Discrete Math, Ninth Problem Set (July 9th)

REU 2003

Instructor: Laszlo Babai
Scribe: David Balduzzi

READING: Please read the handout on irreducibility of polynomials (last chapter of "Algebra review" handout.)

Recall that α is an algebraic number if α is a root of some nonzero polynomial f with rational coefficients. If f has the lowest possible degree then we call f minimal polynomial of α. The degree of α is the degree of its minimal polynomial.

Exercise 0.1. Show that the minimal polynomial is irreducible over \mathbb{Q}.
Exercise 0.2. Lat $f \in \mathbb{C}[x]$ with $f(\alpha)=0$. Then α is a multiple root of f if and only if $f^{\prime}(\alpha)=0$.

Exercise 0.3. Show that if f is an irreducible polynomial over \mathbb{Q} then f has no multiple roots in \mathbb{C}.

The following straightforward observation is used to great effect in many arguments about diophantine approximation and algorithm analysis.

Lemma 0.4. If $z \in \mathbb{Z}$ and $z \neq 0$ then $|z| \geq 1$.

Theorem 0.5. Liouville

Let α be an algebraic number of degree $n \geq 2$. Then

$$
\left|\alpha-\frac{p}{q}\right| \leq \frac{1}{q^{n+1}} \text { has only a finite number of solutions }(p, q)(p, q \in \mathbb{Z})
$$

Sketch of proof:
By assumption we have $f \in \mathbb{Z}[x], \operatorname{deg}(f)=n, f(\alpha)=0$ and α is a simple roort of f. Therefore f can be written as $f(x)=(x-\alpha) g(x)$, where $g \in \mathbb{C}[x]$ and $g(\alpha) \neq 0$. Now

$$
\begin{equation*}
\left|\alpha-\frac{p}{q}\right|=\frac{\left|f\left(\frac{p}{q}\right)\right|}{\left|g\left(\frac{p}{q}\right)\right|}=\frac{\left|q^{n} f\left(\frac{p}{q}\right)\right|}{\left|q^{n} g\left(\frac{p}{q}\right)\right|} \geq \frac{1}{\left|q^{n} g\left(\frac{p}{q}\right)\right|} \sim \frac{1}{q^{n}|g(\alpha)|} \tag{1}
\end{equation*}
$$

(Why does $f\left(\frac{p}{q}\right) \neq 0$?) So

$$
\frac{1}{q^{n+1}} \geq\left|\alpha-\frac{p}{q}\right| \gtrsim \frac{c}{q^{n}}
$$

This implies that q is bounded and therefore there are only a finite number of solutions.
Problem 0.6. (Computational geometry.) Suppose we are to find the shortest path between two points A and B in the plane, avoiding certain straight line segments ("obstacles"). The obstacles are perpendicular to $\overline{A B}$ drawn such that they have "convex boundary."

Can the number of candidate optimum paths be bounded by n^{c}, where n is the number of obstacles? In other words can an algorithm be found limiting the number of candidate paths to a polynomial number.
Open Problem 0.7. Given positive integers $a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{l}$ can we decide in polynomial time (in terms of total bit length) if

$$
\sum \sqrt{a_{i}}>\sum \sqrt{b_{i}} ?
$$

Exercise 0.8. Show

$$
\prod_{ \pm} \sum \pm \sqrt{c_{n}} \in \mathbb{Z}
$$

where we are taking products over all assignments of signs, with the restriction that $\sqrt{c_{1}}$ always positive.

Suppose we assume that for no choice of signs does $\sum \pm \sqrt{c_{i}}=0$. Then

$$
\left|\prod_{ \pm} \sum \pm \sqrt{c_{i}}\right| \geq 1 \text { implies }\left|\sum \pm \sqrt{c_{i}}\right| \geq \frac{1}{\left(\sum \sqrt{c_{i}}\right)^{2^{n}-1}}
$$

Problem 0.9. Find a sequence $\left\{c^{n}\right\}$ of sequences such that c^{n} is a collection of n-digit numbers; with the additional property that for some choice of signs,

$$
-\log \left|\sum \pm \sqrt{c_{i}^{n}}\right| \geq\left\|c^{n}\right\|^{N(c)}
$$

Can $-\log \left|\sum \pm \sqrt{c_{i}^{n}}\right|$ grow faster than $n^{\text {const ? }}$
Review seventh problem set.
Exercise 0.10. Show coefficient reduction does not affect the sequence $\mathbf{b}_{1}^{*}, \ldots, \mathbf{b}_{n}^{*}$.
Exercise 0.11. We denote the Lovász potential function by \mathcal{P}. Show

$$
\frac{\mathcal{P}_{\text {new }}}{\mathcal{P}_{\text {old }}}=\frac{\left\|\mathbf{b}_{i}^{\text {new } *}\right\|}{\left\|\mathbf{b}_{i}^{\text {old }}\right\|}
$$

is a (what?) constant factor. (Hint: work only in the space spanned by \mathbf{b}_{i} and \mathbf{b}_{i+1}.)

