∣∣∣∣qng (pq)∣∣∣ ≥
1∣∣∣qng (pq)∣∣∣ ∼

1
qn |g(α)|

. (1)
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(Why does f
(
p
q

)
6= 0 ?) So

1
qn+1

≥
∣∣∣∣α− p

q

∣∣∣∣ & c

qn
.

This implies that q is bounded and therefore there are only a finite number of solutions.

Problem 0.6. (Computational geometry.) Suppose we are to find the shortest path be-
tween two points A and B in the plane, avoiding certain straight line segments (“obstacles”).
The obstacles are perpendicular to AB drawn such that they have “convex boundary.”

Can the number of candidate optimum paths be bounded by nc, where n is the number of
obstacles? In other words can an algorithm be found limiting the number of candidate paths to
a polynomial number.

Open Problem 0.7. Given positive integers a1, . . . , ak, b1, . . . , bl can we decide in polynomial
time (in terms of total bit length) if ∑√

ai >
∑√

bi?

Exercise 0.8. Show ∏
±

∑
±
√
cn ∈ Z

where we are taking products over all assignments of signs, with the restriction that
√
c1 always

positive.

Suppose we assume that for no choice of signs does
∑
±√ci = 0. Then∣∣∣∣∣∏

±

∑
±
√
ci

∣∣∣∣∣ ≥ 1 implies
∣∣∣∑±

√
ci

∣∣∣ ≥ 1(∑√
ci
)2n−1 .

Problem 0.9. Find a sequence {cn} of sequences such that cn is a collection of n n-digit
numbers; with the additional property that for some choice of signs,

−log
∣∣∣∑±

√
cni

∣∣∣ ≥ ‖cn‖N(c).

Can −log
∣∣∑±√cni ∣∣ grow faster than nconst?

Review seventh problem set.

Exercise 0.10. Show coefficient reduction does not affect the sequence b∗1, . . . ,b
∗
n.

Exercise 0.11. We denote the Lovász potential function by P. Show

Pnew
Pold

=
‖bnew∗i ‖
‖bold∗i ‖

is a (what?) constant factor. (Hint: work only in the space spanned by bi and bi+1.)
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