next up previous
Next: Application: polynomial time algorithm Up: Discrete Math, Tenth Problem Previous: Orthogonality defect

Short vectors

We would like to talk about finding a short vector in a lattice. Thus we need a notion of shortness.

Definition 2.1   The infinity norm of a vector, $ x$, with coordinates $ x_i$ is:

$\displaystyle \Vert x\Vert _\infty:=$max$\displaystyle (\vert x_i\vert)$.$\displaystyle $

Definition 2.2   The L$ _2$ norm of a vector, $ x$, with coordinates $ x_i$ is:

% latex2html id marker 1591
$\displaystyle \Vert x\Vert _{\text{L}_2}=\Vert x\Vert _2:=(\sum x_i^2)^{1/2}\text{.}
$

Whenever we write $ \Vert x\Vert$, we implicitly mean $ \Vert x\Vert _2$. In order to move between these notions, we need the following:

Exercise 2.3  

$\displaystyle \Vert x\Vert _\infty\leq\Vert x\Vert _2\leq n^{1/2}\Vert x\Vert _\infty$.$\displaystyle $

Definition 2.4   Let % latex2html id marker 1602
$ \mathbf{\omega_n}$ denote the volume of the unit ball in $ \mathbb{R}^n$.


\begin{exx}
% latex2html id marker 887\begin{displaymath}\omega_n = \frac{\pi^...
...) ! = \frac{\sqrt{\pi}}{4^k}\cdot
\frac{(2k+1)!}{k!}.\end{displaymath}\end{exx}


\begin{exercise}
% latex2html id marker 889Prove that Stirling's formula exten...
...t(\frac{n}{2\mathrm{e}}\right)^{n/2}\sqrt{\pi n}.\end{displaymath}\end{exercise}


\begin{exercise}
% latex2html id marker 892Prove: \quad $\omega_n^{1/n} \sim \sqrt{2\pi\mathrm{e}/n}.$\end{exercise}


The factorial function is extended to all complex numbers except the negative integers by the Gamma function defined by

$\displaystyle \Gamma(z) = \int_0^{\infty} t^{z-1}\mathrm{e}^{-t} dt.$

This function is related to factorials (including the factorial of half-integers as defined above) by the identity $ x! =\Gamma(x+1)$. Stirling's formula holds for positive real values $ x\to\infty$:

$\displaystyle \Gamma(x+1) \sim (x/\mathrm{e})^x\sqrt{2\pi x}.$

The Gamma function satisfies the identity $ \Gamma(z+1)=z\Gamma(z)$ and $ \Gamma(3/2)=(1/2)!=\sqrt{\pi}/2$.


\begin{exercise}
% latex2html id marker 897From the value given for $\Gamma(3/...
...deduce the value given above
for the factorials of half-integers.
\end{exercise}


Check out ``Eric Weisstein's world of mathematics'' about the amazing world of the Gamma function at http://mathworld.wolfram.com/GammaFunction.html.


Applying Minkowski's theorem to spheres and cubes centered around the origin gives the following two theorems:

Theorem 2.5   Let $ L$ be a lattice, and let $ \Delta=\vert\det(L)\vert$ be the volume of a fundamental parallelepiped. Then there exists a nonzero element $ x\in L$ such that

% latex2html id marker 1625
$\displaystyle \Vert x\Vert\leq \frac{2}{\omega_n^{1/n}}\Delta^{1/n}$.$\displaystyle $

Note that the right-hand side is asymptotically $ c\sqrt{n}\Delta^{1/n}$, where $ c=\sqrt{2/\pi\mathrm{e}}$.

Theorem 2.6   With the notation as in the previous theorem, there exists a nonzero element $ x\in L$ such that $ \Vert x\Vert _\infty\leq \Delta^{1/n}$.

Theorem 2.7   If $ \{{\mathbf{b}}_1,\dots, {\mathbf{b}}_n\}$ is a Lovasz-reduced basis, then

This theorem follows from the following lemma and the defining properties of Lovasz reduced bases.

Lemma 2.8   If $ ({\mathbf{b}}_1,\cdots {\mathbf{b}}_n)$ is a Lovasz reduced basis, then $ \Vert{\mathbf{b}}_i\Vert \leq 2^{(i-1)/2}\Vert{\mathbf{b}}_i^*\Vert$.


\begin{exercise}
% latex2html id marker 920Prove the Lemma and the Theorem. {\...
...culation
using the defining properties of a Lovasz-reduced basis.
\end{exercise}

Remark 2.9   $ \Delta$ can be defined for a lattice not of full rank, since the fundamental parallelpiped has an $ n$-dimensional volume even if it resides in $ {\mathbb{R}}^m$ for some $ m\ge n$. Recall that $ \Delta=\sqrt{\det G({\mathbf{b}}_1,\dots,{\mathbf{b}}_n)}$, where $ G$ is the Gram matrix (see handout, section on Euclidean spaces).


next up previous
Next: Application: polynomial time algorithm Up: Discrete Math, Tenth Problem Previous: Orthogonality defect
Varsha Dani 2003-07-25