Proof of Minkowski’s Theorem.

Combinatorial games. Evaluation of the game tree. Existence of a winning strategy. Proof that the first player has a winning strategy in the “Divisor” game.

Solution to the harder Erdős puzzle: If \(A \) is a set of \(n + 1 \) numbers from 1 to \(2n \) then one of them divides another.

Definition 0.1. Two elements in a partially ordered set (poset) are *comparable* if one is less than or equal to the other. A *chain* in a poset is a set of pairwise comparable elements. An *antichain* is a set of pairwise incomparable elements.

The solution to the Erdős puzzle was based on the following observation.

Exercise 0.2. The set \(\{1, 2, \ldots, 2n\} \), partially ordered by divisibility, can be split into \(n \) chains.

From this it follows by the Pigeon Hole Principle that no antichain can have more than \(n \) elements, proving Erdős’s claim. This is an instance of a remarkable general result at work:

Exercise+ 0.3. (Dilworth’s Theorem) Let \(P \) be a finite partially ordered set. Let \(\alpha(P) \) be the maximum size of antichains in \(P \), and let \(\chi(P) \) denote the minimum number chains whose union is \(P \). Then \(\alpha(P) = \chi(P) \).

(Note that \(\alpha(P) \leq \chi(P) \) is straightforward.)

The *comparability graph* of a poset \(P \) has \(P \) for its set of vertices; comparable elements are adjacent.

Exercise 0.4. \(\alpha(P) \) is the maximum size of independent sets of the comparability graph of \(P \); and \(\chi(P) \) is the chromatic number of the complement of the comparability graph.
The next exercise shows that the $\alpha(G)$ vs. $\chi(G)$ behavior of most graphs is diametrically opposite to comparability graphs.

Exercise 0.5. Prove: there exist graphs G with n vertices and with $\alpha(G) = O(\log n)$ and $\chi(G) = \Omega(n/\log n)$. *Hint.* Show that almost all graphs have the desired property.

Exercise 0.6. Verify that the “SETs” in the card game “SET” are lines in $AG(4,3)$, the 4-dimensional affine geometry over F_3.

Exercise 0.7. Show that there are 1080 lines in $AG(4,3)$.

Definition 0.8. An *independent set* in $AG(n,q)$ is a set S of points such that no line is contained in S. Let $\alpha(n,q)$ denote the maximum size of independent sets in $AG(n,q)$.

Exercise 0.9. We are interested in the value of $\alpha(4,3)$, the maximum number of SET-cards without a “SET.”

1. Show that $\alpha(2,3) = 4$.
2. Use this to show that $\alpha(4,3) \leq 36$.
3. Show that $\alpha(n,3) \geq 2^n$.
4. Show that $\alpha(3,3) \geq 9$.
5. Infer from the previous exercise that $\alpha(4,3) \geq 18$.
6. Show that $\alpha(4,3) \geq 20$. (This is the best lower bound known to the instructor.)
7. Show that $\alpha(3,3) = 9$.
8. Infer from the previous exercise that $\alpha(4,3) \leq 27$.
9. Prove: if S is an independent set in $AG(3,3)$ and $|S| \geq 7$ then S contains 4 points which belong to a 2-dimensional affine subspace ($AG(2,3)$).
10. Prove: if an independent set S in $AG(4,3)$ does not contain 4 points that belong to a 2-dimensional affine subspace then $|S| \leq 15$.
11. Prove: $\alpha(4,3) \leq 24$. This is the best upper bound known to the instructor. *Hint.* Take 2-dimensional affine subspace A such that $|A \cap S| = 4$. Let B be a 3-dimensional affine subspace containing A. Then $|S \cap B \setminus A| \leq 5$. Four such sets $B_i \setminus A$ tile $AG(4,3)$.
12. * Reduce the gap between the lower and upper bounds $20 \leq \alpha(4,3) \leq 24$.
13. Prove: $\alpha(n,3)\alpha(k,3) \leq \alpha(n + k,3)$.
14. Let $L = \lim_{n \to \infty} \sqrt[n]{\alpha(n,3)}$. Prove that this limit exists.
15. Prove: for all \(n \), \(L \geq \sqrt[3]{\alpha(n,3)} \).

16. Prove: \(2.11 < L \leq 3 \).

17. * Is \(L < 3 \) ? (The answer is not known to the instructor.)

Exercise 0.10. Let \(f(x, y) \) be a two variable polynomial over \(F_q \) of total degree \(\leq 2q - 3 \). If \(f \) is not identically zero then it attains non-zero values more than once.

Definition 0.11. An *blocking set* in \(AG(n, q) \) is a set \(S \) of points such that every line intersects \(S \).

Note that blocking sets are the complements of the independent sets.

Exercise 0.12. Prove: \(\alpha(2, q) = (q - 1)^2 \). *(Hint: Suppose that there is a blocking set \(\{(a_1, b_1), \ldots, (a_m, b_m)\} \) with \(m \leq 2q - 2 \) elements. W.l.o.g. \(a_1 = b_1 = 0 \). Consider the polynomial \(f(x, y) = (a_2 x + b_2 y + 1) \ldots (a_m x + b_m y + 1) \).)*