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ABSTRACT

In this thesis we study various models of query complexity. A query algorithm

computes a function under the restriction that the input can be accessed only by

making probes to the the bits of the input. The query complexity of a function

f is the minimum number of probes made by any query algorithm that com-

putes f . In this thesis, we consider three different models of query complexity, (1)

deterministic decision tree complexity (query complexity when the underlying al-

gorithm is deterministic), (2) approximate decision tree complexity aka. property

testing (query complexity when the underlying algorithm is probabilistic and only

expected to ”approximately” compute f) and quantum query complexity (query

complexity when the underlying algorithm is allowed to make quantum queries).

The main results in this thesis are:

• We study the relation between deterministic decision tree complexity and

other combinatorial measures of complexity measures like sensitivity and

block sensitivity. We prove that for minterm-transitive functions the sen-

sitivity is quadratically related to block sensitivity which is polynomially

related to deterministic decision tree complexity.

• In the context of property testing we obtain the following two results:

– Given two binary strings of length n and a primitive group G ⊆ Sym(n)

we prove that the query complexity for testing isomorphism of strings

under the group action is Θ̃(
√
n log |G|) or Θ̃(log |G|) depending on

whether we have to query both or only one string.

– Given an undirected graph G and a pair of vertices s and t in G, we

design a tester that tests whether there is a directed path from s to t

by querying the orientation of at most a constant number of edges.
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• We study quantum query complexity in the context of database search al-

gorithms. Given f : [n] → {0, 1} with |f−1(0)| = εn, we design a quantum

algorithm that make only t quantum queries to f and outputs a member

of f−1(1) with probability at least (1 − ε2t+1). We prove that the error

reduction achieved is tight.
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Introduction



CHAPTER 1

MODELS OF QUERY COMPLEXITY

Let f : {0, 1}n → {0, 1}k be the function we are interested in, that is, given an

input x ∈ {0, 1}n we want to compute f(x). The restriction on our model of

computation is that the bits of the inputs can be accessed only by querying. An

algorithm that computes f(x) by querying the bits of the input x is called a query

algorithm. The kind of queries that can be made to the input and the kind of

operations that the algorithm can perform and the kind of errors allowed depends

upon the model of query algorithm. Given a model of query algorithm the query

complexity for a function in that model is the number of queries the best query

algorithm (in the given model) makes to compute the function.

The query complexity of a function for different models of query algorithm

helps to understand the inherent difficulty in computing the function and also

helps us understand the computational power of various models of computation.

In this thesis we consider different models of query algorithms and study the query

complexity in these models for some of the central functions in theoretical computer

science, like st-connectivity in a graph, hypergraph isomorphism, and database

search. Hopefully this thesis is a small step towards better understanding of the

complexity of various functions and the computational power of different models

of computation.

In this thesis we restrict our attention to query algorithms where the queries are

probes to the bits of the input. We consider both classical and quantum queries.

In the classical case the queries are of form “what is the i-th bit of the input.” In

the quantum case the probes to the bits of the input are made in superposition.

In the query algorithms models that we consider in this thesis the queries can be

adaptive, that is, which bit of the input to query can depend on what bits have

already been queried and their outcomes.

2
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In the classical case the output to each probe is either 0 or 1 indicating the

queried bit of the input. Thus the algorithm can be described as a binary tree,

called Decision Tree. The query complexity is thus called the Decision Tree Com-

plexity, which is the height of the Decision tree. Decision tree is the backbone of

the complexity of almost all classical query algorithms. Hence to have a better

understanding of the computational complexity of a function it is crucial to have

a good understanding of the decision tree complexity of the function.

In this thesis we consider three different models of query complexity, namely

deterministic decision tree complexity, approximate decision tree complexity and

quantum query complexity. In the remaining of this section we discuss these three

models of query complexity and our results. In none of our related results other

resources like time and space have been taken into consideration.

1.1 Deterministic Decision Tree Complexity

Deterministic Decision Tree Complexity of the function f (denoted D(f)) is the

minimum number of bits of the input that the optimal deterministic classical algo-

rithm has to query/probe to be able to compute the value of the function on that

input.

The deterministic decision tree is well studied in the literature in many con-

texts. In particular it is known that it is closely related to other combinatorial and

complexity measures. It is known that logD(f) is equal to, up to a constant factor,

to the time needed to compute f on a CREW PRAM [Nis91]. The deterministic

decision tree complexity is also known to be polynomially related to randomized

and quantum query complexity and to other combinatorial measures of complexity

like the certificate complexity, block sensitivity [Nis91] and degree of representing

polynomial [NS94]. For a survey on this subject refer to [BdW00, Cha05b].
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1.1.1 Deterministic Decision Tree Complexity vs.

Sensitivity

Sensitivity (denoted s(f)) is another example of combinatorial measure for Boolean

function. It is the number of bits of the input on which the function is sensitive.

In other words it is the number of bits of an input such that if we change any

one of those bits the function value changes. Cook, Dwork and Reischuk [CDR86]

introduced sensitivity as a simple combinatorial complexity measure for Boolean

functions providing lower bounds on the time needed on a CREW PRAM model.

The question whether sensitivity is polynomially related to deterministic deci-

sion tree complexity is an interesting open problem. It is believed that they are

polynomially related.

Block sensitivity is another combinatorial measure of complexity of Boolean

functions. The definition of block sensitivity [Nis91] (denoted bs(f)) is very similar

to that of sensitivity. It is the number of disjoint sets of bits of the input on which

the function is sensitive, that is, it is the number of disjoint sets of bits of an input

such that if we change the value of all the bits in any of the sets, the function value

changes. Clearly, block sensitivity is greater than sensitivity.

Block sensitivity is known to be polynomially related to deterministic decision

tree complexity [Nis91]. Thus the question whether sensitivity is polynomially

related to deterministic decision tree complexity translates to the question whether

sensitivity and block sensitivity are polynomially related.

The big open problem is this area is

For any Boolean function f is bs(f) = O(s(f)2)?

For general functions the best known relation between sensitivity and block sensi-

tivity is exponential. On the other hand, the best known gap between sensitivity

and block sensitivity is only quadratic. For functions that have lots of symmetry

(like symmetric functions, monotone functions) or structure (like graph properties)

the above question has been answered in the affirmative.
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Our Results: In this thesis we try to answer the question in the case of cycli-

cally invariant functions or more generally in the case of functions invariant under

a transitive group action. It was a long standing belief that sensitivity of cyclically

invariant functions is Ω(
√
n) [Tur84, KK04]. We give a counter example to this

belief by constructing a cyclically invariant Boolean function whose sensitivity is

Θ(n1/3). We also prove a matching lower bound for a subclass of transitive in-

variant Boolean functions called minterm-transitive functions (that includes our

example). Also for minterm-transitive function we prove that sensitivity and block

sensitivity are quadratically related.

The above mentioned results are proved in Chapter 2. Some of these results

appeared in [Cha05a].

1.2 Approximate Decision Tree Complexity

(aka Property Testing)

Testing model for Boolean functions is a well-studied model of query algorithm.

In this model the algorithm is allowed to use randomness. More importantly

it is not necessary that the algorithm outputs the correct value for all inputs.

Say f : {0, 1}n → {0, 1} is the function we want to compute. Given an input

x ∈ {0, 1}n the algorithm should output correctly with high probability if f(x) = 1.

Also if f(x) = 0 and for all binary string y that have Hamming distance less than

εn with x we have f(y) = 0 then the algorithm should output correctly with high

probability. On the rest of the input the algorithm can output anything. In other

words: we are allowed to make a mistake if the input x is close to a string y and

f(x) = 0 while f(y) = 1. Approximate decision tree complexity is the maximum

number of bits queried by the best such algorithm.

A property is defined to be a subset of {0, 1}n. In case of the Boolean function

f the relevant property is

{x|f(x) = 1}
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Thus in the testing model the algorithm tests whether the given input is in the

property or “far” from having the property. Thus it is commonly known as property

testing.

This concept was introduced in the context of program checking by Blum, Luby

and Rubinfeld [BLR93]. A central ingredient in the proof of the MIP=NEXP the-

orem [BFL91] was the proof that mulitinearity can be tested with a polylogarithmic

number of queries. Rubinfeld and Sudan [RS96] formally defined property test-

ing in the context of algebraic properties. Subsequently, the interest in property

testing was extended to graph properties, with applications to learning and ap-

proximation [GGR98]. In recent years the field of combinatorial property testing

has enjoyed a rapid growth (see, e. g., [AFKS00, AFNS06, AS03, AS05b, AS05a],

cf. [Ron01, Fis04]).

In this thesis we study the query complexity for property testing of st-connectivity

in a graph and for property testing of isomorphism under a transitive group action.

1.2.1 Testing of Graph Properties

The subject of property testing of graph properties started with the seminal pa-

per by Goldreich, Goldwasser and Ron [GGR98]. The field has seen phenomenal

growth in the last decade cf. [Ron01, Fis04]). The basic problem in this area is:

given a graph we want to test whether the graph has a particular property or is

far from it.

There are many different models of testing of graph properties depending on

how the graph is represented and what information about the graph is known to

the tester in advance. The two more most commonly used models are the “dense

graph model” and the “bounded degree model.”

In the dense graph model the input is the adjacency matrix of the graph and

the entries of the matrix are queried. Thus the question is whether the graph has a

particular property or we need to change more than ε fraction of the entries of the

matrices to make the graph satisfy the property. Note that all non-dense graphs
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are ε close to the graph with no edges. So this model is not well suited for testing

in sparse graphs. On the other hand, the “bounded degree graph” model (as the

name suggests) is for testing properties in bounded degree graphs.

Recently Halevy, Lachish, Newman and Tsur [HLNT05] suggested a new model.

Here the undirected graph is given to the tester in advance. Each edge of the graph

has a label that has to be queried. The property is defined over the labels on the

edges. As a special case of this model we can think of the labels on the edges

as orientations. Thus the property we are testing is a property of the directed

graph. The underlying undirected graph is given to the tester in advance and

the orientations have to be queried. This model is thus called the “Orientation

Model.”

This is a model that combines information that has to be queried with informa-

tion that is known in advance, and so does not readily yield to general techniques

such as that of the regularity lemma used in [AFNS06] and [AS05a]. Fischer et all

[MFNY08] showed that testing Eulerism in this model takes non-constant number

of queries.

Our Results: In this thesis we consider the problem of testing st-connectivity

in a graph. That is, we want to test whether there is a directed path from a given

vertex s to another given vertex t in a graph. This problem of st-connectivity is a

very basic problem in graph theory and has been studied extensively. Hence under-

standing this problem better is very important. Unfortunately neither the dense

graph model nor the bounded degree model is suitable for testing st-connectivity

is a directed graph. But testing of st-connectivity in the orientation model is a

non-trivial problem.

We prove that given two vertices s and t we can test whether there is a di-

rected path from s to t by using a constant number of queries in the orientation

model. This also gives the first non-trivial graph property that can be tested in

this model using constant number of queries. We construct a reduction of the

st-connectivity problem to the problem of testing languages that are decidable

by branching programs, which was solved in [New02]. The reduction combines
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combinatorial arguments with a concentration type lemma that is proven for this

purpose. Unlike the case for many other property testing results, here the resulting

testing algorithm is highly non-trivial itself, and not only its analysis.

The above result is proved in Chapter 3. A preliminary version of these results

appeared in [CFL+07].

1.2.2 Testing of Isomorphism under a transitive group

action

Given two strings x and y in {0, 1}n and a transitive group G which is a subgroup

of the symmetric group on n points, Sym(n), we want to test whether x and y

are isomorphic to each other under the action of G on the indices. We say x is

isomorphic to y under the action of G if there is a permutation σ ∈ G such that if

we permute the indices of x by σ we get y. This is a very important problem in

computer science. The celebrated problem of graph isomorphism is a special case

of this problem.

In the testing problem we have to access the bits of the input x and y by

querying. We also consider the case when one of the strings is given to the tester

in advance and only the bits of the other string have to be queried. So we want

to output 1 if x is isomorphic to y and output 0 if we have to change at least ε

fraction of the bits of x or y to make them isomorphic.

Testing of graph isomorphism in the dense graph model is a special case. Fischer

and Matsliah [FM06] achieved almost tight bounds on the query complexity for

this problem in the case when both the graphs have to be queried and also in the

case when one graph is known in advance.

Our Resuts: In this thesis we generalize some of the the results from Fischer

and Matsliah [FM06]. If the group under consideration is primitive then we ob-

tain tight bounds for testing isomorphism under action of G. In the case when

both the strings are unknown the query complexity for testing isomorphism is
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Θ̃(
√
n log |G|). And when one the strings is known in advance the query complex-

ity is Θ̃(log |G|). Lots of commonly used permutation groups are primitive groups.

For example, various finite geometries and groups corresponding to graph isomor-

phism and hyper-graph isomorphism. Thus, in particular, we generalize some of

the results of [FM06] to testing hyper-graph isomorphism.

These results are proved in Chapter 4. These results appeared in [BC08].

1.3 Quantum Query Complexity

Quantum query algorithms are quantum algorithms that compute a function by

making quantum queries, that is queries to the input in superposition. How power-

ful is quantum computer compared to classical computers is a natural and impor-

tant question to ask. In light of this question we consider the problem of quantum

database search problem.

Here we are given a function f : [N ] → {0, 1}, and are required to return an

x ∈ [N ] (a target address) such that f(x) = 1. One classical query in this case

is for a x ∈ [N ], “Is f(x) = 1?” Let ε = |f−1(0)|/N . If only one classical query

is allowed then with probability at most (1 − ε2) we can produce an x such that

f(x) = 1. Recently, Grover [Gro05] showed that there is a quantum algorithm that

after making one quantum query to the database, returns an X ∈ [N ] (a random

variable) such that

Pr[f(X) = 0] = ε3,

Using the same idea, Grover derived a t-query quantum algorithm (for infinitely

many t) that errs with probability only ε2t+1. Subsequently, Tulsi, Grover and

Patel [TGP05] showed, using a different algorithm, that such a reduction can be

achieved for all t. Comparing with classical algorithm we note that after t classical

queries any algorithm outputs a X ∈ f−1(1) with error probability at least εt+1.

Error reduction in the form of amplitude amplification is one of the central tools

in the design of efficient quantum search algorithms [Gro98a, Gro98b, BHMT02].

In fact, Grover’s database search algorithm [Gro96, Gro97] can be thought of as
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amplitude amplification applied to the trivial algorithm that queries the database

at a random location and succeeds with probability at least 1
N . The key feature of

quantum amplitude amplification is that it can boost the success probability from

a small quantity δ to a constant in O(1/
√
δ) steps, whereas, in general, a classical

algorithm for this would require Ω(1/δ) steps.

Our Results: In this thesis, we use polynomial methods we obtain lower

bounds that show that the amplification achieved by the quantum algorithm in

[TGP05] is essentially optimal. We also present simple alternative algorithms that

achieve the same bound as those in Grover [Gro05], and have some other desirable

properties. We then study the best reduction in error that can be achieved by a

t-query quantum algorithm, when the initial error ε is known to lie in an interval of

the form [`, u]. We generalize our basic algorithms and lower bounds, and obtain

nearly tight bounds in this setting.

These results are proved in Chapter 5. The results also appeared in [CRR05]
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CHAPTER 2

SENSITIVITY OF CYCLICALLY INVARIANT

FUNCTIONS

2.1 Introduction

Cook, Dwork and Reischuk [CDR86] originally introduced sensitivity as a simple

combinatorial complexity measure for Boolean functions providing lower bounds

on the time needed by a CREW PRAM. Nisan [Nis91] introduced the concept of

block sensitivity and demonstrated the remarkable fact that block sensitivity and

CREW PRAM complexity are polynomially related.

Sensitivity is the number of bits of an input such that if we change any one of

those bits the function value changes. Block sensitivity is the number of disjoint

sets of bits of the input on which the function is sensitive, that is, it is the number

of disjoint set of bits of an input such that if we change the value of all the bits in

any of the sets the function value changes.

Block Sensitivity is known to be polynomially related to Deterministic, Ran-

domized and Quantum Decision Tree Complexity and to other combinatorial mea-

sures of complexity like certificate complexity and degree of representing and

approximate polynomials. A more detailed study on these topics are found in

[Cha05b], [BdW00], [Weg87]. But whether sensitivity is polynomially related to

the above measures is still an open problem.

The largest known gap between sensitivity and block sensitivity is quadratic,

as shown by Rubinstein [Rub95]. But for an arbitrary Boolean function the best

known upper bound on block sensitivity in terms of sensitivity is exponential. H.-

U. Simon [Sim83] gave the best possible lower bound on sensitivity in terms of

the number of effective variables. From that it follows that block sensitivity of a

12
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function f is O(s(f)4s(f)), where s(f) is the sensitivity of the function f . Kenyon

and Kutin [KK04] gave the best known upper bound on block sensitivity in terms

of sensitivity; their bound is O
(

e√
2π
es(f)√s(f)

)
.

Nisan pointed out [Nis91] that for monotone Boolean functions sensitivity and

block sensitivity are equal.

A natural direction in the study of the gap between sensitivity and block sen-

sitivity is to restrict attention to Boolean functions with symmetry. We note that

a slight modification of Rubinstein’s construction (Example 2.15) gives a Boolean

function, invariant under the cyclic shift of the variables, which still shows the

quadratic gap between sensitivity and block sensitivity. Turán pointed out [Tur84]

that for symmetric functions (functions invariant under all permutations of the

variables), block sensitivity is within a factor of two of sensitivity. For any non-

trivial graph property (the n =
(V

2
)

variables indicate the adjacency relation among

the V vertices), Turán [Tur84] proved that sensitivity is at least V = Θ(
√
n) and

therefore the gap is at most quadratic. In the same paper he also asked the fol-

lowing question:

Problem (Turán, 1984): Does a lower bound of similar order hold

still if we generalize graph properties to Boolean functions invariant

under a transitive group of permutations?

In Section 2.3 we give a cyclically invariant function with sensitivity Θ(n1/3).

This example gives a negative answer to Turán’s question.

Kenyon and Kutin [KK04] observed that for “nice” functions the product of

0-sensitivity and 1-sensitivity tends to be linear in the input length. Whether

this observation extends to all “nice” functions was given as a (vaguely stated)

open problem in that paper. In Section 2.3 we also construct a cyclically invariant

Boolean function for which the product of 0-sensitivity and 1-sensitivity is Θ(
√
n).

Thus our function also gives a counterexample to Kenyon and Kutin’s suggestion.

In Section 2.2.1 we define a class of Boolean functions called the minterm-

transitive functions (Definition 2.14). This class of function is a subclass of the class
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of functions invariant under some transitive group (Definition 2.8) and contains

our new functions (that we give in Section 2.3). In Section 2.4 we prove that for

minterm-transitive functions sensitivity is Ω(n1/3) (where n is the input size) and

the product of 0-sensitivity and 1-sensitivity is Ω(
√
n). We also show that for

this class of functions the sensitivity and block sensitivity is quadratically related.

Thus for this class of function sensitivity is polynomially related to deterministic

decision tree complexity. Our lower bound results generalizes to some bigger classes

of Boolean functions (Section 2.5).

2.2 Preliminaries

2.2.1 Definitions

We use the notation [n] = {1, 2, 3, ..., n}. Let f : {0, 1}n → {0, 1} be a Boolean

function. We call the elements of {0, 1}n “words.” For any word x and 1 ≤ i ≤ n

we denote by xi the word obtained by switching the ith bit of x. For a word x and

A ⊆ [n] we use xA to denote the word obtained from x by switching all the bits

in A. For a word x = x1, x2, ..., xn we define supp(x) as {i |xi = 1}. Weight of x,

denoted wt(x), is | supp(x)|, i. e., number of 1s in x.

Definition 2.1. The sensitivity of f on the word x is defines as the number of

bits on which the function is sensitive: s(f, x) = |{i : f(x) 6= f(xi)}|.
We define the sensitivity of f as s(f) = max{s(f, x) : x ∈ {0, 1}n}
We define 0-sensitivity of f as s0(f) = max{s(f, x) : x ∈ {0, 1}n, f(x) = 0}
We define 1-sensitivity of f as s1(f) = max{s(f, x) : x ∈ {0, 1}n, f(x) = 1}.

Definition 2.2. The block sensitivity bs(f, x) of a function f on an input x is

the maximum number of disjoint subsets B1, B2, ..., Br of [n] such that for all j,

f(x) 6= f(xBj ).

The block sensitivity of f , denoted bs(f), is maxx bs(f, x).
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Best Known Lower
Bound

Least sensitivity for which
an example is known

General Functions (1
2 log n− 1

2 log log n+ 1
2) 1

2 logm+ 1
4 log logm+O(1)

Symmetric Functions dn+1
2 e dn+1

2 e

Monotone Functions (1
2 log n− 1

2 log log n+ 1
2) 1

2 logm+ 1
4 log logm+O(1)

Graph Properties b |V |2 c (|V | − 1)

Cyclically Invariant
Functions

- Θ(n1/3)

Minterm Transitive
Functions

(2n)1/3 Θ(n1/3)

Table 2.1: Current knowledge about sensitivity of some classes of Boolean functions
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Definition 2.3. A partial assignment is a function p : S → {0, 1} where S ⊆ [n].

We call S the support of this partial assignment. The weight of a partial assignment

is the number of elements in S that are mapped to 1. We call x a (full) assignment

if x : [n] → {0, 1}. (Note than any word x ∈ {0, 1}n can be thought of as a full

assignment.) We say p ⊆ x if x is an extension of p, i. e., the restriction of x to S

denoted x|S = p.

Definition 2.4. A 1-certificate is a partial assignment, p : S → {0, 1}, which

forces the value of the function to 1. Thus if x|S = p then f(x) = 1.

Definition 2.5. If F is a set of partial assignments then we define mF : {0, 1}n →
{0, 1} as mF (x) = 1 ⇐⇒ (∃p ∈ F) such that (p ⊆ x).

Note that each member of F is a 1-certificate for mF and mF is the unique

smallest such function. (Here the ordering is pointwise, i. e., f ≤ g if for all x we

have f(x) ≤ g(x)).

Definition 2.6. A minterm is a minimal 1-certificate, that is, no sub-assignment

is a 1-certificate.

Definition 2.7. Let S ⊆ [n] and let π ∈ Sn. Then we define Sπ to be {π(i) | i ∈ S}.
Let G be a permutation group acting on [n]. Then the sets Sπ, where π ∈ G,

are called the G-shifts of S. If p : S → {0, 1} is a partial assignment then we define

pπ : Sπ → {0, 1} as pπ(i) = p(π−1i).

Definition 2.8. Let G be a subgroup of Sn, i. e., a permutation group acting on

[n]. A function f : {0, 1}n → {0, 1} is said to be invariant under the group G if

for all permutations π ∈ G we have f(xπ) = f(x) for all x ∈ {0, 1}n.

Definition 2.9. Let x = x1x2...xn ∈ {0, 1}n be a word. Then for 0 < ` < n,

we denote by cs`(x) the word x`+1x`+2...xnx1x2...x`, i. e., the cyclic shift of the

variables of x by ` positions.

Definition 2.10. A function f : {0, 1}n → {0, 1} is called cyclically invariant if

f(x) = f(cs1(x)) for all x ∈ {0, 1}n .
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Note that a cyclically invariant function is invariant under the group of cyclic

shifts.

Proposition 2.11. Let G be a permutation group. Let p : S → {0, 1} be a partial

assignment and let F = {pπ |π ∈ G}. Then p is a minterm for the function mF .

The function mF will be denoted pG. Note that the function pG is invariant

under the group G. When G is the group of cyclic shifts we denote the function

pcyc. The function pcyc is cyclically invariant.

Proof of Proposition 2.11. If p has k zeros then for any word x with fewer than

k zeros mF (x) = 0, since all the element of F has same number of 1s and 0s. But

if q is a 1-certificate with fewer than k zeros we can have a word x by extending q

to a full assignment by filling the rest with 1s, satisfying f(x) = 1 (since q ⊆ x).

But x contains fewer than k zeros, a contradiction. So no minterm of mF has

fewer than k zeros.

Similarly no minterm of F has weight less than p. So no proper sub-assignment

of p can be a 1-certificate. Hence p is a minterm of mF .

Definition 2.12. Let G be a permutation group on [n]. G is called transitive if

for all 1 ≤ i, j ≤ n there exists a π ∈ G such that π(i) = j.

Definition 2.13. Let C(n, k) be the set of Boolean functions f on n variables

such that there exists a partial assignment p : S → {0, 1} with support k(6= 0)

for which f = pcyc. Let C(n) = ∪nk=1C(n, k). We will call the functions in C(n)

minterm-cyclic. These are the simplest cyclically invariant functions.

Definition 2.14. Let G be a permutation group on [n]. We define DG(n, k) (for

k 6= 0) to be the set of Boolean functions f on n variables such that there exists

a partial assignment p : S → {0, 1} with support k for which f = pG. We define

DG(n) to be ∪nk=1DG(n, k). This is a class of simpleG-invariant Boolean functions.
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We define D(n) to be ∪GDG(n) where G ranges over all transitive groups. We

call these functions minterm-transitive. Note that the class of minterm-cyclic

functions is a subset of the class of minterm-transitive functions.

2.2.2 Previous Results

The largest known gap between sensitivity and block sensitivity is quadratic, given

by Rubinstein [Rub95]. Although Rubinstein’s example is not cyclically invariant,

the following slight modification is cyclically invariant with a similar gap between

sensitivity and block sensitivity.

Example 2.15. Let g : {0, 1}k → {0, 1} be such that g(x) = 1 iff x contains two

consecutive ones and the rest of the bits are 0. In function f ′ : {0, 1}k2 → {0, 1} the

variables are divided into groups B1, . . . , Bk each containing k variables. f ′(x) =

g(B1) ∨ g(B2) ∨ · · · ∨ g(Bk). Using f ′ we define the function f : {0, 1}k2 → {0, 1}
as f(x) = 1 iff f(x′) = 1 for some x′ which is a cyclic shift of x. The sensitivity of

f is 2k while the block sensitivity is bk
2

2 c.

Hans-Ulrich Simon [Sim83] proved that for any function f we have s(f) ≥
(1

2 log n − 1
2 log log n + 1

2), where n is the number of effective variables (the ith

variable is effective if there exist some word x for which f(x) 6= f(xi)). This

bound is tight. Although for various restricted classes of functions better bounds

are known.

Let f : {0, 1}m → {0, 1} be a Boolean function that takes as input the adja-

cency matrix of a graph G and evaluates to 1 iff the graph G has a given property.

So the input size m is
(|V |

2
)

where |V | is the number of vertices in the graph G.

Also f(G) = f(H) whenever G and H are isomorphic as graphs. Such a function

f is called a graph property. György Turán [Tur84] proved that non-trivial graph

properties have sensitivity Ω(
√
m).

A function f is called monotone if f(x) ≤ f(y) whenever supp(x) ⊆ supp(y).

Nisan[Nis91] pointed out that for monotone functions sensitivity and block sensi-

tivity are the same.
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In the definition of block sensitivity (Definition 2.2) if we restrict the block size

to be at most ` then we obtain the concept of `-block sensitivity of the function f ,

denoted s`(f). In [KK04] Kutin and Kenyon introduced this definition and proved

that bs`(f) ≤ c`s(f)` where c` is a constant depending on `.

Recently Sun [Sun06] proved that for functions that are invariant under some

transitive group action the block sensitivity is at least n1/3 and they gave an

example of a function that has block sensitivity O(n3/7 log n).

Table 2.1 gives a list of classes of Boolean functions and the current knowledge

of sensitivity for these classes of functions.

2.3 Cyclically Invariant Function with Sensitivity Θ(n1/3)

In this section we will construct a cyclically invariant Boolean function which has

sensitivity Θ(n1/3). We will also construct a cyclically invariant function for which

the product of 0-sensitivity and 1-sensitivity is Θ(
√
n).

Theorem 2.16. There is a cyclically invariant function, f : {0, 1}n → {0, 1},
such that, s(f) = Θ(n1/3).

Theorem 2.17. There is a cyclically invariant function, f : {0, 1}n → {0, 1},
such that, s0(f)s1(f) = Θ(

√
n).

For proving the above theorems we will first define an auxiliary function g on

k2 variables (k2 ≤ n). Then we use g to define our new minterm-cyclic function f

on n variables. If we set k = bn1/3c, Theorem 3.1 will follow. Theorem 3.2 follows

by setting k = b
√
nc.

2.3.1 The auxiliary function

We first define g : {0, 1}k2 → {0, 1} where k2 ≤ n. We divide the input into k

blocks of size k each. We define g by a regular expression.
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g(z) = 1

m

z ∈ 110k−2︸ ︷︷ ︸
k

(11111(0 + 1)k−5︸ ︷︷ ︸
k

)k−2 11111(0 + 1)k−8111︸ ︷︷ ︸
k

We call this regular expression R.

In other words, let z ∈ {0, 1}k2
and let z = z1z2...zk, where each zi ∈ {0, 1}k

for all 1 ≤ i ≤ k, i. e., z is broken up into k blocks of size k each. Then g(z) = 1

iff z1 = (11 00...0︸ ︷︷ ︸
k−2

) and for all 2 ≤ j ≤ k the first five bits of zj are 1 and also the

last 3 bits of zk are 1. Note that g does not depend on the rest of the bits.

2.3.2 The new function

Now we define the function f using the auxiliary function g. Let x|[m] denote the

word formed by the first m bits of x. Let us set

f(x) = 1 ⇐⇒ ∃` such that g
(
cs`(x)|[k2]

)
= 1.

In other words, viewing x as laid out on a cycle, f(x) = 1 iff x contains a

contiguous substring y of length k2 on which g(y) = 1.

2.3.3 Properties of the new function

It follows directly from the definition that f is a cyclically invariant Boolean func-

tion.

It is important to note that the function g is so defined that the value of g on

input z depends only on (6k − 2) bits of z.
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Also note that the pattern defining g is so chosen that if g(z) = 1 then there

is exactly one set of consecutive (k − 2) zeros in z and no other set of consecutive

(k − 4) zeros.

Claim 2.18. The function f has (a) 1-sensitivity Θ(k) and (b) 0-sensitivity Θ( n
k2 )

Proof of Claim 2.18. (a) Let x be the following word:

(110k−2(111110k−5)k−2111110k−8111)0n−k
2

Note that f(x) = 1. Also it is easy to see that on this input x 1-sensitivity of f is

at least (6k − 2).

Now let x ∈ {0, 1}n be such that f(x) = 1 and there exists 1 ≤ i ≤ n such that

f(xi) = 0. But f(x) = 1 implies that some cyclic shift of x contains a contiguous

substring z of length k2 such that g(z) = 1. But since g depends only on the values

of (6k− 2) positions so one of those bits has to be switched so that f evaluates to

0. Thus s1(f) ≤ 6k − 2.

Combined with the lower bound s1(f) ≥ 6k − 2 we conclude s1(f) = Θ(k).

(b) Let b n
k2 c = m and r = (n− k2m). Let x be

(100k−2(111110k−5)k−2111110k−8111)m0r

Note that f(x) = 0. But if we switch any of the underlined zero the function

evaluates to 1. Note that the function is not sensitive on any other bit. So on this

input x the 0-sensitivity of f is m = b n
k2 c and therefore s0(f) ≥ n

k2 .

Now let x ∈ {0, 1}n and assume f(x) = 0 while f(xi) = 1 for some 1 ≤ i ≤ n.

By definition, the 0-sensitivity of f is the number of such i. For each such i there

exists a contiguous substring zi of length k2 of some cyclic shift of xi such that

g(zi) = 1. Now consider the zii ⊆ x (recall zii denotes the partial assignment

obtained by switching the ith bit of zi). Due to the structure of the pattern R
we note that zi has exactly one set of consecutive (k − 2) zeros. So zii either has
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exactly one set of consecutive (k−1) zeros or exactly one set of consecutive (k−2)

zeros or exactly one set of consecutive (k − 2) bits with at most one of the bits

being 1 while the remaining bits are zero. So the supports of any two zii either

have at least (k2 − 1) positions in common or they have at most three positions

in common (since the pattern R begins and ends with 11). Hence the number of

distinct zii is at most Θ( n
k2 ). Hence we have s0(f) = O( n

k2 ).

Combined with s0(f) ≥ n
k2 we conclude that s0(f) = Θ( n

k2 ).

Proof of Theorem 2.16: From Claim 2.18 it follows s(f) = max
{

Θ(k),Θ( n
k2 )
}

(since s(f) = max s0(f), s1(f)). So if we set k = bn1/3c we obtain s(f) = Θ(n1/3).

Proof of Theorem 2.17: From Claim 2.18 we obtain s0(f)s1(f) = Θ(nk ). So if

we set k = b
√
nc we have s0(f)s1(f) = Θ(

√
n).

Theorem 2.16 answers Turán’s problem [Tur84] (see the Introduction) in the

negative. In [KK04], Kenyon and Kutin asked whether s0(f)s1(f) = Ω(n) holds for

all “nice” functions f . Although they do not define “nice,” arguably our function in

Theorem 2.17 is nice enough to answer the Kenyon-Kutin question in the negative.

In the next section we prove that for a minterm-transitive function, sensitivity

is Ω(n1/3) and the product of 0-sensitivity and 1-sensitivity is Ω(
√
n). Hence our

examples are tight.

2.4 Lower Bound on Sensitivity for Some Classes of

Boolean Functions

Theorem 2.19. If f is a minterm-transitive function on n variables then s(f) =

Ω(n1/3) and s0(f)s1(f) = Ω(
√
n).
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To prove this theorem we will use the following three lemmas. Since f is a

minterm-transitive function, i. e., f ∈ D(n), we can say f ∈ DG(n, k) for some

transitive group G and some k 6= 0.

Lemma 2.20. If f ∈ DG(n, k) then s1(f) ≥ k
2 .

Proof. Let y be the minterm defining f . Without loss of generality wt(y) ≥ k
2 .

Let us extend y to a full assignment x by assigning zeros everywhere outside the

support of y. Then switching any 1 to 0 changes the value of the function from 1

to 0. So we obtain s(f, x) ≥ k
2 . Hence s1(f) ≥ k

2 .

Lemma 2.21. If S is a subset of [n], |S| = k then there exist at least n
k2 disjoint

G-shifts of S.

Proof. Let T be a maximal union of G-shifts of S. Since T is maximal T hits all

G-shifts of S. Let Hij be the subgroup of G that sends ith bit of the minterm to

the bit position j. So the bit position j can at most hit
∑k
i=1 |Hij | many G-shifts

of S. Since G is transitive for all i and j we have |Hij | ≤
|G|
n . Therefore ∀j,∑k

i=1 |Hij | ≤ k
|G|
n . That is each bit position hits at most k

|G|
n many G-shifts of S.

But there are |G| different G-shifts of S. So we must have |T | ≥ n
k . Hence T must

be a union of at least n
k2 disjoint G-shifts of S. And this proves the lemma.

Lemma 2.22. Let f : {0, 1}n → {0, 1} be a non-constant Boolean function in-

variant under a transitive group G. Let S ⊂ {0, 1}n and let p : S → {0, 1} be a

1-certificate of f . If the support of p has size k (i. e.|S| = k), then s0(f) ≥ n
k2 .

Proof. By Lemma 2.21 we can have n
k2 disjoint G-shifts of p. The union of these

disjoint G-shifts of p defines a partial assignment. Let Ŝ = {s1, s2, ..., sr} be

the support of the partial assignment. And let Ysi be the value of the partial

assignment in the si-th entry.

Since the function f is not a constant function, there exists a word z such that

f(z) = 0. The i-th bit of z is denoted by zi. We define,

T = {j | zj 6= Ysm , sm = j}
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Now let P ⊆ T be a maximal subset of T such that f(zP ) = 0. Since P is maximal,

if we switch any other bit in T\P the value of the function f will change to 1.

So s(f, zP ) ≥ |(T\P )|. Now since f(zP ) = 0 we note that zP does not contain

any G-shift of p. But from Lemma 2.21 we know that zT contains n
k2 disjoint

G-shifts of p. So |(T\P )| is n
k2 and thus s0(f) ≥ s(f, zP ) = n

k2 .

Corollary 2.23. If f ∈ DG(n, k) then s0(f) ≥ n
k2 .

Proof of Theorem 2.19. From the Lemma 2.20 and Corollary 2.23 we obtain,

s(f) = max{s0(f), s1(f)} = max

{
n

k2 ,
k

2

}
.

This implies s(f) ≥ (2n)1/3.

Now since s0(f) and s1(f) cannot be smaller than 1, it follows from the Lemma

2.20 and Lemma 2.23 that

s0(f)s1(f) = max

{
n

2k
,
k

2

}
.

So s0(f)s1(f) ≥
√
n.

The new function we looked at in Theorem 2.16 is minterm-transitive and

has sensitivity Θ(n
1
3 ). Thus this lower bound on sensitivity is tight for minterm-

transitive functions. Similarly for the function in Theorem 2.17 the product of

0-sensitivity and 1-sensitivity is tight.

We can even give tight upper bound on block sensitivity for minterm-transitive

functions in terms of sensitivity.

Theorem 2.24. For a minterm-transitive function f : {0, 1}n → {0, 1} we have

s(f) ≥ bs(f)
k , where k is the size of the minterm.

Proof. Let x is the word for which the block sensitivity is bs(f). Now let the

minimal blocks be B1, B2, · · · , Bbs(f). By definition f(xBi) 6= f(x). That means
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xBi has at least one minterm. Choose any minterm. Now that minterm can

intersect at most (k−1) other blocks. By Turan’s theorem of independence number

of sparse graphs we obtain
bs(f)
k blocks such that if we switch any block a minterm

will be formed that does not intersects any other block. Let the union of these

blocks be B.

Now let A ⊂ B be the maximal set such that f(xA) = f(x). So xA has

sensitivity more than B\A. And B\A must have have at least one bit from all the

blocks because if any block is switched fully then a minterm is formed because the

minterm does not intersect any other block. So |B\A| ≥ (bs(f)
k . Hence s(f, xA) ≥

bs(f)
k .

Corollary 2.25. For miniterm-transitive function, bs(f) ≤ s(f)2.

Proof. Follows from Theorem 2.24 and Lemma 2.20.

Hence for minterm-transitive functions, sensitivity and block sensitivity does

not have a gap of more than quadratic. And this is tight.

2.5 Generalization of the Results and Open Problems

Note that Lemma 2.22 hold for any function invariant under some transitive group.

But unfortunately the proof of Lemma 2.20 does not generalizes for all functions

closed under some transitive group action. But the proof of Lemma 2.20 uses the

fact that all the minterms of the Boolean function have more than k/2 number

of 0 or all of them more than k/2 number of 1. Thus for functions having that

property we can prove a similar lemma and hence for these kind of functions the

sensitivity is also Ω(n1/3).

For the proof of Theorem 2.24 the fact that is used is that all the minterms are

of support less than k. So if a Boolean function, f, that is invariant under some

transitive group, has all minterms of size k and weight at least (or at most) k/c

for some constant c then the sensitivity of the function is Ω(n1/3) and bs(f) =

O(s(f)2).
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The main question in this field is still open: Are sensitivity and block sensitivity

polynomially related? Can the gap between them be more than quadratic? The

following variant of Turán’s question remains open:

Problem: If f is a Boolean function invariant under a transitive group of

permutations then is it true that s(f) = Ω(nc) for some constant c > 0?



Part III

Approximate Decision Tree

Complexity



CHAPTER 3

TESTING ST-CONNECTIVITY IN THE

ORIENTATION MODEL

3.1 Introduction

In this chapter we continue the study, started in [HLNT05], of property testing

of graphs in the orientation model. This is a model that combines information

that has to be queried with information that is known in advance, and so does not

readily yield to general techniques such as that of the regularity lemma used in

[AFNS06] and [AS05a].

Specifically, the information given in advance is an underlying undirected graph

G = (V,E) (that may have parallel edges). The input is then constrained to be

an orientation of G, and the distances are measured relative to |E| and not to any

function of |V |. An orientation of G is simply an orientation of its edges. That is,

for every edge e = u, v in E(G) an orientation of G specifies which of u and v is

the source vertex of e, and which is the target vertex. Thus an orientation defines

a directed graph ~G whose undirected skeleton is G. Given the undirected graph

G, a property of orientations is just a subset set of all orientations of G.

We study orientation properties in the framework of property testing. Here the

relevant combinatorial structure is an orientation ~G of the underlying graph G,

and the distance between two orientations ~G1, ~G2 is the number of edges that are

oriented differently in ~G1 and ~G2. Thus an orientation ~G is ε-far from a given

property P if at least ε|E(G)| edges have to be redirected in ~G to make it satisfy

P . Ideally the number of queries that the tester makes depends only on ε and on

nothing else (neither |E| nor the specific undirected graph G itself).

28
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A major question that has remained open in [HLNT05] is whether connectivity

properties admit such a test. For a fixed s, t ∈ V (G), an orientation ~G is st-

connected if there is a directed path from s to t in it. Connectivity and in particular

st-connectivity is a very basic problem in graph theory which has been extensively

studied in various models of computation.

Our main result is that the property of being st-connected is testable by a

one-sided error algorithm with a number of queries depending only on ε. That is,

we construct a randomized algorithm that for any underlying graph G, on input

of an unknown orientation the algorithm queries only O(1) edges for their orien-

tation and based on this decides with success probability 2
3 (this of course could

be amplified to any number smaller than 1) between the case that the orientation

is st-connected and the case that it is ε-far from being st-connected. Our algo-

rithm additionally has one-sided error, meaning that st-connected orientations are

accepted with probability 1. Note that the algorithm knows the underlying graph

G in advance and G is neither alterable nor part of the input to be queried. The

dependence of the number of queries in our test on ε is triply exponential, but it

is independent of the size of the graph.

To put our result in context with previous works in the area of property testing,

we note that graph properties were extensively studied since the early beginning

in the defining paper of Goldreich, Goldwasser and Ron [GGR98]. The model

that was mainly studied is the dense graphs model in which an input is a graph

represented as a subgraph of the complete graph. As such, for n-vertex graphs, the

input representation size is
(n

2
)

which is the number of all possible unordered pairs.

Thus, any property that has o(n2) witness size, and in particular the property

of undirected st-connectivity, is trivially testable as every input is close to the

property. Similarly, properties of directed graphs were studied in the same context

mostly by [AFNS06, AS05a]. Inputs in this model are subgraphs of the complete

directed graph (with or without anti parallel edges). In this case, directed st-

connectivity is again trivial.

Other models in which graph properties were studied are the bounded-degree
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graph model of [GR02] in which a sparse representation of sparse graphs is con-

sidered (instead of the adjacency matrix as in the dense model), and the general

density model (also called the mixed model) of [PR02] and [KKR04]. In those mod-

els edges can be added as well, and so st-connectivity (directed or not) is again

trivial as the single edge (s, t) can always be added and thus every graph is close to

having the property. Testing general (all-pairs) connectivity is somewhat harder,

and for this constant query testers are generally known, e.g. the one in [GR02] for

the undirected bounded degree case.

Apart from [HLNT05], the most related work is that of [HLNT07] in which a

graph G = (V,E) is given and the properties are properties of boolean functions

f : E(G) → {0, 1}. In [HLNT07] the interpretation of such a function is as an

assignment to certain formulae that are associated with the underlying graph G,

and in particular can viewed as properties of orientations (although the results

in [HLNT07] concentrate on properties that are somewhat more “local” than our

“global” property of being st-connected). Hence, the results here should be viewed

as moving along the lines of the investigation that was started in [HLNT05] and

[HLNT07]. A common feature of the current work with this previous one, which

distinguishes these results from results in many other areas of property testing

and in particular the dense graph models, is that the algorithms in themselves are

rather non-trivial in construction, and not just in their analysis.

The algorithm that we present here for st-connectivity involves a preprocessing

stage that is meant to reduce the problem to that of testing a branching program of

bounded width. Once this is achieved, a randomized algorithm simulating the test

for the constant width branching program from [New02] is executed to conclude

the result.

In general, the decision problem of st-connectivity of orientations of a given

graph is not known to be reducible to constant width branching programs. In fact,

this is not likely as st-connectivity is complete for NL (non-deterministic LOG

space) while deciding constant width branching programs is in L.

In particular, it is not clear how to deal with high degree vertices or with large
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cuts. The purpose of the preprocessing stage is to get rid of these difficulties (here

it would be crucial that we only want to distinguish between inputs that have

the property and inputs that are quite far from the having the property). This is

done in several steps that constitute the main part of the paper. In particular we

have an interim result in which most but not all edges of the graph are partitioned

into constant width layers. This is proved using a bounded expansion lemma for

sequences of integers, which is formulated and proved for this purpose.

After the small portion of edges not in constant width layers is dealt with (using

a reduction based on graph contraction), we can reduce the connectivity problem

to a constant width read once branching program. Once such a branching program

is obtained, the result of [New02] can be used essentially in a black box manner.

Some interesting related open problems still remain. We still do not know if

the property of being strongly st-connected is testable with a constant number of

queries. The orientation ~G is strongly st-connected if there is a directed path in ~G

from s to t as well as a directed path from t to s. A more generalized problem is

whether in this model we can test using a constant number of queries the property

of being all-pairs strongly-connected. Another related property is the property that

for a given s ∈ V (G) every vertex is reachable by a directed path from s. We do

not know yet what is the complexity of these problems, although there are some

indications that similar methods as those used here may help in this regard.

The rest of this chapter is organized as follows. In Section 3.2 we introduce the

needed notations and definitions. Section 3.3 contains the statement of the main

result and an overview of the proof. In Section 3.4 we reduce the problem of testing

st-connectivity in general graphs to the problem of testing st-connectivity in nicely

structured bounded-width graphs (we later call them st-connectivity programs). In

Section 3.5 we reduce from testing st-connectivity programs to testing clustered

branching programs. In Section 3.6 we convert these clustered branching programs

into regular ones, to which we can apply the testing algorithm from [New02].

Finally in Section 3.7 we combine these ingredients to wrap up the proof.
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3.2 Preliminaries

3.2.1 Notations

In what follows, our graphs are going to possibly include parallel edges, so we use

‘named’ pairs for edges, i.e. we use e = e{u, v} for an undirected edge named e

whose end points are u and v. Similarly, we use e = e(u, v) to denote the directed

edge named e that is directed from u to v. Let G = (V,E) be an undirected

multi-graph (parallel edges are allowed), and denote by n the number of vertices

in V . We say that a directed graph ~G is an orientation of the graph G, or in short

a G-orientation, if we can derive ~G from G by replacing every undirected edge

e = e{u, v} ∈ E with either e(u, v) or e(v, u), but not both. We also call G the

underlying graph of ~G.

Given an undirected graph G and a subset W ⊂ V of G’s vertices, we denote

by G(W ) the induced subgraph of G on W , and we denote by E(W ) = E(G(W ))

the edge set of G(W ). The distance between two vertices u, v in G is denoted

by distG(u, v) and is set to be the length of the shortest path between u and v.

Similarly, for a directed graph ~G, dist ~G(u, v) denotes the length of the shortest

directed path from u to v. The distance of a vertex from itself is dist~G(v, v) =

distG(v, v) = 0. In the case where there is no directed path from u to v in ~G,

we set dist~G(u, v) = ∞. The diameter of an undirected graph G is defined as

diam(G) = maxu,v∈V {distG(u, v)}. Through this paper we always assume that

the underlying graph G is connected, and therefore its diameter is finite.

For a graph ~G and a vertex v ∈ V , let Γin(v) = {u : ∃e(u, v) ∈ E} and

Γout(v) = {u : ∃e(v, u) ∈ E} be the set of incoming and outgoing neighbors of

v respectively, and let Γ(v) = Γin(v) ∪ Γout(v) be the set of neighbors in the

underlying graph G. Let degin(v), degout(v) and deg(v) denote the sizes of Γin(v),

Γout(v) and Γ(v) respectively. We denote the i-neighborhood (in the underlying

undirected graph G) of a vertex v by Ni(v) = {u : distG(u, v) ≤ i}. For example,

N1(v) = {v} ∪ Γ(v), and for all v ∈ V , V = Ndiam(G)(v).
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3.2.2 Orientation distance, properties and testers

Given two G-orientations ~G1 and ~G2, the distance between ~G1 and ~G2, denoted

by ∆(~G1, ~G2), is the number of edges in E(G) having different directions in ~G1

and ~G2.

Given a graph G, a property PG of G’s orientations is a subset of all pos-

sible G-orientations. We say that an orientation ~G satisfies the property PG if

~G ∈ PG. The distance of ~G1 from the property PG is defined by δ(~G1,PG) =

min~G2∈PG
∆(~G1, ~G2)
|E(G)| . We say that ~G is ε-far from PG if δ(~G,PG) ≥ ε, and other-

wise we say that ~G is ε-close to PG. We omit the subscript G when it is obvious

from the context.

Definition 3.1. [(ε, q)-tester] Let G be a fixed undirected graph and let P be a

property of G’s orientations. An (ε, q)-tester T for the property P is a randomized

algorithm, that for any ~G that is given via oracle access to the orientations of its

edges operates as follows.

• The algorithm T makes at most q orientation queries to ~G (where on a query

e ∈ E(G) it receives as the answer the orientation of e in ~G).

• If ~G ∈ P , then T accepts it with probability 1 (here we define only one-sided

error testers, since our testing algorithm will be one).

• If ~G is ε-far from P , then T rejects it with probability at least 2/3.

The query complexity of an (ε, q)-tester T is the maximal number of queries

q that T makes on any input. We say that a property P is testable if for every

ε > 0 it has an (ε, q(ε))-test, where q(ε) is a function depending only on ε (and

independent of the graph size n).

3.2.3 Connectivity Programs and Branching Programs

Our first sequence of reductions converts general st-connectivity instances to well

structured bounded-width st-connectivity instances, as formalized in the next def-

inition.
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Definition 3.2 (st-Connectivity Program). An st-Connectivity Program of width

w and length m over n vertices (or CP (w,m, n) in short), is a tuple 〈G,L〉, where

G is an undirected graph with n edges and L is a partition of G’s vertices into

layers L0, . . . , Lm. There are two special vertices in G: s ∈ L0 and t ∈ Lm, and

the edges of G are going only between vertices in consecutive layers, or between

the vertices of the same layer, i.e. for each e = e{u, v} ∈ E(G) there exists i ∈ [m]

such that u ∈ Li−1 and v ∈ Li, or u, v ∈ Li. The partition L induces a partition

E1, . . . , Em of E(G), where Ei is the set of edges that have both vertices in Li, or

one vertex in Li−1 and another in Li. In this partition of the edges the following

holds: maxi{|Ei|} ≤ w.

Any orientation of G’s edges (that maps every edge e{u, v} ∈ E(G) to either

e(u, v) or e(v, u)) defines a directed graph ~G in the natural way. An st-connectivity

program C = 〈G,L, 〉 defines a property PC of G’s orientations in the following

way: ~G ∈ PC if and only if in the directed graph ~G there is a directed path from

s to t.

Next we define branching programs. These are the objects to which we can

apply the testing algorithm of [New02].

Definition 3.3 (Branching Program). A Read Once Branching Program of width

w over an input of n bits (or BP (w, n) in short), is a tuple 〈G,L, X〉, where G

is a directed graph with 0/1-labeled edges, L is a partition of G’s vertices into

layers L0, . . . , Ln such that maxi{|Li|} ≤ w, and X = {x0, . . . , xn−1} is a set of

n Boolean variables. In the graph G there is one special vertex s belonging to

L0, and a subset T ⊂ Ln of accepting vertices. The edges of G are going only

between vertices in consecutive layers, i.e. for each e = e(u, v) ∈ E(G) there is

i ∈ [n] such that u ∈ Li−1 and v ∈ Li. Each vertex in G has at most two outgoing

edges, one of which is labeled by ‘0’ and the other is labeled by ‘1’. In addition,

all edges between two consecutive layers are associated with one distinct member

of X = {x0, . . . , xn−1}. An assignment σ : X → {0, 1} to X defines a subgraph

Gσ of G, which has the same vertex set as G, and for every layer Li−1 (whose
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outgoing edges are associated with the variable xji), the subgraph Gσ has only the

outgoing edges labeled by σ(xji). A read once branching program B = 〈G,L, X〉
defines a property PB ⊂ {0, 1}n in the following way: σ ∈ PB if and only if in

the subgraph Gσ there is a directed path from the starting vertex s to any of the

accepting vertices in T .

Branching programs that comply with the above definition can be tested by

the algorithm of [New02]. However, as we will see in Section 3.5, the branching

programs resulting by the reduction from our st-connectivity programs have a

feature that they require reading more than one bit at a time to move between

layers. The next definition describes these special branching programs formally.

Definition 3.4 (Clustered Branching Program). A c-clustered Read Once Branch-

ing Program of width w and lengthm over an input of n bits, denotedBPc(w,m, n),

is a tuple 〈G,L, X, I〉, where similarly to the previous definition, G is a directed

graph with labeled edges (see below for the set of labels), L = (L0, . . . , Lm) is

a partition of G’s vertices into m layers such that maxi{|Li|} ≤ w, and X =

{x0, . . . , xn−1} is a set of n Boolean variables. Here too, G has one special vertex s

belonging to L0, and a subset T ⊂ Ln of accepting vertices. The additional element

I is a partition (I1, . . . , Im) of X into m components, such that maxi{|Ii|} ≤ c.

All edges in between two consecutive layers Li−1 and Li are associated with

the component Ii of I. Each vertex in Li−1 has 2|Ii| outgoing edges, each of them

labeled by a distinct α ∈ {0, 1}|Ii|.
An assignment σ : X → {0, 1} to X defines a subgraph Gσ of G, which

has the same vertex set as G, and for every layer Li (whose outgoing edges are

associated with the component Ii), the subgraph Gσ has only the edges labeled by(
σ(xi)

)
i∈Ii

. A c-clustered read once branching program B = 〈G,L, X, I〉 defines a

property PB ⊂ {0, 1}n in the following way: σ ∈ PB if and only if in the subgraph

Gσ there is a directed path from the starting vertex s to one of the accepting

vertices in T .

Observe that BP (w,m) is equivalent to BP1(w,m,m).
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3.3 The main result

For an undirected graph G and a pair s, t ∈ V (G) of distinct vertices, let P stG be

a set of G-orientations under which there is a directed path from s to t. Formally,

P stG = {~G : dist~G(s, t) <∞}.

Theorem 3.5. The property P stG is testable. In particular, for any undirected

graph G, two vertices s, t ∈ V (G) and every ε > 0, there is an (ε, q)-tester T for

P stG with query complexity q = 222O(ε−1 log2(1/ε))

3.3.1 Proof overview

The main idea of the proof is to reduce the problem of testing st-connectivity in the

orientation model to the problem of testing a Boolean function that is represented

by a small width read once branching program. For the latter we have the result of

[New02] asserting that each such Boolean function is testable.

Theorem 3.6 ([New02]). Let P ⊆ {0, 1}n be the language accepted by a read-once

branching program of width w. Then testing P requires at most
(

2w
ε

)O(w)
queries.

By the definition above of BP (w, n), one could already notice that testing the

acceptance of a branching program resembles testing st-connectivity, and that the

two problems seem quite close. However, there are several significant differences,

as noted here.

1. In branching programs, querying a single variable reveals all the edges of

its associated layer, while in our case, we need to query each edge of the

st-connectivity instance separately.

2. The length of the input in branching programs is the number of layers rather

than the total number of edges.
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3. The edges in branching program graphs are always directed from Li−1 to Li

for some i ∈ [n]. In our case, the graph is not layered, and a pair u, v of

vertices might have any number of edges in both directions.

4. In branching programs the graphs have out-degree exactly 2, while an input

graph of the st-connectivity problem might have vertices with unbounded

out-degree.

5. The most significant difference is that the input graphs of the st-connectivity

problem may have unbounded width. This means that the naive reduction

to branching programs may result in an unbounded width BP s, which we

cannot test with a constant number of queries.

We resolve these points in several steps. First, given an input graph G, we

reduce it to a graph G(1) which has the following property: for every induced

subgraph W of G(1), the diameter of W is larger than ε times the number of

edges in W . Then we prove that G(1) can be layered such that most of its edges

lie within bounded-width layers. In particular, the total number of edges in the

“wide” layers is bounded by ε
2E(G(1)). For this we need a bounded expansion

lemma which is stated and proven here for this purpose. Next we reduce G(1)

to a graph G(2), which can be layered as above, but without wide layers at all.

This in particular means that the number of edges in G(2) is of the order of the

number of layers, similarly to bounded width branching programs. In addition, in

this layering of G(2) the vertex s is in the first layer, and the vertex t is in the last

layer. Then we reduce G(2) (which might be thought of as the undirected analogue

of a bounded width branching program) to a clustered read once bounded width

branching program. Finally we show that these clustered branching programs can

be converted into non-clustered branching programs, to which we can apply the

test from [New02].
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3.4 Reducing general graphs to connectivity programs

In this section we prove our first step towards proving Theorem 3.5. We reduce

the problem of testing st-connectivity in a general graph to the problem of testing

st-connectivity on an st-Connectivity Program. First we define the notion of re-

ducibility in our context, and then we describe a sequence of reductions that will

eventually lead us to the problem of testing read once bounded width BP s.

3.4.1 Reducibility between st-connectivity instances

Let Gst denote the class of undirected graphs having two distinct vertices s and t,

and let G,G′ ∈ Gst. We say that G is (ε, η)-reducible to G′ if there is a function ρ

that maps orientations of G to orientations of G′ (from now on we denote by ~G′

the orientation ρ(~G)) such that the following holds.

• If ~G ∈ P stG then ~G′ ∈ P st
G′

• If δ(~G, P stG ) ≥ ε then δ(~G′, P st
G′) ≥ η

• Any orientation query to ~G′ can be simulated by a single orientation query

to ~G.

We say that G is (ε)-reducible to G′ if it is (ε, ε)-reducible to G′. Notice that

whenever G is (ε, η)-reducible to G′, any (η, q)-tester T ′ for P st
G′ can be converted

into an (ε, q)-tester T for P stG . Or in other words, (ε, q)-testing P stG is reducible to

(η, q)-testing P st
G′ .

In the following section we introduce our first reduction, which is referred to

as the reduction from G to G(1) in the proof overview.
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3.4.2 Reduction to graphs having high-diameter

subgraphs

An undirected graph G is called ε-long if for every subset W ⊂ V (G), we have

diam(G(W )) > ε|E(W )|.

Lemma 3.7. Any graph G ∈ Gst is (ε)-reducible to a graph G′ ∈ Gst which is ε

-long.

We first define a general contraction operator for graphs, and then use it for the

proof. Given a graph G let W ⊂ V be a subset of its vertices, and let C1, . . . , Ct be

the vertex sets of the connected components of G(W ). Namely, for each Ci ⊂ W ,

the induced subgraph G(Ci) of the underlying graph G is connected, and for any

pair u ∈ Ci, v ∈ Cj (i 6= j) of vertices, e{u, v} /∈ E(G). We define a graph G/W

as follows. The graph G/W has the vertex set V/W = (V \W ) ∪ {c1, . . . , ct} and

its edges are E/W which is

{
e{u, v} : (u, v ∈ V \W )∧(e ∈ E)

}
∪
{
e{ci, v} : (v ∈ V \W )∧∃u∈Ci(e{u, v} ∈ E)

}
Intuitively, in G/W we contract every connected component Ci of G(W ) into

a single (new) vertex ci without changing the rest of the graph. Note that such a

contraction might create parallel edges, but loops are removed. Whenever s ∈ Ci
for some i ∈ [t], we rename the vertex ci by s, and similarly if t ∈ Cj then

we rename cj by t. In the following a connected component containing both s

and t will not be contracted, so we can assume that the distinguished vertices s

and t remain in the new graph G/W . Given an orientation ~G of G we define the

orientation ~G/W = ρ(~G) of G/W as the orientation induced from ~G in the natural

way (note that there are no “new” edges in G/W ). We will now need the following

lemma.

Lemma 3.8. Let W ⊂ V be a subset of G’s vertices, such that diam(G(W )) ≤
ε|E(W )|. Then G is (ε)-reducible to the graph G/W .
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Proof of Lemma 3.8. Fix an orientation ~G of G. It is clear that if ~G ∈ P stG then

~G/W ∈ P st
G/W

. Now assume that δ(~G, P stG ) ≥ ε. Let d and d′ denote δ(~G, P stG ) ·
|E(G)| and δ(~G/W,P st

G/W
) · |E(G/W )| respectively. From the definition of the

graph G/W it follows that d′ ≥ d−diam(G(W )). This is true since any st-path in

~G/W can be extended to an st-path in ~G by reorienting at most diam(G(W )) edges

in W (by definition, diam(G(W )) is an upper bound on the undirected distance

from any “entry” vertex to any “exit” vertex in G(W )). From the condition on

W we have |E(~G/W )| = |E| − |E(W )| ≤ |E| − diam(G(W ))
ε . Combining these two

together we have

δ(~G/W,P stG/W ) =
d′

|E(~G/W )|
≥ d− diam(G(W ))

|E| − diam(G(W ))/ε
≥ d− diam(G(W ))

d/ε− diam(G(W ))/ε
= ε

In addition, it is clear that we can simulate each query to ~G/W by making at most

one query to ~G.

As a special case we have the following lemma.

Lemma 3.9. Let v ∈ V be a vertex of ~G, such that deg(v) ≥ 2/ε. Then G is

(ε)-reducible to the graph G/N1(v).

Now the proof of Lemma 3.7 follows by applying this contraction (iteratively)

for each “bad” subgraph W , until eventually we get a graph G′ in which all vertex

subsets W satisfy diam(G(W )) >
|E(W )|

ε . If in some stage we have both s and t

contained in the contracted subgraph W , then we terminate the whole algorithm

by accepting (since in this case all orientations are ε-close to being st-connected).

Note that this process may result in several different graphs (depending on choices

of the set W in each iteration), but we are only interested in one (arbitrary) graph

G′.

3.4.3 Properties of ε-long graphs

Next we show that an ε-long graph G can be “layered” so that the total number of

edges in the “wide” layers is bounded by ε
2E(G). We first define graph layering.
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Definition 3.10 (Graph layering and width). Given a graph G and a vertex

s ∈ V (G), let m denote the maximal (undirected) distance from s to any other

vertex in G. We define a layering L = (L0, L1, . . . , Lm) of G’s vertices as follows.

L0 = {s} and for every i > 0, Li = Ni(s) \ Ni−1(s). Namely Li is the set of

vertices which are at (undirected) distance exactly i from s. Note that for every

edge e{u, v} of G either both u and v are in the same layer, or u ∈ Li−1 and v ∈ Li
for some i ∈ [m].

We also denote by ELi the subset of G’s edges that either have one vertex in

Li and the other in Li−1, or edges that have both vertices in Li. Alternatively,

ELi = E(Li∪Li−1)\E(Li−1). We refer to the sets Li and ELi as vertex-layers and

edge-layers respectively. We might omit the superscript L from the edge-layers

notation when it is clear from the context.

The vertex-width of a layering L is maxi{|Li|}, and the edge-width of L is

maxi{|Ei|}.

3.4.4 Bounding the number of edges within wide

edge-layers

The following lemma states that in a layering of an ε-long graph most of the edges

are captured in edge-layers of bounded width.

Lemma 3.11. Consider the layering L of an ε-long graph G as defined above, and

let I = {i : |Ei| > 2100/ε2/ε} be the set of indices of the wide edge-layers. Then

the following holds:
∑
i∈I |Ei| ≤

ε
2 |E|.

Before proving Lemma 3.11 we prove an auxiliary concentration lemma. Denote

by A = 〈a0, a1, . . . , am〉 a sequence of integers, where a0 = 1 and for every i ≥ 1,

ai = |Ei|.

Definition 3.12 (ε-good sequence). Let 0 < ε < 1 be a positive constant. A

sequence 1 = a0, a1, . . . , am of positive natural numbers is ε-good if for every 0 ≤
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k < m and ` ∈ [m− k] we have that

k+∑̀
i=k+1

ai ≤
` · ak
ε

.

Claim 3.13. Let G be a graph in which for any induced subgraph W we have

|E(W )| < diam(W )/ε. Then the sequence A = 〈a0, a1, . . . , am〉 defined above is

ε/4-good.

Proof of Claim 3.13. Let us assume the contrary of the claim. Let k and l be such

that
k+∑̀
i=k+1

ai >
4` · ak
ε

Consider the subgraph W defined by the vertices ∪k+`
i=kLi and the edges ∪k+`

i=k+1Ei.

Now the number of edges in W is clearly
∑k+`
i=k+1 ai. For each vertex v in Lk

consider the neighborhood of distance ` + 1 from v, N`+1(v), and denote the

subgraph it spans by Wv. Notice that each Wv is of diameter at most 2(`+1) ≤ 4`,

and that the union of the edge sets of the Wv includes the whole edge set of W , so

we have
∑
v∈Lk |E(Wv)| ≥

∑k+`
i=k+1 ai. The number of vertices in Lk is at most

ak, so by the pigeonhole principle we know that at least one of the vertices v in

Lk has at least

∑k+`
i=k+1 ai
ak

edges in Wv. By our assumption on
∑k+`
i=k+1 ai we have

|E(Wv)| > 4`
ε ≥ diam(Wv)/ε, a contradiction.

Lemma 3.14 (The concentration lemma). Let 〈a0, . . . , am〉 be an ε-good sequence

and let B = {i | ai > 25/ε2/ε}. Then

∑
i∈B

ai ≤ ε

m∑
i=1

ai.

Proof. Let A be the sum of a1, . . . , am. According to Claim 3.24, that we state and

prove further on, we may assume that a0, . . . , am are monotone non-decreasing as

a function of their index without loss of generality. Now we assume that m is a
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power of 2, and prove that in this case
∑
i∈B ai ≤

ε
2
∑m
i=1 ai. This is sufficient

because if m is not a power of 2 then we can add more copies of a0 = 1 in the

beginning until m is a power of 2, and doing so will no more than double the sum

of the sequence while keeping it ε-good.

We first note that since the sequence is ε-good then A ≤ m/ε. In particular it

is safe to assume that m > 24/ε2 , because otherwise we would clearly have B = ∅.
Now assume on the contrary that

∑
i∈B

ai >
ε

2
A. (3.1)

Set p(k) = m(1 − 2−(k+1)) and R(k) =
∑p(k+1)
i=p(k)+1 ai. Obviously (since the

sum ranges in the definition of R(k) are disjoint),

A ≥
4/ε2∑
k=1

R(k). (3.2)

We next show that Assumption (3.1) implies that for any k ∈ [4/ε2] we have

that R(k) > ε2·A
4 . This is sufficient since it implies that

∑4/ε2
j=1 R(k) > A, which

contradicts Equation (3.2).

Let k0 = 4/ε2. The assumption that the sequence is non-decreasing implies

that

A ≥ ap(k0) · (m− p(k0)) = ap(k0) ·m · 2
−(k0+1).

Using that A ≤ m/ε we get that ap(k0) ≤ 2(k0+1)

ε = 24/ε2+1

ε .

Consequently, if ai > 25/ε2/ε then i > p(4/ε2 + 1). Hence for k ≤ k0, by

Assumption (3.1) we get that
∑m
i=p(k)+1 ai >

∑
i∈B ai >

ε
2A. On the other

hand as a0, . . . , am is an ε-good sequence we know that ε−1 · ap(k) ·m · 2−(k+1) ≥∑m
i=p(k)+1 ai and therefore by plugging this into the previous inequality we get

that ε−1 · ap(k) ·m · 2−(k+1) > ε
2A. Thus, ap(k) >

ε2·2k·A
m . Since a0, . . . , am are

monotone non-decreasing as a function of their index we conclude that R(k) ≥
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ap(k) · (p(k + 1) − p(k)) = ap(k) ·m · 2−(k+2). Together with the lower bound on

ap(k) we get that R(k) > ε2·A
4 .

Claim 3.15. If 〈a0, . . . , am〉 is an ε-good sequence, then the sequence 〈b0, . . . , bm〉
obtained by sorting a0, . . . , am is also ε-good.

Proof. As the bi’s are monotone increasing as a function of their index, in order to

show that they are an ε-good sequence we only need to show that for any k ∈ [m]

we have
1

m− k

m∑
i=k+1

bi ≤
bk
ε

(as for monotone sequences the average only decreases if a subsequence is chopped

off from the right).

Fix k ≤ m and consider the average 1
m−k

∑m
i=k+1 bi. We may assume that

each bi is a renaming of some aj in the original sequence. Thus the subsequence

B = 〈bk+1, . . . , bm〉 corresponds to members in the original subsequence:

〈ai1+1, . . . , ai1+j1〉, 〈ai2+1, . . . , ai2+j2〉, . . . , 〈ait+1, . . . , ait+jt〉

where each subsequence 〈air+1, . . . air+jr〉 is a maximal contiguous subsequence in

the original sequence whose members were renamed to members of B, and hence

their value is at least bk (as all members in B are such).

On the other hand, the values of ai1 , ai2 , . . . , ait are all bounded by bk as their

renaming does not put them in B. Since 〈a1, . . . , am〉 is ε-good, this means that

for every 1 ≤ r ≤ t, the average of the subsequence 〈air+1, . . . air+jr〉 is at most

bk/ε. Note that it is safe to assume that b0 is the renaming of a0 (which for a

good sequence is equal to the minimum 1) and hence i1 ≥ 0. Finally, as the

average of the subsequence B is clearly a weighted average of the averages of the

〈air+1, . . . air+jr〉 subsequences, it is bounded by bk/ε as well.

Now the proof of Lemma 3.11 follows directly from Claim 3.13 and Lemma

3.14.
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3.4.5 Reduction to bounded width graphs

In this section we prove that ε-long graphs can be reduced to graphs that have

bounded width. In terms of the proof overview, we are going to reduce the graph

G(1) to the graph G(2).

Let G = (V,E) ∈ Gst, and let L = (L0, L1, . . . , Lm) be the layering of G as

above. We call an edge-layer Ei wide if |Ei| > 1
ε · 2

100/ε2 . Let W be the set of all

wide edge-layers.

Lemma 3.16. If G ∈ Gst satisfies
∑
Ei∈W |Ei| ≤

ε
2 |E| then G is (ε, ε/2)-reducible

to a graph G′ which has no wide edge-layers at all.

Proof of Lemma 3.16. Recall the definition of G/W (a graph in which a subset

of vertices is contracted) from Section 3.4.2. Let Ei be a wide edge-layer. For

every edge e = e{u, v} ∈ Ei define We = {u, v}. We iteratively contract the

subgraphs We in G, for all edges in all wide edge-layers. Denote the final graph as

G′ = (V ′, E′).

We claim that after this process G′ has no wide edge-layers at all. Formally let

p(i) denote the size of the set {j|j ≤ i and Ej is wide}|. Namely p(i) is number

of wide edge-layers in G preceding the vertex-layer Li. Now we have the following

claim:

Observation 3.17. Let v ∈ Li be a vertex in the i’th vertex-layer of G. Then v’s

representing vertex v′ in G′ is in the vertex-layer L′
i−p(i) of G′.

Proof. The proof follows by induction on i.

The mapping µ sending i to i′ = (i−p(i)) is monotone non-decreasing, and onto

the number of layers in G′. For an index i′ of a vertex-layer in G′, let `(i′) denote

the largest index in the set µ−1(i′). Recall that E′i is the set of edges from layer

L′
i′−1 to layer L′

i′ and within layer L′
i′ in G′. Note that these edges are exactly the

edges that correspond to the edges between layers L`(i′) and L`(i′)−1 and within

L`(i′) in G. Thus assuming towards a contradiction that E′i is wide in G′, means
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that E`(i) is wide in G . But this is not possible, as E`(i) is in the set of edges that

were not contracted. As a conclusion, G′ cannot have any wide edge-layers.

It is clear that any orientation query to ~G′ can be simulated by a single orien-

tation query to ~G, and since all we did was contracting edges, if there is a path

from s to t in ~G then there is a path from s to t in ~G′. Now we only need to show

is that the second condition of reducibility holds.

We now show that by changing the direction of at most ε
2 |E
′| edges we can

have a path from s to t in ~G if there was one in ~G′. We can always assume that

the path in ~G′ is simple, i.e. it passes through each vertex at most once. Now

each vertex in G′ corresponds to a connected subgraph in G. We call a non-trivial

subgraph of G shrunk if all its vertices, and only them, are represented by a single

vertex in G′. Clearly we can extend an st-path in G′ to an st-path in G by only

reorienting the edges in the shrunk subgraphs of G. We only contracted edges in

the wide edge-layers, so the total number of edges in the shrunk components is at

most the total number of edges in the wide edge-layers. By the property of G we

have that only ε
2 |E| of the edges lie in the shrunk subgraphs of G. If by changing

the orientation of only ε
2 |E
′| edges in ~G′ we get a path from s to t in ~G′, then by

changing only ε
2 |E
′|+ ε

2 |E| ≤ ε|E| edges in ~G we can get a path from s to t in ~G,

and the second reducibility condition is proved.

3.4.6 Reducing bounded width graphs to st-connectivity

programs

So far we reduced the original graph G to a graph G′ which has a layering L =

(L0, L1, . . . , Lm) of edge-width at most w = 1
ε · 2

100/ε2 , and in which the source

vertex s belongs to layer L0. The remaining difference between G′ and an st-

connectivity program is that in G′ the target vertex t might not be in the last

vertex-layer Lm. The following lemma states that we can overcome this difference

by another reduction.
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Lemma 3.18. Let G′ be a graph as described above. Then G′ is (ε, ε/2)-reducible

to an st-connectivity program S of width at most w + 1.

Proof of Lemma 3.18. Let Lr be the layer to which t belongs in the layering L
of the graph G′. Let P = {p1, p2, . . . , pm−r} be a set of m − r new vertices. We

define S as follows.

• V (S) = V (G′) ∪ P

• E(S) = E(G′) ∪
(⋃m−r−1

i=1 {ei(pi, pi+1)}
)
∪ {et(t, p1)}

Any orientation ~G′ of G′ induces a natural orientation ~S of S; all edges e ∈ E(S)

that are also in E(G′) have the same orientation as in ~G′, while the orientation of

the new edges were defined explicitly above. We also rename t to p0 and rename

pm−r to t in S. Basically we have added a sufficiently long path from the original

target vertex to the new target vertex to get S. Now it is easy to verify that G′ is

indeed (ε, ε/2)-reducible to S (assuming that G has at least 1/ε edges), and that

the width of S is as required.

3.5 Reducing st-connectivity programs to branching

programs

We now show how to reduce an st-connectivity program to a clustered branching

program (recall Definition 3.2 and Definition 3.4). First observe that we can assume

without loss of generality that if an st-connectivity program has edge-width w, then

its vertex-width is at most 2w (since removing vertices of degree 0 essentially does

not affect the st-connectivity program, and a vertex in Li with edges only between

it and Li+1 can be safely moved to Li+1).

Before moving to the formal description of the reduction, we start with a short

intuitive overview. A branching program corresponds to a (space bounded) com-

putation that moves from the start vertex s, which represents no information about

the input at all, and proceeds (via the edges that are consistent with the input bits)
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along a path to one of the final vertices. Every vertex of the branching program

represents some additional information gathered by reading more and more pieces

of the input. Thus, the best way to understand the reduction is to understand the

implicit meaning of each vertex in the constructed branching program.

Given a graph G of a bounded width st-connectivity program, and its layer-

ing L0, L1, . . . Lm, we construct a graph G′ (with layering L′0, L
′
1, . . . L

′
m) for the

bounded-width branching program. The graph G′ has the same number of layers

as G. Each level L′i in G′ will represent the conditional connectivity of the vertices

in the subgraph Gi = G(
⋃i
j=0 Li) of G. To be specific, the knowledge we want to

store in a typical vertex at layer L′i of G′ is the following.

• for every u ∈ Li whether it is reachable from s in Gi.

• for every v, u ∈ Li whether v is reachable from u in Gi.

Hence, the amount of information we store in each node x ∈ L′i has at most

2w + (2w)2 many bits, and so there will be at most 42w2+w vertices in each L′i,

meaning that the graph G′ of the branching program is of bounded width as well.

Lemma 3.19. Let ε > 0 be a positive constant. Given a CP (w,m, n) instance

C = 〈G,L〉, we can construct a BPw(42w2+w,m, n) instance B = 〈G′,L′, X ′, I ′〉
and a mapping ρ from G-orientations to assignments on X such that the following

holds,

• if ~G satisfies PC then σ = ρ(~G) satisfies PB.

• if ~G is ε-far from satisfying PC then σ = ρ(~G) is ε-far from satisfying PB.

• any assignment query to σ can be simulated using a single orientation query

to ~G.

Proof. First we describe the construction, and then show that it satisfies the re-

quirements above.

The vertices of G′: We fix i and show, based on the layer Li of G, how to

construct the corresponding layer L′i of G′. Each vertex in L′i corresponds to a
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possible value of a pair (Si, Ri) of relations. The first relation Si ⊂ Li is a unary

relation (predicate) over Li indicating for each v ∈ Li whether there is a directed

path from s to v in the subgraph of G induced on
⋃i
j=0 Lj . The second relation

Ri ⊂ Li×Li is a binary relation over Li that for every ordered pair (u, v) of vertices

in Li indicates whether there is a directed path from u to v in the subgraph of

G induced on
⋃i
j=0 Lj (the path can be of length 0, meaning that the Ri’s are

reflexive). Notice that |L′i| = 2|Li|
2+|Li| ≤ 42w2+w for all i.

The edges of G′: Now we construct the edges of G′. Recall that E′i+1 denotes

the set of (labeled) edges having one vertex in L′i+1 and the other in L′i. Fix i and

a vertex v ∈ L′i. Let (S,R) be the pair of relations that correspond to v. Let S′′ be

the set Li+1∩Γout(S), namely the neighbors of vertices from S that are in Li+1, and

set R′′ = {(v, v) : v ∈ Li+1} ∪ {(u, v) :
(
u, v ∈ Li+1

)
∧
(
v ∈ Γout(u)

)
} ∪ {(u, v) :(

u, v ∈ Li+1
)
∧
((

Γout(u) × Γin(v)
)
∩ R 6= ∅

)
}. Now define R′ as the transitive

closure of R′′, and set S′ = S′′ ∪ {v ∈ Li+1 : ∃u∈S′′(u, v) ∈ R′}. Let v′ ∈ L′i+1

be the vertex corresponding to the pair (S′, R′) that we defined above. Then the

edges of E′i+1 are given by all such pairs of vertices (v, v′).

The variables in X ′: Each variable x′i ∈ X ′ is associated with an edge

ei ∈ E(G). This association is actually the mapping ρ above, i.e. every orientation

~G of G defines an assignment σ on X ′.

The partition I ′ of X ′: Recall that Ei denotes the set of edges of G having

either one vertex in Li−1 and the other in Li, or both vertices in Li. The partition

I ′ of X ′ is induced by the partition L of V (G). Namely, the component Ii of I
contains the set of variables in X ′ that are associated with edges in Ei. Thus w is

also a bound on the sizes of the components in I.

The set T ′ ⊂ L′m of accepting vertices: The set T ′ is simply the subset of

vertices in L′m whose corresponding relation S contains the target vertex t of G.

Note that each value of a variable in X ′ corresponds exactly to an orientation

of an edge in G. This immediately implies the third assertion in the statement of

the lemma. Distances between inputs are clearly preserved, so to prove the other

assertions it is enough to show that the branching program accepts exactly those
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assignments that correspond to orientations accepted by the connectivity program.

It is straightforward (and left to the reader) to see that the vertex reached in each

L′i indeed fits the description of the relations R and S, and so an assignment is

accepted if and only if it corresponds to a connecting orientation.

The branching programs resulting from the above reduction have a feature

that they require reading more than one bit at a time to move between layers.

Specifically, they conform to Definition 3.4. The result in [New02], however, deals

with standard branching programs (see Definition 3.3), which in relation to the

above are a special case in which essentially m = n and all the Ii’s have size

1. Going from here to a standard (non-clustered) branching program (in which

the edges between two layers depend on just one Boolean variable) is easy. The

requires lemma is proved in the next section.

3.6 Converting clustered branching programs to

non-clustered ones

Lemma 3.20. Any BPc(w,m, n) instance can be converted to a BP (w2c, n) in-

stance accepting the very same language.

Proof. Throughout the proof it is convenient to refer to the vertices of a layer

Li in the clustered branching program as a set of states, and to the edges be-

tween Li−1 and Li as a transition function fi : Li−1 × {0, 1}|Ii| → Li. Namely,

fi(v, b1, . . . , b|Ii|) is equal to the vertex w in Li so that (v, w) is an edge labeled

with (b1, . . . , b|Ii|). We shall use an analogue notation for the transition functions

in the constructed branching program, f ′i : L′i−1 × {0, 1} → L′i. The basic idea

of the proof is that instead of reading the entire cluster Ii at once, we read it bit

by bit, and use additional states in each layer to store the bits that we have read

so far. We need to read at most c bits before we can use the original transition

functions, which causes the blowup of up to 2c in the number of states in each

layer. We define the new layers {s} = L′0, . . . , L
′
n of the program inductively.
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First we define L0 = L′0 = {s}. Now, assuming that we have already converted

L0, . . . , Li−1 into L′0, . . . , L
′
j such that L′j = Li−1, and calculated the correspond-

ing transition functions fk : L′k−1 × {0, 1} → L′k, we show how to convert Li into

layers L′j+1, . . . , L
′
j+|Ii|

so that L′
j+|Ii|

= Li.

For 0 < k < |Ii| we set L′j+k = Li−1 × {0, 1}k, and set L′
j+|Ii|

= Li. Each

layer L′j+k will be associated with the bit corresponding to the k’th member of

Ii, which to reduce indexes we shall re-label as yj+k. In the following we denote

members of a cross product A × B as tuples (a, b) with a ∈ A and b ∈ B. The

transition functions f ′j+1, . . . , f
′
j+|Ii|

are set as follows.

• For k = 1 we set

f ′j+1(v, yj+1) = (v, yj+1),

that is the transition is to the tuple resulting from pairing v with the bit

yj+1

• Accordingly, for 1 < k < |Ii| we set

f ′j+k(v, b1, . . . , bk−1) = (v, b1, . . . , bk−1, yj+k),

i.e. we concatenate the value of yj+k to the previously collected values.

• Finally, for k = |Ii| we set

f ′j+|Ii|
(v, b1, . . . , b|Ii|−1) = fi(v, b1, . . . , b|Ii|−1, yj+|Ii|),

i.e. we employ the function fi on all the collected bit values including yj+|Ii|.

The accepting subset T ′ of L′n = Lm remains the same as the original T . It is

now not hard to see that both programs accept the exact same language over

x1, . . . , xn.

The above means that the algorithm of [New02] can be employed over the new

width w2c program with the same input.
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3.7 Wrapping up – Proof of the Main Theorem

We started with a graph G and wanted to construct an (ε, q)-test for st-connectivity

of orientations ofG. In Section 3.4.1, Section 3.4.2 and Section 3.4.3 we constructed

a graph G1 such that if we have an (ε, q)-test for st-connectivity in G1, then we have

an (ε, q)-test for G. Additionally G1 has the property that most of the edge-layers

in G1 are of size at most w = 1
ε · 2

100/ε2 . Then in Section 3.4.5 we constructed

a graph G2 such that if we have an ( ε2 , q)-test for st-connectivity in G2 then we

have an (ε, q)-test for G1 and hence we have one for G. Moreover G2 has all its

edge-layers of size at most w. Finally in Section 3.4.6 we built a graph G3 which

has all its edge-layers of width at most w + 1, and in addition, the vertices s and

t are in the first and the last vertex-layers of G3 respectively. We also showed

that having an ( ε4 , q)-test for st-connectivity in G3 implies an ( ε2 , q)-test for G2,

and hence an (ε, q)-test for G. This ends the first part of the proof, which reduces

general graphs to st-connectivity programs.

Then in Section 3.5 from G3 we constructed a read once (w + 1)-clustered

Branching Program that has width 42(w+1)2+w+1 so that an ( ε4 , q)-test for this

BP gives an ( ε4 , q)-test for st-connectivity in G3. Then we converted the (w + 1)-

clustered Branching Program to a non-clustered Branching Program which has

width w1 = 42(w+1)2+(w+1)2(w+1). Once we have our read once bounded width

branching program then by applying the algorithm of [New02] for testing branching

programs we get an ( ε4 , q)-test with q = (2w1
ε/4 )O(w1) queries for our problem. Hence

by combining all of the above, we get an (ε, q) testing algorithm for our original

st-connectivity problem, where q = (2/ε)2O((1/ε)·2(100/ε2))

3.8 Bounded Expansion Lemma

Recall the definition of ε-good sequence.

Definition 3.21 (ε-good sequence). Let 0 < ε < 1 be a positive constant. A

sequence 1 = a0, a1, . . . , am of positive natural numbers is ε-good if for every 0 ≤
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k < m and ` ∈ [m− k] we have that

k+∑̀
i=k+1

ai ≤
` · ak
ε

.

The following is the statement of Lemma 3.14 that we prove in this section.

Lemma 3.22 (The Bounded Expansion Lemma). Let 〈a0, . . . , am〉 be an ε-good

sequence and let B = {i | ai > (2/ε)1/ε}. Then

∑
i∈B

ai ≤ ε
m∑
i=1

ai.

Proof. Let A be the sum of a1, . . . , am. According to Claim 3.24, that we state and

prove further on, we may assume that a0, . . . , am are monotone non-decreasing as

a function of their index without loss of generality.

Note that a monotone non-decreasing sequence is ε-good if and only if for all

k ≥ 0 we have
m∑

i=k+1

ai ≤
(m− k) · ak

ε
(3.3)

So from the above condition and the fact that a0 = 1 we have that

m∑
i=1

ai = A ≤ m

ε

Let η = n/(εA). Consider the sequence 〈a′0, a
′
1, . . . , a

′m〉 where a′0 = a0 = 1

and for all i 6= 0 we have a′i = η · ai. This sequence also satisfies Condition 3.3 and

assume that B′ = {i | a′i > (2/ε)1/ε} and

∑
i∈B′

a′i ≤ ε

m∑
i=1

a′i.
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Since η ≥ 1 we have B is a subset of B′ and hence

∑
i∈B

ai ≤
∑
i∈B′

ai =
1

η
sumi∈B′a

′
i ≤

1

η
ε

m∑
i=1

a′i = ε
m∑
i=1

ai

So it is sufficient to prove the Bounded Expansion Lemma for the sequence

〈a′〉. So we can assume ε · A = m. Let C be defined as

C = min{j|
m∑

i=j+1
ai ≤ m} (3.4)

Note that the Bounded Expansion Lemma is true if and only if the following

inequality holds

aCUT−OFF ≤
(

1

ε

)1/ε
(3.5)

To prove the Inequality 3.5 we will need the following claim that we prove

further on.

Claim 3.23. If 〈a0, . . . , am〉 is a non-decreasing ε-good sequence, with a0 = 1, and

if C is as in Equation 3.4 then

aC ≤
(

n

m− C

)1−ε

Since the sequence is an ε-good increasing sequence we know from Equation 3.3

that

(m− C)
(aC
ε

)
≥

m∑
i=C+1

ai (3.6)

Now since C is defined as in Equation 3.4 we have that

m∑
i=C

ai > εA
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From this and the fact that the sequence is increasing we obtain the following

m∑
i=C+1

ai > εA

(
m− C − 1

m− C

)
(3.7)

Combining Inequalities 3.6 and 3.7 and Claim 3.23 we obtain

εA

(
(m− C − 1)

(m− C)2

)
≤
(

1

ε

)(
εA

m− C

)1−ε

Simplifying it we get

(n− C) ≥ n

(
ε2A

2n

)1/ε
= n

( ε
2

)1/ε

Plugging it in Claim 3.23 we obtain that

aC ≤
(

2

ε

)1/ε

Claim 3.24. If 〈a0, . . . , am〉 is an ε-good sequence, then the sequence 〈b0, . . . , bm〉
obtained by sorting a0, . . . , am is also ε-good.

Proof. As the bi’s are monotone increasing as a function of their index, in order to

show that they are an ε-good sequence we only need to show that for any k ∈ [m]

we have
1

m− k

m∑
i=k+1

bi ≤
bk
ε

(as for monotone sequences the average only decreases if a subsequence is chopped

off from the right).

Fix k ≤ m and consider the average 1
m−k

∑m
i=k+1 bi. We may assume that

each bi is a renaming of some aj in the original sequence. Thus the subsequence
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B = 〈bk+1, . . . , bm〉 corresponds to members in the original subsequence:

〈ai1+1, . . . , ai1+j1〉, 〈ai2+1, . . . , ai2+j2〉, . . . , 〈ait+1, . . . , ait+jt〉

where each subsequence 〈air+1, . . . air+jr〉 is a maximal contiguous subsequence in

the original sequence whose members were renamed to members of B, and hence

their value is at least bk (as all members in B are such).

On the other hand, the values of ai1 , ai2 , . . . , ait are all bounded by bk as their

renaming does not put them in B. Since 〈a1, . . . , am〉 is ε-good, this means that

for every 1 ≤ r ≤ t, the average of the subsequence 〈air+1, . . . air+jr〉 is at most

bk/ε. Note that it is safe to assume that b0 is the renaming of a0 (which for a

good sequence is equal to the minimum 1) and hence i1 ≥ 0. Finally, as the

average of the subsequence B is clearly a weighted average of the averages of the

〈air+1, . . . air+jr〉 subsequences, it is bounded by bk/ε as well.

Proof of Claim 3.23. We define a new sequence 〈b0, b1, . . . , bm〉 where for all

i > C we have bi = ai. For all other we define recursively from C to 0 as

bj =
ε

m− j

m∑
i=j+1

bi (3.8)

Note that for all i we have bi ≤ ai ≤ bi/b0. So now we will give an upper bound

on bC/b0 and this will imply an upper bound on aC . The nice recursive pattern

of the sequence 〈b〉 (Condition 3.8) will help us derive the upper bound.

From the definition of the sequence 〈b〉 (Condition 3.8) we obtain

bj =
(m− j + 1)

(m− j + ε)
bj−1
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So we can write

bC =
m

(m− C + ε)ΠC−1
i=1 (1 + ε/(m− i))

b0 (3.9)

Now let f(i) = (1 + ε/(m− i)). We want a lower bound on ΠC−1
i=1 f(i). Note that

f(i) is an increasing function. So we have

log(ΠC−1
i=1 f(i)) =

C−1∑
i=i

log(f(i)) >

∫ C−1

0
log(f(x)) dx

From Claim 3.25 we have that log(ΠC−1
i=1 f(i)) is more than

[
(C − 1) log(1 + ε

m−C+1)− ε log
(
m−C+1

ε + 1
)
−m log

(
1
ε + 1

m−C+1

)]
−
[
−ε log

(m
ε + 1

)
−m log

(
1
ε + 1

m

)]
After doing the algebra we obtain, ΠC−1

i=1 f(i) is more than

(
m+ ε

(m− C + 1) + ε

)ε (
1 +

ε

m

)m(
1 +

ε

(m− C + 1)

)(C−1−m)

which is greater than (
m

(m− C + ε

)ε
So plugging it back to Equation 3.9 we obtain our desired upper bound on bC/b0,

bC <

(
m

m− C

)1−ε
b0

Claim 3.25. If f(x) = (1 + ε/(m− x)), then∫
log(f(x)) dx =

(
x log(f(x))− ε log

(
(m− x)

ε
+ 1

)
− nlog

(
1

ε
+

1

m− x

))
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Proof of Claim 3.25. First doing integration by parts∫
log(1 + ε

(m−x)) = x log(1− ε
(m−x))−

∫ εx dx
(m−x+ε)(m−x)

= xf(x) +
∫ ε(m−x) dx

(m−x+ε)(m−x) −m
∫ εdx

(m−x+ε)(m−x)

= xf(x)− ε log(
(m−x)
ε + 1)−m

∫ εdx
(m−x+ε)(m−x)

Now let us consider the
∫ εdx

(m−x+ε)(m−x) . If we substitute y = (m − x), then

dx = −dy. So we obtain

∫
εdx

(m− x+ ε)(m− x)
= −

∫
εdy

(y + ε)y

Now if we substitute z = 1/y we get dz = −dy/y2. Hence,

−
∫

εdy

(y + ε)y
=

∫
εdz

1 + εz
= log(

1

ε
+ z) = log(

1

ε
+

1

y
) = log(

1

ε
+

1

m− x
)

So we finally have,∫
log(f(x)) dx = xf(x)− ε log(

(m− x)

ε
+ 1)−m log(

1

ε
+

1

m− x
)



CHAPTER 4

TESTING EQUIVALENCE UNDER A TRANSITIVE

GROUP ACTION

4.1 Introduction

The immediate motivation of our work in this chapter comes from papers by Fischer

[Fis05] and Fischer and Matsliah [FM06] who consider the Graph Isomorphism

problem in the property testing model. Here two graphs are given as inputs and

we have to test whether they are isomorphic or “far” from being isomorphic.

In this chapter we consider a generalization of graph isomorphism. Let us fix

a permutation group G acting on the set Ω. Given two input strings x, y : Ω →
{0, 1}, we say x is “G-isomorphic” to y if y is a a π-shift of x for some π ∈ G. We

want to test the property “x is G-isomorphic to y,” that is, we want to distinguish

the case when x and y are G-isomorphic from the case when every string that is

G-isomorphic to y is far from x. [Formal definitions are given in Section 4.2.]

Graph Isomorphism is a special case: we need to choose Ω to be the set of

unordered pairs of the set V of vertices; and G = Sym(2)(V ) the induced action on

Ω of Sym(V ), the symmetric group acting on V (so n =
(|V |

2
)
). We note that the

induced symmetric group action on pairs is primitive (does not admit nontrivial

invariant partitions of the permutation domain). This fact defines the direction

in which we extend results on Graph Isomorphism. We note that by considering

the induced symmetric group action on k-tuples, another primitive action, we also

cover the case of k-uniform hyper-graphs. Here k need not be a constant. Various

finite geometries also correspond to primitive groups, so G-isomorphism includes

equivalence under geometric transformations (projective, orthogonal, symplectic,

etc.).

59
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Besides the fact that the case of primitive groups includes Graph Isomorphism

and its immediate generalizations (hyper-graphs) as well as geometric equiva-

lence, primitive permutation groups are significant because they form the “building

blocks” of all permutations groups in the sense that a “structure tree” can be built

of which the leaves constitute the permutation domain and the action of G extends

to the tree in such a way that the action of the stabilizer of any node in the tree is

primitive on the children of the node (cf. [BLS87]). This structure tree formalizes

the natural divide-and-conquer approach successfully exploited in algorithm design

[BL83, BLS87, Luk82].

In “property testing” we want to output 1 if the inputs are G-isomorphic and

0 if they are “far” from being G-isomorphic. The complexity is the number of

queries made to the input. We consider two models depending on whether we

have to query both x and y or we have to query only one of them (the other is

known). We call the models query-2 and query-1, respectively. A property test

can have 1-sided or 2-sided-error.

In this chapter we focus mainly on property testing of G-isomorphism when the

group is primitive. Our main results are the tight bounds on the query complexity

when we are allowed only 1-sided error, that is, the algorithm has to output 1

with probability 1 when the two inputs are G-isomorphic and we have to output 0

with high probability when the inputs are “far” from being isomorphic. The main

results are the following.

Theorem 4.1. [Tight bounds for primitive groups] If G is a primitive group then

1. The 1-sided-error query complexity for testing G-isomorphism in the query-2

model is Θ̃(
√
n log |G|).

2. The 1-sided-error query complexity for testing G-isomorphism in the query-1

model is Θ̃(log |G|).

Theorem 4.1 generalizes a result of Fischer and Matsliah [FM06] on Graph Iso-

morphism. The lower bound parts of this result is the main technical contribution
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of this paper and is proved in Section 4.3. For the lower bound proofs we crucially

use a classification of primitive groups based on the O’Nan–Scott Theorem (see

[Cam81]).

We also prove some upper and lower bounds for the other cases. But in most

of these cases, a significant gap remains between the upper and lower bounds. We

present these results in the appendix. The following is the list of results we prove

in the appendix. The tilde in the asymptotic notation indicates polylog(n) factors.

Proposition 4.2. [Upper bound]

1. The query-1 complexity of 1-sided and 2-sided error G-isomorphism testing

is O(1 + log |G|).

2. The query-2 complexity of 1-sided and 2-sided error G-isomorphism testing

is O(
√
n(1 + log |G|)).

In Table 1, we abbreviated the expression 1 + log |G| to log |G| for better ty-

pography. The only case where this makes a difference is when |G| = 1 so the

results as stated in the Table 1 assume |G| ≥ 2.

Theorem 4.3. [Lower bound] Let G be a transitive group of order 2O(n1−ε). Then

the 2-sided-error query-1 complexity of the property testing of G-isomorphism is

Ω(log n).

Note that we have tighter lower bound for the same case when G is primitive.

In Section 4.2 we give the formal definitions. In Sections 4.3, 4.4 and 4.5 we

give the proofs of the above three results. In Section 4.6 we state further nearly

tight bounds that follow from our results (in addition to Theorem 4.1).

Table 4.1 summarizes our results on G-isomorphism. Table 2 gives the results of

Fischer and Matsliah on Graph Isomorphism. In Table 3 we specialize our results

to the case of Graph Isomorphism for comparison with the results of Fischer and

Matsliah.
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Query-1 Complexity Query-2 Complexity

1-sided-error testing Θ̃(log |G|)‡, Ω(log n)† Θ̃(
√
n log |G|)‡

2-sided-error testing O(log |G|), Ω(log n)† O(
√
n log |G|)

† The lower bound holds when G is transitive and |G| = 2O(n1−ε).
‡ The lower bound is for primitive G and the upper bound has no tilde.

Table 4.1: Bounds on the query complexity of Testing of Equivalence under G-
isomorphism.

4.2 Preliminaries

4.2.1 Definitions

Let Ω be a set of size n. The permutations of Ω form the symmetric group

Sym(Ω) of order n!. We write the action of π ∈ Sym(Ω) as i 7→ iπ. For a subset

S ⊆ Ω we set Sπ = {iπ : i ∈ S}.
A subgroup G of Sym(Ω) is a permutation group; Ω is the permutation

domain on which G acts. G has order |G| and degree n.

G is transitive if (∀i, j ∈ Ω)(∃π ∈ G)(iπ = j). A partition Ω = Ω1∪̇ . . . ∪̇Ωm

is invariant under π ∈ Sym(Ω) if (∀i)(∃j)(Ωπi = Ωj). The partition is invariant

under G if it is invariant under every π ∈ G. The trivial partitions correspond to

m = 1 or m = n; these are always invariant. If G is transitive and does not admit

any nontrivial invariant partition then G is primitive. The largest primitive per-

mutation groups of degree n other than the symmetric and the alternating groups

(groups of even permutations) have order exp(O(
√
n log2 n)) ([Bab81, Bab82]) so

except for the two classes of “giants” of order n! and n!/2, resp., log(|G|) = Õ(
√
n)

for all primitive groups of degree n.
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We use the notation [n] = {1, 2, 3, ..., n}. Most often we take Ω = [n] and write

Sn for Sym([n]).

Definition 4.4. A partial assignment is a function p : S → {0, 1} where S ⊆ [n].

We call S the support of this partial assignment and often denote |S| as |p|. We

call x a (full) assignment if x : [n] → {0, 1}. (Note than a string x ∈ {0, 1}n can

be thought of as a full assignment.) We say p ⊆ x if x is an extension of p, i. e., if

p = x|S (the restriction of x to S).

Ham(x, y) will denote the Hamming distance of the strings (full assignments)

x and y.

Definition 4.5. Let T ⊆ [n] and let π ∈ Sn.

Let G be a permutation group acting on [n]. Then the sets Tπ, where π ∈ G,

are called the G-shifts of T . If p : T → {0, 1} is a partial assignment then we

define pπ : Tπ → {0, 1} as pπ(i) = p(iπ
−1

).

Given two full assignments x and y and a permutation group G we denote by

dG(x, y) the minimum distance between the G-shifts of x and y. That is,

dG(x, y) = min
π1,π2∈G

Ham(xπ1 , yπ2). (4.1)

Since G is a group, we have

dG(x, y) = min
π∈G

Ham(x, yπ) = min
π∈G

Ham(xπ, y). (4.2)

If dG(x, y) = 0 then we say “x is G-isomorphic to y.”

A 2-sided property tester for G-isomorphism is a probabilistic decision tree,

say A, such that given x, y ∈ {0, 1}n

if dG(x, y) = 0 then with probability > 2
3 we have A(x, y) = 1, and,

if dG(x, y) ≥ δn then with probability > 2
3 we have A(x, y) = 0.
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Query-1 Complexity Query-2 Complexity

1-sided-error testing Θ̃(|V |) Θ̃(|V |3/2)

2-sided-error testing Θ̃(
√
|V |) Ω(|V |), Õ(|V |5/4)

Table 4.2: The results of Fischer and Matsliah for Graph Isomorphism.

An 1-sided error property tester is one which makes no mistake if dG(x, y) = 0.

The complexity of a property tester is the maximum (over all possible inputs)

of the minimum number of bits that need to be queried. If neither x nor y is given

(so both need to be queried) then we speak of a query-2 tester and correspondingly

of query-2 complexity. If one of them is given (we always assume y is given)

and only the other (that is x) needs to be queried then we speak of a query-1 tester

and query-1 complexity.

The trivial upper bound on the complexity of query-2 testers is 2n and of

query-1 testers is n.

All our upper bound results hold for any permutation group G. But for our

lower bound results we need some more structure on G. In Theorem 4.3 we assume

that the group is transitive while Theorem 4.1 holds for primitive groups. Our main

tool for primitive groups is the O’Nan–Scott Theorem (see Section 4.3).

4.2.2 Previous Results

The query complexity of the property testing version of graph isomorphism has

been well studied. Fischer and Matsliah [FM06] gave some tight bounds. In case

of graph isomorphism the group that acts is S
(2)
|V |, where V is the vertex set of the

graph. Hence the order of the group is |V |!. Table 2 shows the main results of

[FM06].
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4.2.3 Chernoff bounds

We shall repeatedly use the following version of the Chernoff bounds, as presented

by N. Alon and J. Spencer [AS92, Corollary A.14].

Let X1, X2, . . . , Xk be mutually independent indicator random variables and

Y =
∑k
i=1Xi. Let the expected value of Y be µ = E[Y ]. For all α > 0,

Pr[|Y − µ| > αµ] < 2e−cαµ,

where cα > 0 depends only on α.

4.3 Query Complexity for 1-sided-error Testing of

Equivalence under some Primitive Group Action

4.3.1 Structure of Primitive Groups

Definition 4.6. Let G be a permutation group acting on a set A and H a permu-

tation group acting on a set B. The wreath product G oH is the split extension of

the base group GB (the cartesian product of |B| copies of G) by H, where H acts

on GB by permuting the factors as it does the elements of B. Identifying GB with

the set of functions f : B → G we have h−1fh(b) = f(h−1(b)) for h ∈ H, b ∈ B.

There are two natural actions of G oH.

1. The imprimitive action on A×B. The base group acts in the first coordinate

by the rule f(a, b) = (f(b)(a), b) and H acts on the second coordinate in the

usual way.

2. The product action on the set AB of B → A functions, where the base group

acts coordinatewise (that is, if p ∈ AB , f ∈ GB , then (fp)(b) = f(b)(p(b))

and H acts by permuting the coordinates ((hp)(b) = p(h−1(b)) for g ∈
GB , h ∈ H).
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Note that these are two permutation representations of the same group. Note

also that G oH has G|B| as a normal subgroup with H as the quotient.

The structure of primitive permutation groups is described by the O’Nan–Scott

Theorem. A useful consequence of that theorem is given by Cameron.

Theorem 4.7. [Cam81] There is a (computable) constant c with the property that,

if G is a primitive permutation group of degree n, then one of the following holds:

1. |G| ≤ nc log n.

2. G is a subgroup of Aut(A
(k)
m ) o S` (product action) containing (A

(k)
m )`, where

A
(k)
m is the alternating group Am acting on k-element subsets. [We can as-

sume without loss of generality that 1 ≤ k ≤ m
2 ].

So in the case |G| > nc log n the degree of G is given by

n =

(
m

k

)`
and therefore n ≥ m`. (4.3)

It follows that ` ≤ log2 n. Also since we can assume k ≤ m
2 , so

(
m

k

)
≥
(m
k

)k
≥ 2k and therefore k ≤ log2 n. (4.4)

In fact if |G| > nc log n then we obtain the bound on the size of G as

|G| ≤ (m!)`(`!) < mm``` ≤ nm`` [From Equation 4.3] (4.5)

Since ` ≤ log2 n we have from Equation 4.5,

c(log n)2 < log(|G|) < (m log n+ ` log `) ∼ m log n. (4.6)

The last asymptotic equality holds because ` < log n and therefore ` log ` =

o(log2 n).

Therefore,

log |G| . m log n and m & c log n. (4.7)
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It follows in particular that m ≥ 7 (for sufficiently large n). The significance

of this is in the known fact that for m ≥ 7 we have

Aut(Am) = Sm, (4.8)

and therefore Aut(A
(k)
m ) = S

(k)
m .

Observation 4.8. If k = O(
√
m) then

(
m

k

)
= Θ

(
mk

k!

)
.

Corollary 4.9. Either
√
n log |G| = Õ(

√
n) or

m

(
m

k

)`/2
= Õ(

√
n log |G|)

.

Proof. Let k >
√
m. Then

n =

(
m

k

)
>
(m
k

)k
> 2k > 2

√
m.

Therefore m = O((log n)2) which implies from Equation 4.6 log |G| < (log n)3.

Hence if k >
√
m we have

√
n log |G| = Õ(

√
n). The corollary now follows from

Observation 4.8.

Definition 4.10. Let A,B ⊂ [n] and p : A → {0, 1} and q : B → {0, 1} be two

partial assignments. Let G be a permutation group on [n]. Then p and q are said

to be G-agreeable if there exists a full assignment x on [n] and two elements

π1, π2 ∈ G such that x is an extension of both pπ1 and qπ2 . Since G is a group this

is same as saying p and q are G-agreeable if there exists an element π ∈ G and a

full assignment x such that x is an extension of both pπ and q. We say that p and

q are agreeable through π.
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We say that the partial assignments p and q are compatible if there is a full

assignment x on [n] which is an extension of both p and q.

Definition 4.11. Let G be a permutation group on [n]. Let x and y be two full

assignments on [n]. Then x and y are called k-G-agreeable if for any sets A,B ⊂ [n]

with |A|, |B| ≤ k, the partial assignments x|A and y|B are G-agreeable.

4.3.2 G-Agreeability Lemma for G Primitive

The following proposition is folklore.

Proposition 4.12. Let G be a transitive group on [n]. Let us fix A,B ⊂ [n] and

let us select π ∈ G uniformly at random. Then

E(|Aπ ∩B|) =
|A||B|
n

. (4.9)

Proof. By G-symmetry, for each b ∈ B we have Pr(b ∈ Aπ) =
|A|
n . Now the

linearity of expectation yields the result.

Corollary 4.13. Let G be a transitive group on [n]. Let A,B ⊂ [n] with |A|, |B| ≤
ε
√
n. Then,

Pr
π∈G

[Aπ ∩B = φ] > (1− ε2)

In particular if A and B are the support of the partial functions p and q,

respectively, then p and q are G-agreeable.

Proof. Immediate from Proposition 4.12 by Markov’s inequality.

A simple consequence of Corollary 4.13 is that if G is a transitive group then

any two full assignments x and y on [n] are
√
n-G-agreeable.

Next we state the most technical lemma of this chapter - the G-Agreeability

Lemma for primitive groups.

Lemma 4.14 (G-Agreeability Lemma). Let G be a primitive group. Then there

exist two full assignments x and y on [n] such that dG(x, y) ≥ n/6 and x and y

are Õ(
√
n log |G|)-G-agreeable.
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4.3.3 Lower Bounds for 1-sided error Testing

Proof of Part 1 of Theorem 4.1

Let A be a 1-sided-error query-2 property tester for G-isomorphism. Let the

inputs be x and y. After the queries are made we get two partial functions x|Qx
and y|Qy . Now if x|Qx and y|Qy are G-agreeable then we have no proof that

dG(x, y) 6= 0. Since A is a 1-sided-error tester, it has to output 1. So by Lemma

4.14 we see that there exists x and y such that dG(x, y) ≥ 1
6n and A(x, y) has to

be 1 if the query size is Õ(
√
n log |G|). So the result follows from the lemma.

Proof of Part 2 of Theorem 4.1

We recall the example for lower bound of 1-sided query-1 complexity of graph

isomorphism given by Fischer and Matsliah [FM06]. The unknown graph is the

complete graph on n vertices while the known graph is the union of n/2 isolated

vertices and a complete graph on n/2 vertices. Note that without querying at least

n/4 pairs of vertices it is impossible to give a certificate of non-isomorphism. This

gives the lower bound of n/4 for the graph isomorphism case.

A similar example can be given in case of isomorphism under primitive group

action. First of all we assume that the primitive group is of size more than nc log n

where the c is same as in Cameron’s Theorem 4.7. Now we use the structure of

the primitive group given by Cameron. We continue with the same notation as

in Section 4.3.4. We partition V1 into three disjoint parts, namely Va, Vb, and Vc,

where |Va| = |Vb| = |Vc| = m
3 . The known input is

x(W ) = 1 iff W ∈
(
Va, Vc, V2 . . . , V`
1, k − 1, k, . . . , k

)
The unknown input is

y(W ) = 1 iff W ∈
(

(Va ∪ Vb), Vc, V2, . . . , V`
1, k − 1, k, . . . , k

)
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Note that one need to make at least m/6 queries to give a certificate of non-

isomorphism between the two inputs. Now from Equation 4.7 we get a lower

bound of Ω(
log(|G|)

log n ).

4.3.4 Proof of the G-Agreeability Lemma for Primitive

Groups

Proof of Lemma 4.14. If |G| ≤ nc log n then
√
n log |G| = Õ(

√
n) and the result

follows from Corollary 4.13. Therefore from Theorem 4.7 and Corollary 4.9 we may

assume that G is a subgroup of S
(k)
m ) oS` (product action) containing (A

(k)
m )`, and

k <
√
m. Hence in rest of the proof we will use from Lemma 4.8 that

(
m

k

)
= Θ

(
mk

k!

)

where the impied constant is absolute.

If ` = 1 and G = S
(2)
m then G is the group of automorphisms of the complete

graph on m vertices. This case was settled by Fischer and Matsliah [FM06]. We

generalize their technique.

For our convenience we have the following definition.

Definition 4.15. Let T1, T2, . . . , Ts be disjoint sets and r1, r2, . . . , rs be positive

integers satisfying
∑s
i=1 ri = R. Then by

(T1,T2,...,Ts
r1,r2,...,rs

)
we mean the set of R-tuples

formed by ri distinct elements from the set Ti for all 1 ≤ i ≤ s. That is,

(
T1, T2, . . . , Ts
r1, r2, . . . , rs

)
=

{
s⋃
i=1

Si

∣∣∣Si ⊆ Ti, |Si| = ri

}

G is a subgroup of S
(k)
m oS` (product action) containing (A

(k)
m )`. G is naturally

isomorphic to a subgroup of Sm oS`, acting in its imprimitive action on V = ∪`i=1Vi,

where |Vi| = m and the Vi are all disjoint. Then any full assignment is a function

from the set
(V1,...,V`
k,k,...,k

)
to {0, 1}.
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We will first have to define two full assignments, x and y, on n bits. The group

G is a map from V to V . The rest of our proof has the following two parts:

• Define the full assignments x and y and prove that dG(x, y) > δn for some

constant δ.

• Let Qx and Qy be two query sets for x and y, respectively such that both |Qx|
and |Qy| is Õ(

√
n log |G|). Then we prove that there exist a permutation

π = π1 × π2 × · · · × π` ∈ (A
(k)
m )` such that Qπx and Qy are compatible.

We start with defining x.

Definition of the full assignments x and y

We partition V1 into three disjoints parts U1, U2 and U3 such that

|U3| = m

(
1− 1

k

)
, |U1| = m

(
1

2k
+ ε

)
and |U2| = m

(
1

2k
− ε
)

We define x and y as

x(W ) = 1 iff W ∈
(
U1, U3, V2, . . . , V`

1, k − 1, k, k, . . . , k

)

y(W ) = 1 iff W ∈
(
U2, U3, V2, . . . , V`

1, k − 1, k, k, . . . , k

)

Note that a map from V to V gives a reordering of the bits is x.

Now note that number of 1s in x and y is m
(m(1− 1

k )
k−1

)
( 1

2k + ε)
(m
k

)`−1
and

m
(m(1− 1

k )
k−1

)
( 1

2k − ε)
(m
k

)`−1
respectively. So from the difference in number of 1s in

x and y we see that

dG(x, y) ≥ 2εm

(
m(1− 1

k )

k − 1

)(
m

k

)`−1
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For k = 1 the right-hand side is 2εm` = 2εn. If k 6= 1 then from Lemma 4.8

and the fact that
(

1− 1
k

)k−1
≥ 1

e we obtain

2εm

(
m(1− 1

k )

k − 1

)
∼ 2ε

mk(1− 1
k ))k−1

(k − 1)!
≥ εk

2mk

ek!
= Θ

(
εk

(
m

k

))
.

So if we choose ε = 1
6ck where c is the constant implied in the Θ notation then we

get that

dG(x, y) ≥ 1

6

(
m

k

)`
=

1

6
n.

Now we give the second part of the proof. Let Qx and Qy be query sets for x

and y, respectively, such that |Qx|, |Qy| ≤M where M = m
18k

√(m(1− 1
k )

k−1

)(m
k

)`−1
.

To prove that x and y are M -G-agreeable, we have to give a π ∈ (A
(k)
m )` ⊆ G

that maps V to V such that Qπx and Qy agrees.

If a ∈ U1 then we define

qx(a) =

{
w ∈

(
U1, U3, V2, . . . , V`
1, k − 1, k, . . . , k

)∣∣∣w ∈ Qx and a ∈ w
}

Similarly if b ∈ U2 let

qy(b) =

{
w ∈

(
U1, U3, V2, . . . , V`
1, k − 1, k, . . . , k

)∣∣∣w ∈ Qy and b ∈ w
}

Now by an averaging argument there exist sets A ⊂ U1 and B ⊂ U2 such that

|A|, |B| > 2m
9k and for all a ∈ A and b ∈ B we have

|qx(a)|, |qy(b)| ≤ 9k

m
M.

Let H = A
(k−1)
m(1− 1

k )
× (A

(k)
m )`−1 acting on the set

( U3,V2,...,V`
k−1,k,k,...,k

)
. Pick a random

element π′ ∈ H. Note that H acts transitively on the set
( U3,V2,...,V`
k−1,k,k,...,k

)
.

Fix an arbitrary even bijection from A to B, i. e., an even permutation of [n]

which maps A to B. Let a ∈ A be mapped to b ∈ B. We call a pair (a, b)
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acceptable if qx(a)π
′ ∩ qy(b) = φ. We want to calculate the probability of a pair

(a, b) being acceptable.

Note that qa and qb are two subsets of
(U3,V2,...,V`
k−1,k,...,k

)
. So from Lemma 4.13 we

get that probability that a and b are compatible is more that 3
4 .

So the expected number of (a, b) pairs that are acceptable is ≥ 3
4

2m
9k = m

6k =

εm. So there exist a permutation π′ ∈ H such that εm of the (a, b) pairs are

acceptable. These acceptable pairs along with the permutation π′ give a map from

a set A′ ⊂ A ⊂ U1 to B′ ⊂ B ⊂ U2 such that Qx and Qy are compatible. Now we

have

|U1\A′| = |U1|

and

|U2| = |U2\B′|.

Hence π′ and the map from the acceptable pairs can be extended to a mapping π

from V to V by mapping U1\A′ and U2 to U1 and U2\B′ respectively, such that

Qπx and Qy are compatible.

Finally from Corollary 4.9 we have M = Õ(
√
n log |G|).

4.4 Upper bounds for Transitive groups

Proof of Proposition 4.2

Definition 4.16. We define query sequence as the sequence of elements of [n]

consisting of the positions of the bits of the input that will be queried. Repetition

is permitted.

The proofs of both parts of Proposition 4.2 are rather simple applications of

the Chernoff bound; we describe the proofs for completeness.

Proof of Part 1 of Proposition 4.2. In this part we only have to query bits of

x. Let us choose a real number p, 0 < p < 1, appropriately (see below). The

length of the query sequence Q will be m = pn. We say that two partial functions
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p, q contradict at i if both p(i) and q(i) are defined and p(i) 6= q(i). The following

is the test:

1. Construct the query sequence Q = (a1, . . . , am) by choosing pn elements

of [n] independently at random. (So there is a small chance that the same

element is chosen twice.)

2. Query the bits of x corresponding to Q. So we obtain the partial function

x|Q.

3. If for some π ∈ G the partial function x|πQ and y contradict in fewer than

δpn/2 places then output 1. Otherwise output 0.

Now to prove that the above test works we have to show that the test outputs

the correct answer with probability at least 2
3 .

Given a permutation π ∈ G, we say that the ith bit queried contradicts y along

π if x(ai) 6= y(aπi ). We define the (0, 1)-variable Xπ
i by

Xπ
i = 1 if the ith bit queried contradicts y along π.

Xπ =
∑
Xπ
i is the number of places the partial information of the two strings

contradicts along π. Since the members of the query sequence are chosen indepen-

dently, the Xπ
i are mutually independent indicator random variables (i = 1, . . . ,m;

π is fixed). So we can use the Chernoff bound to estimate the value of Xπ.

Suppose that one of the following conditions holds for a given π ∈ G:

(i) xπ and y agrees completely;

(ii) xπ and y differ in more than δn places.

It follows that the expected value of Xπ is less than 0 in Case (i) and greater than

pnδ in Case (ii). Let η = δ/2.
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So, using the Chernoff bound we obtain,

Pr [|Xπ − E(Xπ)| > ηnp] ≤ 2 exp
(
−cη/δnp

)
. (4.10)

If there exists π ∈ G satisfying condition (i) (so the correct answer is 1), the

probability we err is less than the right-hand side of this inequality.

If every π ∈ G satisfies (ii) (so the correct answer is 0), the probability we err

is less than |G| times the right-hand side by the union bound. So in any case, the

probability of error is less than |G| exp
(
−cη/δnp

)
.

If we take p =
2+log(|G|)
cη/δn

then the probability of error is less than 1
3 .

Note that this is an 1-sided error algorithm. So the query-1 complexity for the

1-sided error G-isomorphism testing is O(pn) = O(1 + log |G|).

Proof of Part 2 of Proposition 4.2. In this part we have to query both x and

y. Again we choose a real number p, 0 < p < 1, appropriately (see below). The

total length of the query sequence will be 2m = 2pn. The following is the test:

1. Construct two query sequences Q1 = (a1, . . . , am) and Q2 = (b1, . . . , bm), by

choosing these 2m elements of [n] independently at random.

2. Query the bits of x and y corresponding to Q1 and Q2 respectively. So we

obtain the partial functions x|Q1
and y|Q2

.

3. If for some group element π ∈ G, the partial function x|πQ1
contradicts the

partial function y|Q2
in fewer than p2nδ/2 places then output 1. Otherwise

output 0.

To prove that the above test works we have to show that the test outputs the

correct answer with probability at least 2
3 .

Given a permutation π ∈ G, we say that the ith bit queried in x contradicts

y|Q2 along π if aπi ∈ Q2 and x(ai) 6= y(aπi ). We define the (0, 1)-random variable

Xπ
i by

Xπ
i = 1 if the ith bits queried contradict along π.
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Xπ =
∑
Xπ
i is the number of places the queried information about the two

strings contradicts along π. Since the members of the query sequences are chosen

independently, the Xπ
i are mutually independent indicator random variables (i =

1, . . . ,m; π is fixed). So we can use the Chernoff bound to estimate the value of

Xπ.

For any group element π, let Dπ be the set of positions of the bits of xπ that

differ from y. The expected number number of bits in Dπ that are queried is p|Dπ|.
Now for Xπ

i to be 1 we must also have aπi ∈ Q2. Now the expected number of bits

in Dπ that are queried in both x and y is p2|Dπ|. So E[Xπ] = p2|Dπ|.
Suppose that one of the following conditions holds for a given π ∈ G:

(i) xπ and y agrees completely;

(ii) xπ and y differ in more than δn places.

If condition (i) holds then |Dπ| is less than 0 and hence E[Xπ] is less than

εp2n. In case of condition (ii), |Dπ| is greater than δn and hence E[Xπ] is greater

than δp2n. Let η = δ/2. From the Chernoff bound we get,

Pr
[
|Xπ − E[Xπ]| > ηp2n

]
≤ 2 exp

(
−cη/δp

2n
)

(4.11)

If there exists π ∈ G satisfying condition (i) (so the correct answer is 1), the

probability we err is less than the right-hand side of this inequality.

If for every π condition (ii) is satisfied then the probability we err is less than

|G| times the right-hand side by the union bound.

If we take p =

√
2+log |G|
cη/δn

the error is less than 1
3 .

Again note that this algorithm is also 1-sided. So the query-2 complexity of

1-sided error G-isomorphism testing is O(
√
n(1 + log |G|)).
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4.5 Lower bounds for Transitive Groups

Proof of Theorem 4.3

We will use the following lemma and the Theorem.

Lemma 4.17. If G is a transitive permutation group and S is a subset of [n],

|S| = k then there exist at least n
k2 pairwise disjoint G-shifts of S.

Theorem 4.18. ([Fis04, FNS04]) Let x ∈ {0, 1}n. Suppose that there exists a

distribution DP on inputs y ∈ {0, 1}n such that f(x, y) = 1, and a distribution

DN on inputs z ∈ {0, 1}n such that x and z are ε-far from satisfying the f . Suppose

further that for any Q ⊂ [n] of size q, and any g : Q → {0, 1}, we have

2

3
Pr

DP |Q
(g) < Pr

DN |Q
(g).

Then any 2-sided-error property test for f requires at least q queries.

Proof of Theorem 4.3. Let x be a full assignment. For any subset P ⊆ [n] of

size k and any Q ∈ {0, 1}k let pQ = |{π ∈ G : xπ|P = Q}|. We call x “almost

universal” if for all Q ∈ {0, 1}k and for all subset P of size k, we have

|pQ −
n

2k
| ≤ n

5(2k)
.

Note that this means that if we pick π ∈ G at random then for all Q ∈ {0, 1}k and

for all subset P we have

|Pr [xπ|P = Q]− µ| ≤ µ/5

where µ = 1/2k.

We prove the existence of an almost universal string using the probabilistic

method. Pick a random full assignment x. Fix a subset P ⊂ [n] of size k and

queries the bits of x corresponding to the indices in P . For a fixed Q ∈ {0, 1}k

we will estimate pQ. Using Lemma 4.17 we can place n
k2 disjoint G-copies of the
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subset P in [n]. Let S denote the set of disjoint copies of P . Let v
Q
i (x) be the

(0, 1)-indicator variable indicating whether the i-th G-copy of P in S is same as

Q. Since x is chosen randomly these random variables are independent. Let

vQ(x) =
∑

v
Q
i (x).

So vQ(x) be the number of times Q occurs in S. The expected value of vQ(x) is

n
k22k

. So using the Chernoff bound

Pr

[∣∣∣∣vQ(x)− n

k22k

∣∣∣∣ > n

5k22k

]
≤ 2 exp

(
−
c1/5n

k22k

)
.

So using the union bound we get

Pr
[
∀π ∈ G,∀Q ∈ {0, 1}k,∀P,

∣∣∣vQ(xπ)− n
k22k

∣∣∣ ≤ n
5k22k

]
≥ 1− 2 exp

(
−
c1/5n

k22k

)
|G|
(n
k

)
2k.

If |G| = 2O(n1−ε) for any positive ε and k ≤ (1− γ)(log n) (where γ > 0), this

probability is non-zero. Now since we had exactly (n/k2) times of disjoint copies

of P , so there is a string x such that

∀π ∈ G,∀Q ∈ {0, 1}n,∀P, |Pr [xπ|P = Q]− µ| ≤ µ/5

where µ = 1/2k.

Similarly we can show that existence of a full assignment such that it is 1
3 -far

from x and still “almost universal.” The argument is similar. Now probability that

a random string is 1
3 -close to x is less than 1

2o(n) . Using the same argument as

above we can say that the probability that a random string is 1
3 -far from x and is

an “almost universal” string is more than(
1− 1

2o(n)
− 2 exp

(
−
c1/5n

k22k

)
|G|
(
n

k

)
2k
)
.



79

This is also positive for k ≤ log n
2 if |G| = 2o(n). Hence there exists a full assignment

y ∈ {0, 1}n which is 1
3 -far from x and is “almost universal.”

Now let x be the string that to which we have full access. The unknown string

is chosen from the following two distributions.

• DP : Uniform random G-shift of x.

• DN : Uniform random G-shift of y.

Now we now that x and y are 1
3 -far. And since both are “almost universal,”

for all subset P ⊂ [n] of size (1− γ) log n and all Q ∈ {0, 1}k,

2/3 Pr
π∈G

[xπ|P = Q] ≤ Pr
π

[yπ|P = Q] .

Now by Theorem 3.5 we can say that it will be impossible to test G-isomorphism

with less than (1 − γ) log n queries. So the query-1 complexity of any property

tester of G-isomorphism is Ω(log n).

4.6 Tight bounds and comparisons

In addition to our main result, Theorem 4.1, we obtain tight bounds for polynomial-

sized groups. Note that these include all linear groups of bounded dimension.

These in turn include most finite simple groups: all the classical finite simple groups

of bounded dimension (linear, symplectic, orthogonal, and unitary groups) and all

exceptional simple groups of Lie type, not only in their “natural” representations

but in any representation (cf. [Cam81]).

Corollary 4.19. Let G be a transitive permutation group and |G| = nO(1). Then

the query-1 complexity of 1-sided-error and 2-sided-error property testing of G-

isomorphism is Θ(log n).

The next corollary gives an essentially tight bound for all groups of order

exp(polylog(n)). This includes all linear groups, and also includes all finite simple

groups in any representation, except for the alternating groups.
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Query-1 Complexity Query-2 Complexity

1-sided-error testing Θ̃(|V |)† Θ̃(|V |3/2)†

2-sided-error testing Õ(|V |), Ω(log(|V |)) Õ(|V |3/2)

† Matches the Fischer–Matsliah bounds.
‡ New results.

Table 4.3: Corollaries of our results to Graph Isomorphism.

Corollary 4.20. Let G be a permutation group and assume log(|G|) = (log n)O(1).

Then the query-2 complexity of 1-sided error property testing of G-isomorphism is

Θ̃(
√
n).

For comparison with the results of Fischer amd Matsliah, we also include a

table of corollaries of our results when specialized to Graph Isomorphism. In this

case we take n =
(|V |

2
)

and define G to be G = S
(2)
|V | (the induced symmetric group

action) and hence

log(|G|) = log(|V |!) ∼
√
n/2 log n.

In the case of 1-sided error, query-2 complexity, the special cases of our general

bounds (for primitive groups) match the Fischer–Matsliah bounds.

4.7 Future Work

We obtain tight bounds for the 1-sided error query complexity when the group is

primitive. Obtaining tight bound for the 2-sided error query complexity would be

the obvious next step. Also we want to obtain tight bounds in the case when the

group is transitive and not just primitive. In the tight bounds for primitive groups

that we obtain, we use the classification of primitive groups. But is the special
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structure of primitive groups essential or are there similar bounds for the general

transitive groups?

A test case would be the automorphism group of a complete binary tree in its

action on the leaves. We have reason to believe that a solution to this case would

bring us close to solving the general case of transitive groups. Let TN denote the

complete binary tree with N = 2h leaves. Let G be the action of the automorphism

group of the tree on the leaves. Given a string x of length N we place the bits of

x on the leaves of the tree TN . Then G permutes the bits of x. For this particular

transitive group, the query-1 and query-2 complexities of testing G-isomorphism

are wide open both in the 1-sided error and 2-sided error cases.



Part IV

Quantum Query Complexity



CHAPTER 5

QUANTUM QUERY COMPLEXITY FOR DATABASE

SEARCH

5.1 Introduction

In this chapter, we consider the problem of reducing the error in quantum search

algorithms by making a small number of queries to the database. Error reduction

in the form of amplitude amplification is one of the central tools in the design of

efficient quantum search algorithms [Gro98a, Gro98b, BHMT02]. In fact, Grover’s

database search algorithm [Gro96, Gro97] can be thought of as amplitude ampli-

fication applied to the trivial algorithm that queries the database at a random

location and succeeds with probability at least 1
N . The key feature of quantum

amplitude amplification is that it can boost the success probability from a small

quantity δ to a constant in O(1/
√
δ) steps, whereas, in general a classical algorithm

for this would require Ω(1/δ) steps. This basic algorithm has been refined, tak-

ing into account the number of solutions and the desired final success probability

1− ε. For example, Buhrman, Cleve, de Wolf and Zalka [BCdWZ99] obtained the

following:

Theorem [BCdWZ99]: Fix η ∈ (0, 1), and let N > 0, ε ≥ 2−N , and

t ≤ ηN . Let T be the optimal number of queries a quantum computer

needs to search with error ≤ ε through an unordered list of N items

containing at least t solutions. Then log 1/ε ∈ Θ(T 2/N + T
√
t/N)

(Note that the constant implicit in the Θ notation can depend on η).

Recently, Grover [Gro05] considered error reduction for algorithms that err

with small probability. The results were subsequently refined and extended by

83
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Tulsi, Grover and Patel [TGP05]. Let us describe their results in the setting of the

database search problem, where, given a database f : [N ]→ {0, 1}, we are asked to

determine an x ∈ f−1(1). If |f−1(0)| = εN , then choosing x uniformly at random

will meet the requirements with probability at least 1 − ε. This method makes

no queries to the database. If one is allowed one classical query, the error can be

reduced to ε2 and, in general, with t classical queries one can reduce the probability

of error to εt+1. It can be shown that no classical t-query randomized algorithm for

the problem can reduce the probability of error significantly below εt+1, even if the

value of ε is known in advance. Grover [Gro05] presented an interesting algorithm

that makes one quantum query and returns an x that is in f−1(1) with probability

1− ε3. Tulsi, Grover and Patel [TGP05] showed an iteration where one makes just

one query to the database and performs a measurement, so that after t iterations

of this operator the error is reduced to ε2t+1. This algorithm works for all ε and

is not based on knowing ε in advance. Thus this iteration can be said to exhibit

a “fixed point” behavior [Gro05, TGP05], in that the state approaches the target

state (or subspace) closer with each iteration, just as it does in randomized classical

search. The iteration used in the usual Grover search algorithm [Gro98a, Gro98b]

does not have this property. Note, however, that if the initial success probability is

1
N , these new algorithms make Ω(N) queries to the database, whereas the original

algorithm makes just O(
√
N) queries.

In [Gro05], the database is assumed to be presented by means of an oracle of the

form |x〉 → exp(f(x)πi/3))|x〉. The standard oracle for a function f used in earlier

works on quantum search is |x〉|b〉 7→ |x〉|b ⊕ f(x)〉, where ⊕ is addition modulo

two. It can be shown that the oracle assumed in [Gro05] cannot be implemented by

using just one query to the standard oracle. In Tulsi, Grover and Patel [TGP05]

the basic iteration uses the controlled version of the oracle, namely |x〉|b〉|c〉 7→
|x〉|b⊕ c · f(x)〉|c〉.

In this paper, we present a version of the algorithm that achieves the same

reduction in error as in [Gro05], but uses the standard oracle. In fact, our basic

one-query algorithm has the following natural interpretation. First, we note that
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for δ ≤ 3
4 , there is a one-query quantum algorithm Aδ that makes no error if

|f−1(0)| = δN . Then, using a simple computation, one can show that the one-

query algorithm corresponding to δ = 1
N errs with probability less than ε3 when

|f−1(0)| = εN . One can place these algorithms in a more general framework, just

as later works due to Grover [Gro98a, Gro98b] and Brassard, Hoyer, Mosca and

Tapp [BHMT02] placed Grover’s original database search algorithm [Gro96, Gro97]

in the general amplitude amplification framework. The framework is as follows:

Suppose there is an algorithm G that guesses a solution to a problem along with

a witness, which can be checked by another algorithm T . If the guess returned by

G is correct with probability 1 − ε, then there is another algorithm that uses G,

G−1, makes t queries to T , and guesses correctly with probability 1− ε2t+1.

These algorithms show that, in general, a t-query quantum algorithm can match

the error reduction obtainable by any 2t-query randomized algorithm. Can one do

even better? The main contribution of this paper are the lower bounds on the error

probability of t-query algorithms. We show that the amplification achieved by these

algorithms is essentially optimal (see Section 5.2.1 for the precise statement). Our

result does not follow immediately from the result of Buhrman, Cleve, de Wolf and

Zalka [BCdWZ99] cited above because of the constants implicit in the θ notation,

but with a slight modification of their proofs one can derive a result similar to ours

(see Section 5.2.1). Our lower bound result uses the polynomial method of Beals,

Cleve, Buhrman, Mosca and de Wolf [BBC+98] combined with an elementary

analysis based on the roots of low degree polynomials, but unlike previous proofs

using this method, we do not rely on any special tools for bounding the rate of

growth of low degree polynomials.

5.2 Background, definitions and results

We first review the standard framework for quantum search. We assume that

the reader is familiar with the basics of quantum circuits, especially the quantum

database search algorithm of Grover [Gro96, Gro97] (see, for example, Nielsen and
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Chuang [NC00, Chapter 6]). The database is modelled as a function f : [N ]→ S,

where [N ]
∆
= {0, 1, 2, . . . , N − 1} is the set of addresses and S is the set of possible

items to be stored in the database. For our purposes, we can take S to be {0, 1}.
When thinking of bits we identify [N ] with {0, 1}n. Elements of [N ] will be called

addresses, and addresses in f−1(1) will be referred to as targets. In the quantum

model, the database is provided to us by means of an oracle unitary transformation

Tf , which acts on an (n + 1)-qubit space by sending the basis vector |x〉|b〉 to

|x〉|b ⊕ f(x)〉. For a quantum circuit A that makes queries to a database oracle

in order to determine a target, we denote by A(f) the random variable (taking

values in [N ]) returned by A when the database oracle is Tf .

Definition 5.1. Let A be a quantum circuit for searching databases of size N .

For a database f of size N , let errA(f) = Pr[A(f) is not a target state]. When εN

is an integer in {0, 1, 2, . . . , N}, let errA(ε) = max
f :|f−1(0)|=εN

errA(f).

Using this notation, we can state Grover’s result as follows.

Theorem 5.2 (Grover [Gro05]). For all N , there is a one-query algorithm A, such

that for all ε (assuming εN is an integer), errA(ε) = ε3.

This error reduction works in a more general setting. Let [N ] represent the set

of possible solutions to some problem, and let f : [N ]→ {0, 1} be the function that

checks that the solution is correct; as before we will assume that we are provided

access to this function via the oracle Tf . Let G be a unitary transform that guesses

a solution in [N ] that is correct with probability 1−ε. Our goal is to devise another

guessing algorithm B that using Tf , G and G−1 produces a guess that is correct

with significantly better probability. Let B(Tf , G) be the answer returned by B
when the checker is Tf and the guesser is G.

Theorem 5.3 (Grover [Gro05]). There is an algorithm B that uses Tf once, G

twice and G−1 once, such that Pr[f(B(Tf , G)) = 0] = ε3, where ε is the probability

of error of the guessing algorithm G.



87

Note that Theorem 5.2 follows from Theorem 5.3 by taking G to be the

Hadamard transformation, which produces the uniform superposition on all N

states when applied to the state |0〉.

Theorem 5.4 ([Gro05, TGP05]). For all t ≥ 0 and all N , there is a t-query

quantum database search algorithm such that, for all ε (εN is an integer), errA(ε) =

ε2t+1.

In Grover [Gro05], this result was obtained by recursive application of Theo-

rem 5.3, and worked only for infinitely many t. Tulsi, Grover and Patel [TGP05]

rederived Theorems 5.2 and 5.3 using a different one-query algorithm, which could

be applied iteratively to get Theorem 5.4.

From now on when we consider error reduction for searching a database f and

use the notation errA(ε), ε will refer to |f−1(0)|/N ; in particular, we assume that

εN ∈ {0, 1, . . . , N − 1}. However, for the general framework, ε can be any real

number in [0, 1].

5.2.1 Our contributions

As stated earlier, in order to derive the above results, Grover [Gro05] and Tulsi,

Grover and Patel [TGP05] assume that access to the database is available us-

ing certain special types of oracles. In the next section, we describe alterna-

tive algorithms that establish Theorem 5.2 while using only the standard oracle

Tf : |x〉|b〉 → |x〉|b⊕ f(x)〉. The same idea can be used to obtain results analogous

to Theorems 5.3. By recursively applying this algorithm we can derive a version of

Theorem 5.4 for t of the form 3i−1
2 where i is the number of recursive applications.

Our algorithms and those in Tulsi, Grover and Patel [TGP05] use similar ideas,

but were obtained independently of each other.

We also consider error reduction when we are given a lower bound on the error

probability ε, and obtain analogs of Theorems 5.2 and 5.3 in this setting.
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Theorem 5.5 (Upper bound result). (a) For all N and δ ∈ [0, 3
4 ], there is a

one-query algorithm Aδ such that for all ε ≥ δ,

errAδ(f) ≤ ε

[
ε− δ
1− δ

]2
.

(b) For all δ ∈ [0, 3
4 ], there is an algorithm Bδ that uses Tf once and G twice

and G−1 once, such that

errBδ(Tf , G) ≤ ε

[
ε− δ
1− δ

]2
.

The case ε = δ corresponds to the fact that one can determine the target

state with certainty if |f−1(0)| is known exactly and is at most 3N
4 . Furthermore,

Theorems 5.2 and 5.3 can be thought of as special cases of the above Proposition

corresponding to δ = 0. In fact, by taking δ = 1
N in the above proposition, we

obtain the following slight improvement over Theorem 5.2.

Corollary 5.6. For all N , there is a one-query database search algorithm A such

that for all ε (where εN ∈ {0, 1, . . . , N}), we have errA(ε) ≤ ε

[
ε− 1

N

1− 1
N

]2

.

Lower bounds: The main contribution of this work is our lower bound results.

We show that the reduction in error obtained in Theorem 5.2 and 5.3 are essentially

optimal.

Theorem 5.7 (Lower bound result). Let 0 < ` ≤ u < 1 be such that `N and uN

are integers.

(a) For all one-query database search algorithms A, for either ε = ` or ε = u,

errA(ε) ≥ ε3
(

u− `
u+ `− 2`u

)2
.
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(b) For all t-query database search algorithms A, there is an ε ∈ [`, u] such that

εN is an integer, and

errA(ε) ≥ ε2t+1
(
b− 1

b+ 1
− 1

N`(b+ 1)

)2t
,

where b = (u` )
1
t+1 , and we assume that N`(b− 1) > 1.

In particular, this result shows that to achieve the same reduction in error,

a quantum algorithm needs to make roughly at least half as many queries as a

classical randomized algorithm. A similar result can be obtained by modifying

the proof in Buhrman, Cleve, de Wolf and Zaka [BCdWZ99]: there is a constant

c > 0, such that for all u > 0, all large enough N and all t-query quantum search

algorithms for databases of size N , there is an ε ∈ (0, u] (εN is an integer) such

that errA(ε) ≥ (cu)2t+1.

5.3 Upper bounds: quantum algorithms

In this section, we present algorithms that justify Theorems 5.2, 5.3 and 5.4, but by

using the standard database oracle. We then modify these algorithms to generalize

and slightly improve these theorems.

5.3.1 Alternative algorithms using the standard oracle

We first describe an alternative algorithm A0 to justify Theorem 5.2. This simple

algorithm (see Figure 5.1) illustrates the main idea used in all our upper bounds.

We will work with n qubits corresponding to addresses in [N ] and one ancilla

qubit. Although we do not simulate Grover’s oracle directly, using the ancilla,

we can reproduce the effect the complex amplitude used there by real amplitudes.

As we will see, the resulting algorithm has an intuitive explanation and also some

additional properties not enjoyed by the original algorithm.
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Figure 5.1: The one-query algorithm

Step 1: We start with the uniform superposition on [N ] with the ancilla bit in

the state |0〉.

Step 2: For targets x, transform |x〉|0〉 to 1
2 |x〉|0〉 +

√
3
4 |x〉|1〉. The basis states

|x〉|0〉 for x ∈ f−1(0), are not affected by this transformation.

Step 3: Perform an inversion about the average controlled on the ancilla bit being

|0〉, and then measure the address registers.

Step 1 is straightforward to implement using the n-qubit Hadamard transform

Hn. For Step 2, using one-query to Tf , we implement a unitary transformation

Uf , which maps |x〉|0〉 to |x〉|0〉 if f(x) = 0 and to |x〉
(

1
2 |0〉+

√
3
4 |1〉

)
, if f(x) = 1.

One such transformation is Uf = (In ⊗ R−1)Tf (In ⊗ R), where In is the n-qubit

identity operator and R is the one-qubit gate for rotation by π
12 (that is, |0〉 R7→

cos( π12)|0〉 + sin( π12)|1〉 and |1〉 R7→ cos( π12)|1〉 − sin( π12)|0〉). The inversion about
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the average is usually implemented as An = −Hn(In−2|0〉〈0|)Hn. The controlled

version we need is then given by

An,0 = An ⊗ |0〉〈0|+ In ⊗ |1〉〈1|.

Let H ′ = Hn ⊗ I. The final state is |φf 〉 = An,0UfH
′|0〉|0〉.

To see that the algorithm works as claimed, consider the state just before the

operator An,0 is applied. This state is

1√
N

 ∑
x∈f−1(1)

1

2
|x〉|0〉

∑
x∈f−1(0)

|x〉|0〉

+
1√
N

∑
x∈f−1(1)

√
3

4
|x〉|1〉.

Suppose |f−1(0)| = εN . The “inversion about the average” is performed only

on the first term, so the non-target states receive no amplitude from the second

term. The average amplitude of the states in the first term is 1
2
√
N

(1 + ε) and

the amplitude of the states |x〉|0〉 for x ∈ f−1(0) is 1√
N

. Thus, after the inversion

about the average the amplitude of |x〉|0〉 for x ∈ f−1(0) is ε√
N

. It follows that if

we measure the address registers in the state |φf 〉, the probability of observing a

non-target state is exactly

|f−1(0)| · ε
2

N
= ε3.

Remark: Note that this algorithm actually achieves more. Suppose we measure

the ancilla bit in |φf 〉, and find a 1. Then, we are assured that we will find a target

on measuring the address registers. Furthermore, the probability of the ancilla bit

being 1 is exactly 3
4(1 − ε). One should compare this with the randomized one-

query algorithm that with probability 1−ε provides a guarantee that the solution it

returns is correct. The algorithm in [Gro05] has no such guarantee associated with

its solution. However, the algorithm obtained by Tulsi, Grover and Patel [TGP05]

gives a guarantee with probability 1
2(1− ε).

The general algorithm B0 needed to justify Theorem 5.3 is similar. We use G
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instead of Hn; that is, we let H ′ = G ⊗ I, An = G(2|0〉〈0| − In)G−1, and, as

before,

An,0 = An ⊗ |0〉〈0|+ In ⊗ |1〉〈1|.

The final state is obtained in the same way as before |φf 〉 = An,0UfH
′|0〉|0〉.

Remark: As stated, we require the controlled version ofG andG−1 to implement

An,0. However, we can implement G with the uncontrolled versions themselves

from the following alternative expression for An,0:

An,0 = (G⊗ I)[(2|0〉〈0| − In)⊗ |0〉〈0|+ In ⊗ |1〉〈1|](G−1 ⊗ I).

We can estimate the error probability of this algorithm using the following

standard calculation. Suppose the probability of obtaining a non-target state on

measuring the address registers in the state G|0〉 is ε. Let us formally verify that

the probability of obtaining a non-target state on measuring the address registers

in the state |φf 〉 is ε3. This follows using the following routine calculation. We

write

G|0〉 = α|t〉+ β|t′〉,

where |t〉 is a unit vector in the “target space” spanned by {|x〉 : f(x) = 1}, and

|t′〉 is a unit vector in the orthogonal complement of the target space. By scaling

|t〉 and |t′〉 by suitable phase factors, we can assume that α and β are real numbers.

Furthermore β2 = ε. The state after the application of Uf is then given by

(α
2
|t〉+ β|t′〉

)
|0〉+

√
3

4
α|t〉|1〉. (5.1)

Now, the second term is not affected by An,0, so the amplitude of states in the

subspace of non-target states is derived entirely from the first term, which we
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denote by |u〉. To analyze this contribution we write |u〉, using the basis

|v〉 = α|t〉+ β|t′〉; (5.2)

|v′〉 = β|t〉 − α|t′〉. (5.3)

That is, |u〉 =

(
α2

2
+ β2

)
|v〉|0〉 − αβ

2
|v′〉|0〉.

Since An,0|v〉 = |v〉 and An,0|v′〉 = −|v′〉, we have

An,0|u〉 =

(
α2

2
+ β2

)
|v〉|0〉+

αβ

2
|v′〉|0〉.

Returning to the basis |t〉 and |t′〉 (using (5.2) and (5.3)), we see that the ampli-

tude associated with |t′〉 in this state is β3. Thus, the probability that the final

measurement fails to deliver a target address is exactly β6 = ε3.

Remark: The algorithm B0 can be used recursively to get a t-query algorithm

that achieves the bound Theorem 5.4. Just as in the one-query algorithm, by

measuring the ancilla bits we can obtain a guarantee; this time the solution is

accompanied with guarantee with probability at least (1− 1
t −

6 log t
t(log 1

ε )log3 4 ). The

t-query algorithm obtained by Tulsi, Grover and Patel [TGP05] has significantly

better guarantees: it certifies that its answer is correct with probability at least

1− ε2t.

5.3.2 Algorithms with restrictions on ε

As stated above, for each δ ∈ [0, 1], there is a one-query quantum algorithm Aδ
that makes no error if the |f−1(0)| = δN (or, in the general setting, if G is known

to err with probability at most 3
4). Let us explicitly obtain such an algorithm Aδ

by slightly modifying the algorithm above. The idea is to ensure that the inversion

about the average performed in Step 3 reduces the amplitude of the non-target

states to zero. For this, we only need to replace Uf by Uf,δ, which maps |x〉|0〉 to
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|x〉|0〉 if f(x) = 0 and to |x〉 (α|0〉+ β|1〉), if f(x) = 1, where α =
1− 2δ

2(1− δ)
and

β =
√

1− α2.

Also, one can modify the implementation of Uf above, replacing π
12 by

sin−1(α)
2

(note that δ ≤ 3
4 implies that |α| ≤ 1), and implement Uf,δ using just one-query

to Tf .

Proposition 5.8. Let |f−1(0)| = δ ≤ 3
4 . Then, errAδ(f) = 0.

An analogous modification for the general search gives us an algorithm Bδ(T,G)

that has no error when G produces a target state for T with probability exactly

1− δ. We next observe that the algorithms Aδ and Bδ perform well not only when

the original probability is known to be δ but also if the original probability is ε ≥ δ.

This justifies Theorem 5.5 claimed above.

Proof of Theorem 5.5: We will only sketch the calculations for part (a). The

average amplitude of all the states of the form |x〉|0〉 is ( 1√
N

)(1−2δ+ε)/(2(1−δ)).
From this it follows that the amplitude of a non-target state after the inversion

about the average is ( 1√
N

)(ε−δ)/(1−δ). Our claim follows from this by observing

that there are exactly εN non-target states.

5.4 Lower bounds

In this section, we show that the algorithms in the previous section are essentially

optimal. For the rest of this section, we fix a t-query quantum search algorithm to

search a database of size N . Using the polynomial method we will show that no

such algorithm can have error probability significantly less than εt+1, for a large

range of ε.

The proof has two parts. First, using standard arguments we observe that

errA(ε) is a polynomial of degree at most 2t+ 1 in ε.
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Lemma 5.9. Let A be a t-query quantum search algorithm for databases of size

N . Then, there is a univariate polynomial r(Z) with real coefficients and degree at

most 2t+ 1, such that for all ε

errA(ε) ≥ r(ε).

Furthermore, r(x) ≥ 0 for all x ∈ [0, 1].

In the second part, we analyze such low degree polynomials to obtain our lower

bounds. We present this analysis first, and return to the proof of Lemma 5.9 after

that.

5.4.1 Analysis of low degree polynomials

Definition 5.10 (Error polynomial). We say that a univariate polynomial r(Z) is

an error polynomial if (a) r(z) ≥ 0 for all z ∈ [0, 1], (b) r(0) = 0, and (c) r(1) = 1.

Our goal is to show that an error polynomial of degree at most 2t + 1 cannot

evaluate to significantly less than ε2t+1 for many values of ε. For our calculations,

it will be convenient to ensure that all the roots of such a polynomial are in the

interval [0, 1).

Lemma 5.11. Let r(Z) an error polynomial of degree 2t+ 1 with k < 2t+ 1 roots

in the interval [0, 1). Then, there is another error polynomial q(Z) of degree at

most 2t + 1 such that q(z) ≤ r(z) for all z ∈ [0, 1], and q(Z) has at least k + 1

roots in the interval [0, 1).

Proof. Let α1, α2, . . . , αk be the roots of r(x) in the interval [0, 1). Hence we can

write

r(Z) =
k∏
i=1

(Z − αi)r′(Z),

where r′(Z) does not have any roots in [0, 1). Now, by substituting Z = 1, we

conclude that r′(1) ≥ 1. Since r′(Z) does not have any roots in [0, 1), it follows

that r′(z) > 0 for all z ∈ [0, 1).
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The idea now, is to subtract a suitable multiple of the polynomial 1− Z from

r′(Z) and obtain another polynomial r′′(Z) which has a root in [0, 1). Since 1−Z
is positive in [0, 1), r′′(Z) is at most r′(Z) in this interval. The polynomial q(Z)

will be defined by q(Z) =
∏
α∈R(Z−α)r′′(Z). To determine the multiple of 1−Z

we need to subtract, consider λ(c) = minz∈[0,1) r
′(Z) − c(1 − Z). Since λ(c) is

continuous, λ(0) > 0 and λ(c) < 0 for large enough c, it follows that λ(c0) = 0 for

some c0 > 0. Now, let r′′(Z) = r(Z)− c0(1− Z).

By repeatedly applying Lemma 5.11 we obtain the following.

Lemma 5.12. Let r(Z) be an error polynomial of degree at most 2t + 1. Then,

there is an error polynomial q(Z) of degree exactly 2t+ 1 such that q(z) ≤ r(z) for

all z ∈ [0, 1], and q(Z) has 2t+ 1 roots in the interval [0, 1).

We can now present the proof of Theorem 5.7, our main lower bound result.

Proof of Theorem 5.7: Consider the case t = 1. By Lemma 5.9, it is enough to

show that an error polynomial r(Z) of degree at most three is bounded below as

claimed. By Lemma 5.12, we may assume that all three roots of r(Z) lie in [0, 1).

Since r(0) = 0 and r(z) ≥ 0 in [0, 1), we may write r(Z) = aZ(Z − α)2 for some

α ∈ [0, 1) and some positive a; since r(1) = 1, we conclude that a = 1
(1−α)2

. Thus,

we need to determine the value of α so that t(α) = maxx∈{`,u}
r(x)
x3 is as small as

possible. Consider the function tx(α) =
r(x)
x3 =

(
x−α

(1−α)x

)2
. Note that for all x,

tx(α) is monotonically increasing in |x − α|. It follows that t(α) is minimum for

some α ∈ [`, u]. For α in this interval t`(α) is an increasing function of α and tu(α)

is a decreasing function of α. So t(α) is minimum when t`(α) = tu(α). It can be

checked by direct computation that when α = 2`u
`+u ,

t`(α) = tu(α) =

(
u− `

u+ `− 2`u

)2
.

This establishes part (a) of Theorem 5.7.
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To establish part (b), we show that an error polynomial of degree at most 2t+1

satisfies the claim. As before, by Lemma 5.12, we may assume that r(Z) has all

its roots in [0, 1). Furthermore, since r(Z) ≥ 0, we conclude that all roots in (0, 1)

have even multiplicity. Thus we may write

r(Z) =
Z(Z − α1)2(Z − α2)2 · · · (Z − αt)2

(1− α1)2(1− α2)2 · · · (1− αt)2 .

Now, let b = (u` )
1
t+1 . Consider subintervals {(`bj , `bj+1] : j = 0, 1, . . . , t}. One of

these intervals say `bj0 , `bj0+1 has no roots at all. Let ε be the mid point of the

interval, that is, ε = (`bj0 + `bj0+1)/2. Then, we have

(ε− αj)2 ≥

(
`bj0+1 − `bj0

2

)2

and since (1− αj)2 ≤ 1, we have

r(ε)

ε2t+1 ≥
(
b− 1

b+ 1

)2t
.

This establishes part (b). The term − 1
N`(b+1) appears in the statement of

Theorem 5.7 because we need to ensure that εN is an integer.

5.4.2 Proof that the error function is a low degree

polynomial

Proof of Lemma 5.9 We will use the following notation. Let p(X1, X2, . . . , XN )

be a polynomial in N variables X1, X2, . . . , XN with real coefficients. For a

database f : {0, 1}N → {0, 1}, let

p(f)
∆
= p(f(1), f(2), . . . , f(N)).

Also, in the following X denotes the sequence of variables X1, X2, . . . , XN .
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The key fact we need is the following.

Theorem 5.13 ([BBC+98]). Let A be a t-query quantum database search algo-

rithm. Then, for i = 1, 2, . . . , N , there is a multilinear polynomial pi(X) of degree

at most 2t, such that for all f .

Pr[A(f) = i] = pi(f).

Furthermore, pi(x) ≥ 0 for all x ∈ [0, 1]N .

Lemma 5.14. Let A be a t-query quantum database search algorithm. Then, there

is a multilinear polynomial p(X) of degree at most 2t+ 1 such that for all f ,

errA(f) = pA(f).

Proof. Using the polynomials pi(X) from Theorem 5.13, define

pA(X) =
n∑
i=1

(1−Xi)pi(X).

Clearly, p(f) =
n∑
i=1

(1− f(i))pi(f) =
∑

i∈f−1(0)

Pr[A(f) = i] = errA(f).

We can now prove Lemma 5.9. For a permutation σ of N and f : [N ]→ {0, 1},
let σf be the function defined by σf(i) = f(σ(i)).

Note that |f−1(0)| = |(σf)−1(0)|. Now,

1

N !

∑
σ

pA(σf) = E
σ

[errA(σf)] ≤ max
σ

errA(σf) ≤ errA(ε), (5.4)

where |f−1(0)| = εN .

Let σX be the sequence Xσ(1), Xσ(2), . . . , Xσ(N), and let

p
sym
A (X) =

1

N !

∑
σ

pA(σX).
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Then, by (5.4), we have p
sym
A (f) =

1

N !

∑
σ

pA(σf) ≤ errA(ε).

Now, p
sym
A (X) is a symmetric multilinear polynomial in N variables of degree

at most 2t+ 1. For any such polynomial, there is a univariate polynomial q(Z) of

degree at most 2t+ 1 such that if we let p̂(X) = q(
∑N
i=1Xi)/N), then for all f ,

p̂(f) = p
sym
A (f) ≤ errA(ε).

(See Minsky and Papert [MP68].) Now, p̂(f) = q((f(1) + f(2) + . . .+ f(N))/N) =

q(1− ε). To complete the proof, we take r(Z) = q(1− Z).
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