1 Constructive Proofs of Negative Results in Ramsey Theory

Recall that we discussed the following results:

- \(4^n \to (n + 1, n + 1)\), proved by Erdős-Szekeres,
- \(2^{n/2} \not\to (n + 1, n + 1)\), showed by Erdős using a probabilistic proof of existence.

So far we have seen only one constructive proof of a negative result, the trivial example observed by Turán showing that \(n^2 \not\to (n + 1, n + 1)\).

Theorem 12.1 (Zsigmond Nagy, 1973). \(\binom{n}{3} \not\to (n + 1, n + 1)\) can be proved constructively.

Nagy’s construction defines the graph as follows. The vertices are all the 3-element subsets of \([n]\). Sets \(A\) and \(B\) are adjacent if \(|A \cap B| = 1\). The Erdős-deBruijn Theorem, a special case of Fisher’s inequality for sets with intersection size 1, implies that Nagy’s graph does not contain a clique of size \(n + 1\). By the Oddtown Theorem the graph does not contain an ant clique of size \(n + 1\).

The best known explicit construction is by Frankl and Wilson.

Theorem 12.2 (Frankl - Wilson). Let \(\varepsilon > 0\). For sufficiently large \(n\) one can construct a graph of at most \(n^{(1-\varepsilon)\frac{\ln n}{\ln \ln n}}\) vertices with no clique or ant clique of size \(n + 1\).

Let \(p\) be a prime. The vertices in the Frankl - Wilson graph are all the subsets of \([2p^2 - 1]\) of size \(p^2 - 1\). Sets \(A\) and \(B\) are adjacent if \(|A \cap B| \equiv -1 \pmod{p}\).

Claim 12.3. The Frankl - Wilson example proves that

\[
\binom{2p^2 - 1}{p^2 - 1} \not\to \binom{2p^2 - 1}{p - 1} + 1.
\]
The proof of the claim is based on two theorems on extremal set theory:

Theorem 12.4 (Ray-Chaudhuri - Wilson, 1975). Fix \(k \) and let \(l_1 < \cdots < l_s < k \). If \(A_1, \ldots, A_m \subseteq [n] \) are sets of size \(k \) such that \(|A_i \cap A_j| \in \{l_1, \ldots, l_s\} \) for every \(i \neq j \), then \(m \leq \binom{n}{s} \).

Exercise 12.5. Prove that the Ray-Chaudhuri - Wilson Theorem is tight, i.e. find \(\binom{n}{s} \) sets with \(s \) different intersection sizes.

Frankl and Wilson generalized the Ray-Chaudhuri - Wilson Theorem:

Theorem 12.6 (Frankl - Wilson, 1981). Let \(p \) be a prime and let \(k, l_1, \ldots, l_s \in \mathbb{Z}_p \) be such that \(k \not\equiv l_1, \ldots, l_s \pmod{p} \). If \(A_1, \ldots, A_m \subseteq [n] \) are sets of size \(k \) such that \(|A_i \cap A_j| \in \{l_1, \ldots, l_s\} \pmod{p} \) for every \(i \neq j \), then \(m \leq \binom{n}{s} \).

A clique in the Frankl - Wilson graph corresponds to a set system \(A_1, \ldots, A_m \), such that \(|A_i| = p^2 - 1 \) for every \(i \), such that \(|A_i \cap A_j| \in \{p - 1, 2p - 1, \ldots, p(p - 1) - 1\} \). Thus the Ray-Chaudhuri - Wilson Theorem implies that \(m \leq \binom{2p^2 - 1}{p - 1} \).

An anticlique corresponds to a set system \(B_1, \ldots, B_m \subseteq [2p^2 - 1] \), \(|B_i| = p^2 - 1 \equiv -1 \pmod{p} \) for every \(i \), such that \(|B_i \cap B_j| \in \{0, 1, \ldots, p - 2\} \pmod{p} \). By the Frankl - Wilson Theorem, \(m \leq \binom{2p^2 - 1}{p - 1} \).

2 Bipartite Ramsey Theory

We define a bipartite version of the Erdős-Rado arrow.

Definition 12.7. We say that \(a \sim (b, c) \) if every bipartite graph \(G \) with \(a \) vertices contains a bipartite clique \(K_{b,b} \) or the complement \(\overline{G} \) contains a bipartite clique \(K_{c,c} \).

Exercise 12.8. Prove: \(4^n \sim (n + 1, n + 1) \).

Exercise 12.9. Prove: \(2^{n/2} \not\sim (n + 1, n + 1) \).

Hint. Probabilistic proof of existence.

3 Hadamard Matrices

Theorem 12.10 (Hadamard's Inequality). Let \(A \in M_n(\mathbb{R}) \), i.e. \(A \) is a \(n \times n \) matrix over \(\mathbb{R} \). Then

\[
|\det(A)| \leq \prod_{i=1}^{n} \|a_i\|,
\]

where \(a_i \) is the vector in the \(i \)-th row of \(A \) and \(\|a_i\| = \sqrt{\sum_{j=1}^{n} a_{i,j}^2} \) is its norm. The equality holds if and only if there exists a zero row or if the rows are pairwise orthogonal.
Definition 12.11. An Hadamard matrix is a ± 1-matrix with all rows orthogonal.

The Sylvester matrices are $2^k \times 2^k$ matrices defined by the following matrix recurrence.

\[H_0 = \begin{pmatrix} 1 \end{pmatrix} \]

\[H_{k+1} = \begin{pmatrix} H_k & H_k \\ H_k & -H_k \end{pmatrix} \quad \text{for } k > 0 \]

Definition 12.13. n is an Hadamard number if there exists an $n \times n$ Hadamard matrix.

Exercise 12.14. If n is an Hadamard number then $n \leq 2$ or n is divisible by 4.

Exercise† 12.15. If $p \equiv -1 \mod 4$ is a prime power, then $p + 1$ is an Hadamard number. Hint: Quadratic residues.

Exercise 12.16. If H is an Hadamard matrix then H^T is also an Hadamard matrix. Hint: Examine HH^T.

Exercise 12.17. Construct a matrix with all rows orthogonal such that the columns are not orthogonal.

Definition 12.18. Let $M = (m_{i,j})$ be a $n \times n$ matrix and let $I,J \subseteq [n]$. A rectangle is a submatrix of M corresponding to rows defined by I and columns defined by J. The discrepancy of the rectangle is defined as

\[\text{disc}_{I,J}(M) = \left| \sum_{i \in I, j \in J} m_{i,j} \right|. \]

Theorem 12.19 (Lindsay’s Inequality). Let $a = |I|$ and $b = |J|$. If H is an Hadamard matrix then

\[\text{disc}_{I,J}(H) \leq \sqrt{nab} \]

Note 12.20 (Back to bipartite Ramsey numbers.). Let M be an incidence matrix of a bipartite graph, with zeros replaced by -1. The rectangle corresponding to a bipartite clique or anticlique of size t has discrepancy t^2. By Lindsay’s Inequality, $t^2 \leq t \sqrt{n}$, so $t \leq \sqrt{n}$. Therefore

\[n^2 \not\to (n + 1, n + 1). \]

The proof of Lindsay’s inequality is based on the following facts:

Theorem 12.21 (Cauchy-Schwarz Inequality). Let $a, b \in \mathbb{R}^n$. Then

\[|a \cdot b| \leq \|a\| \|b\|, \]

where \cdot denotes the standard inner product.
Definition 12.22. A matrix K is orthogonal if $K^T = K^{-1}$.

Lemma 12.23. If a $n \times n$ matrix K is orthogonal, then $\|Kx\| = \|x\|$ for every vector $x \in \mathbb{F}^n$.

Proof: [of Lindsay’s Inequality] Let $e_S \in \mathbb{R}^n$ be the characteristic vector of the set $S \subseteq [n]$. Then

$$\sum_{i \in I, j \in J} m_{i,j} = e_I^* Me_J$$

If H is Hadamard then $\frac{1}{\sqrt{n}}H$ is orthogonal. By Cauchy-Schwarz and the above lemma,

$$\text{disc}_{I,J}(H) = \|e_I^* He_J\| \leq \|e_I\|\|He_J\| = \sqrt{a\sqrt{nb}}$$

Exercise 12.24. Prove: If a and b are Hadamard numbers then ab is a Hadamard number.

Conjecture 12.25. If n is divisible by 4 then n is a Hadamard number.

Definition 12.26. The upper density of a set $A \subseteq \mathbb{N}$ is

$$\limsup_{n \to \infty} \frac{|A(n)|}{n},$$

where $A(n) = \{x \in A \mid x \leq n\}$. The lower density is

$$\liminf_{n \to \infty} \frac{|A(n)|}{n}.$$

We say that A has density γ if γ is both the lower and the upper density.

Exercise 12.27. Construct a set with lower density 0 and upper density 1.

Exercise 12.28. The upper density of Hadamard numbers is $\leq 1/4$.

The Conjecture ?? would imply that the density of Hadamard numbers is 1/4.

OPEN PROBLEM: Is the (upper) density of Hadamard numbers positive? The Sylvester matrices example shows that there are infinitely many Hadamard matrices. The quadratic residue Hadamard matrices give asymptotic density $\frac{1}{2\ln n}$. However, the density of this set is still 0.