1 Vector spaces, linear independence

Definition 1.1. A vector space is a set V with

(a) addition $V \times V \to V$, $(x, y) \mapsto x + y$, and

(b) scalar multiplication $\mathbb{R} \times V \to V$, $(\alpha, x) \mapsto \alpha x$,

satisfying following axioms

(a) $(V, +)$ is an abelian group, i.e.

(a1) $(\forall x, y \in V)(\exists ! x + y \in V)$,
(a2) $(\forall x, y \in V)(x + y = y + x)$ (commutative law),
(a3) $(\forall x, y, z \in V)((x + y) + z = x + (y + z))$ (associative law),
(a4) $(\exists 0 \in V)(\forall x)(x + 0 = 0 + x = x)$ (existence of zero),
(a5) $(\forall x \in V)(\exists (-x) \in V)(x + (-x) = 0)$,

b) (b1) $(\forall \alpha, \beta \in \mathbb{R})(\forall x \in V)(\alpha(\beta x)) = (\alpha \beta) x$ ("associativity" linking two operations),
(b2) $(\forall \alpha, \beta \in \mathbb{R})(\forall x \in V)((\alpha + \beta)x = \alpha x + \beta x)$ (distributivity over scalar addition),
(b3) $(\forall \alpha \in \mathbb{R})(\forall x, y \in V)(\alpha(x + y) = \alpha x + \alpha y)$ (distributivity over vector addition),

(c) $(\forall x \in V)(1 \cdot x = x)$ (normalization).

Exercise 1.2. Show $(\forall x \in V)(0x = 0)$. (The first 0 is a number, the second a vector.)

Exercise 1.3. Show $(\forall \alpha \in \mathbb{R})(\alpha 0 = 0)$.

Exercise 1.4. Show $(\forall \alpha \in \mathbb{R})(\forall x \in V)(\alpha x = 0 \leftrightarrow (\alpha = 0 \text{ or } x = 0))$
Definition 1.5. A **linear combination** of vectors \(v_1, \ldots, v_k \in V \) is a vector \(\alpha_1 v_1 + \cdots + \alpha_k v_k \) where \(\alpha_1, \ldots, \alpha_k \in \mathbb{R} \). The **span** of \(v_1, \ldots, v_k \in V \) is the set of all linear combinations of \(v_1, \ldots, v_k \), i.e., \(\text{Span}(v_1, \ldots, v_k) = \{ \alpha_1 v_1 + \cdots + \alpha_k v_k \mid \alpha_1, \ldots, \alpha_k \in \mathbb{R} \} \).

Remark 1.6. We let \(\text{Span}(\emptyset) = \{0\} \).

Remark 1.7. A linear combination of an infinite set of vectors \(S \subseteq V \) is a linear combination of a finite subset of \(S \).

Note that 0 is always in \(\text{Span}(v_1, \ldots, v_k) \) because the trivial linear combination \((\forall i) \alpha_i = 0 \) is \(0 \cdot v_1 + \cdots + 0 \cdot v_k = 0 \).

Definition 1.8. Vectors \(v_1, \ldots, v_k \in V \) are **linearly independent** if only the trivial linear combination gives 0, i.e., \(\alpha_1 v_1 + \cdots + \alpha_k v_k = 0 \Rightarrow \alpha_1 = \cdots = \alpha_k = 0 \).

Exercise 1.9. Which one element sets of vectors are linearly independent?

Exercise 1.10. Show that if \(T \subseteq S \subseteq V \) and \(S \) is linearly independent then \(T \) is linearly independent.

We say that vectors \(u, v \in V \) are **parallel** if \(u, v \neq 0 \) and \(\exists \alpha \in \mathbb{R} \) such that \(u = \alpha v \).

Exercise 1.11. Show that vectors \(u, v \in V \) are linearly dependent if and only if \(a = 0 \) or \(b = 0 \) or \(a, b \) are parallel.

Exercise 1.12. An infinite set of vectors is linearly independent if and only if all finite subsets are linearly independent.

Remark 1.13. We say that a property \(P \) is a **finitary property** if a set \(S \) has the property \(P \) if and only if all finite subsets of \(S \) have property \(P \).

Exercise 1.14. *(Erdős – deBruijn)* Show that 3-colorability of a graph is a finitary property. (The same holds for 4-colorability, etc.)

The set of all polynomials with real coefficients is a vector space \(\mathbb{R}[x] \).

Exercise 1.15. Show that \(1, x, x^2, \ldots \) are linearly independent.

Definition 1.16. The polynomial \(f(x) = \sum a_k x^k \) has **degree** \(k \) if \(a_k \neq 0 \), but \((\forall j > k)(a_j = 0) \). Notation: \(\deg(f) = k \). We let \(\deg(0) = -\infty \). Note: the nonzero constant polynomials have degree 0.

Exercise 1.17. Prove: \(\deg(fg) = \deg(f) + \deg(g) \). (Note that this remains true if one of the polynomials \(f, g \) is the zero polynomial.)

Exercise 1.18. Prove: \(\deg(f + g) \leq \max\{\deg(f), \deg(g)\} \).
Exercise 1.19. Prove that if f_0, f_1, f_2, \ldots is a sequence of polynomials, $\deg(f_i) = i$ then f_0, f_1, f_2, \ldots are linearly independent.

Exercise 1.20. Let $f(x) = (x - \alpha_1) \cdots (x - \alpha_k)$ where $\alpha_i \neq \alpha_j$ for $i \neq j$. Let $g_k(x) = f(x)/(x - \alpha_k)$. Show that g_1, \ldots, g_k are linearly independent.

Exercise 1.21. Prove: for all $\alpha, \beta \in \mathbb{R}$, $\sin(x), \sin(x+\alpha), \sin(x+\beta)$ are linearly dependent functions $\mathbb{R} \to \mathbb{R}$.

Exercise 1.22. Prove: $1, \sin(x), \sin(2x), \sin(3x), \ldots, \cos(x), \cos(2x), \ldots$ are linearly independent functions $\mathbb{R} \to \mathbb{R}$.

Definition 1.23. A **maximal** linearly independent subset of a set $S \subseteq V$ is a subset $T \subseteq S$ such that

(a) T is linearly independent, and

(b) if $T \subseteq T' \subseteq S$ then T' is linearly dependent.

Definition 1.24. A **maximum** linearly independent subset of a set $S \subseteq V$ is a subset $T \subseteq S$ such that

(a) T is linearly independent, and

(b) if $T' \subseteq S$ is linearly independent then $|T| \geq |T'|$.

Exercise 1.25. (Independence of vertices in a graph.) Show that 6-cycle, there exists a maximum independent set of vertices which is not maximal.

We shall see that this cannot happen with linear independence: every maximal linearly independent set is maximum.

Exercise 1.26. Let $S \subseteq V$. Then there exists $T \subseteq S$ such that T is a maximal independent subset of S.

Exercise 1.27. Let $L \subseteq S \subseteq V$. Assume L is linearly independent. Then there exists a maximal linearly independent subset $T \subseteq S$ such that $L \subseteq T$. (Every linearly independent subset of S set can be extended to a maximal linearly independent subset of S.)

Remark 1.28. This is easy to prove Ex. ?? by successively adding vectors until our set becomes maximal as long as all linearly independent subsets of S are finite. For the infinite case, we need an axiom from set theory called Zorn’s Lemma (a version of the Axiom of Choice).

Definition 1.29. A vector $v \in V$ **depends** on $S \subseteq V$ if $v \in \text{Span}(S)$, i.e. v is a linear combination of S.

Definition 1.30. A set of vectors $T \subseteq V$ **depends** on $S \subseteq V$ if $T \subseteq \text{Span}(S)$.
Exercise 1.31. Show that dependence is transitive: if \(R \subseteq \text{Span}(T) \) and \(T \subseteq \text{Span}(S) \) then \(R \subseteq \text{Span}(S) \).

Exercise 1.32. Suppose that \(\sum \alpha_i v_i \) is a nontrivial linear combination. Then (\(\exists i \)) such that \(v_i \) depends on the rest (i.e. on \(\{v_j \mid j \neq i\} \)). Indeed, this will be the case whenever \(\alpha_i \neq 0 \).

Exercise 1.33. If \(v_1, \ldots, v_k \) are linearly independent and \(v_1, \ldots, v_k, v_{k+1} \) are linearly dependent then \(v_{k+1} \) depends on \(v_1, \ldots, v_k \).

Theorem 1.34 (Fundamental Fact of Linear Algebra). If \(v_1, \ldots, v_k \) are linearly independent and \(v_1, \ldots, v_k \in \text{Span}(w_1, \ldots, w_\ell) \) then \(k \leq \ell \).

Corollary 1.35. All maximal independent sets are maximum.

Exercise 1.36. If \(T \subseteq S, T \) is a maximal independent subset of \(S \) then \(S \subseteq \text{Span}(T) \).

Exercise 1.37. Prove Corollary ?? from Theorem ?? and Exercise ??.

Definition 1.38. For \(S \subseteq V \), the rank of \(S \) is the common cardinality of all the maximal independent subsets of \(S \). Notation: \(\text{rk}(S) \).

Definition 1.39. The dimension of a vector space is \(\dim(V) := \text{rk}(V) \).

Exercise 1.40. Show that \(\dim(\mathbb{R}^n) = n \).

Exercise 1.41. Let \(P_k \) be the space of polynomials of degree \(\leq k \). Show that \(\dim(P_k) = k + 1 \).

Exercise 1.42. Let \(T = \{\sin(x + \alpha) \mid \alpha \in \mathbb{R}\} \). Prove \(\text{rk}(T) = 2 \).

2 Basis

Definition 1.43. A basis of \(V \) is a linearly independent set which spans \(V \).

Definition 1.44. A basis of \(S \subseteq V \) is a linearly independent subset of \(S \) which spans \(S \). In other words, a basis \(B \) of \(S \) is a linearly independent set satisfying \(B \subseteq S \subseteq \text{Span}(B) \).

Exercise 1.45. \(B \) is a basis of \(S \) if and only if \(B \) is a maximal independent subset of \(S \).

Exercise 1.46. Prove: if \(B \) is a basis of \(V \) then \(\dim(V) = |B| \).

Exercise 1.47. A “Fibonacci-type sequence” is a sequence \((a_0, a_1, a_2, \ldots) \) such that \((\forall n)(a_{n+2} = a_{n+1} + a_n) \).

(a) Prove that the Fibonacci-type sequences form a 2-dimensional vector space.

(b) Find a basis in this space consisting of two geometric progressions.

(c) Express the Fibonacci sequence \((0, 1, 1, 2, 3, 5, 8, 13, \ldots) \) as a linear combination of the basis found in item (b).