Discrete Math, Ninth Problem Set (July 9th) REU 2003

Instructor: Laszlo Babai Scribe: David Balduzzi

READING: Please read the handout on irreducibility of polynomials (last chapter of "Algebra review" handout.)

Recall that α is an **algebraic number** if α is a root of some nonzero polynomial f with rational coefficients. If f has the lowest possible degree then we call f minimal polynomial of α . The **degree** of α is the degree of its minimal polynomial.

Exercise 0.1. Show that the minimal polynomial is irreducible over \mathbb{Q} .

Exercise 0.2. Lat $f \in \mathbb{C}[x]$ with $f(\alpha) = 0$. Then α is a multiple root of f if and only if $f'(\alpha) = 0$.

Exercise 0.3. Show that if f is an irreducible polynomial over \mathbb{Q} then f has no multiple roots in \mathbb{C} .

The following straightforward observation is used to great effect in many arguments about diophantine approximation and algorithm analysis.

Lemma 0.4. If $z \in \mathbb{Z}$ and $z \neq 0$ then $|z| \geq 1$.

Theorem 0.5. Liouville

Let α be an algebraic number of degree $n \geq 2$. Then

$$\left|\alpha - \frac{p}{q}\right| \leq \frac{1}{q^{n+1}}$$
 has only a finite number of solutions $(p,q) \ (p,q \in \mathbb{Z})$.

Sketch of proof:

By assumption we have $f \in \mathbb{Z}[x]$, $\deg(f) = n$, $f(\alpha) = 0$ and α is a simple root of f. Therefore f can be written as $f(x) = (x - \alpha)g(x)$, where $g \in \mathbb{C}[x]$ and $g(\alpha) \neq 0$. Now

$$\left|\alpha - \frac{p}{q}\right| = \frac{\left|f\left(\frac{p}{q}\right)\right|}{\left|g\left(\frac{p}{q}\right)\right|} = \frac{\left|q^n f\left(\frac{p}{q}\right)\right|}{\left|q^n g\left(\frac{p}{q}\right)\right|} \ge \frac{1}{\left|q^n g\left(\frac{p}{q}\right)\right|} \sim \frac{1}{q^n \left|g(\alpha)\right|}.$$
(1)

(Why does $f\left(\frac{p}{q}\right) \neq 0$?) So

$$\frac{1}{q^{n+1}} \ge \left| \alpha - \frac{p}{q} \right| \gtrsim \frac{c}{q^n}.$$

This implies that q is bounded and therefore there are only a finite number of solutions.

Problem 0.6. (Computational geometry.) Suppose we are to find the shortest path between two points A and B in the plane, avoiding certain straight line segments ("obstacles"). The obstacles are perpendicular to \overline{AB} drawn such that they have "convex boundary."

Can the number of candidate optimum paths be bounded by n^c , where n is the number of obstacles? In other words can an algorithm be found limiting the number of candidate paths to a polynomial number.

OPEN PROBLEM 0.7. Given positive integers $a_1, \ldots, a_k, b_1, \ldots, b_l$ can we decide in polynomial time (in terms of total bit length) if

$$\sum \sqrt{a_i} > \sum \sqrt{b_i}?$$

Exercise 0.8. Show

$$\prod_{\pm} \sum \pm \sqrt{c_n} \in \mathbb{Z}$$

where we are taking products over all assignments of signs, with the restriction that $\sqrt{c_1}$ always positive.

Suppose we assume that for no choice of signs does $\sum \pm \sqrt{c_i} = 0$. Then

$$\left|\prod_{\pm} \sum \pm \sqrt{c_i}\right| \ge 1 \text{ implies } \left|\sum \pm \sqrt{c_i}\right| \ge \frac{1}{\left(\sum \sqrt{c_i}\right)^{2^n - 1}}$$

Problem 0.9. Find a sequence $\{c^n\}$ of sequences such that c^n is a collection of n n-digit numbers; with the additional property that for some choice of signs,

$$-\log\left|\sum \pm \sqrt{c_i^n}\right| \ge \|c^n\|^{N(c)}.$$

 $Can - log \left| \sum \pm \sqrt{c_i^n} \right|$ grow faster than n^{const} ?

Review seventh problem set.

Exercise 0.10. Show coefficient reduction does not affect the sequence $\mathbf{b}_1^*, \ldots, \mathbf{b}_n^*$.

Exercise 0.11. We denote the Lovász potential function by \mathcal{P} . Show

$$\frac{\mathcal{P}_{new}}{\mathcal{P}_{old}} = \frac{\|\mathbf{b}_i^{new*}\|}{\|\mathbf{b}_i^{old*}\|}$$

is a (what?) constant factor. (*Hint:* work only in the space spanned by \mathbf{b}_i and \mathbf{b}_{i+1} .)