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Abstract

We investigate the following question: “Given an intersecting multi-hypergraph on
n points, what fraction of edges must be covered by any of the best 2 points?”
(Here “best” means that together they cover the most.) We call this M2(n). This is
a special case of a question asked by Erdős and Gyárfás [1] (they considered r–wise
intersecting and the best t points), and is a generalization of work by Mills [6], who
considered the best single point.

These are very hard to calculate in general; we show that determining M2(q
2 +

q+1) proves the existence or nonexistence of a projective plane of order q. If such a
projective plane exists, we conjecture that M2(q

2+q+2) = M2(q
2+q+1). We further

show that M2(q
2 + q + 3) < M2(q

2 + q + 1) and conjecture that M2(n+ 2) < M2(n)
for all n.

We determine the specific values for n ≤ 10. In particular we have the surprising
result that M2(7) = M2(8), leading to the conjecture made above. We further
conjecture that M2(11) = 5/8 and M2(12) = 7/12.

To better study this problem, we introduce the concept of fractional matchings
and coverings of order 2.
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1 Introduction

A hypergraph H is a pair (V,E) where V = V (H) is a (finite) set called the
vertex (or point) set, and E = E(H) is a (finite) collection of subsets of V
called the edge-set. If H contains multiple edges, then it is called a multihyper-
graph. The dual ofH is the hypergraphHT obtained by interchanging the roles
of vertices and edges. I.e. V (HT ) = E(H) and E(HT ) = {E(v) : v ∈ V (H)}
where E(v) = {X ∈ E(H) : v ∈ X}. Clearly (HT )T ∼= H.H is called intersect-
ing if every pair of edges intersects nontrivially; it is called r-wise intersecting
if every r-tuple of edges intersects nontrivially. The set of edges covered by a
vertex v is the set {X ∈ E(H) : v ∈ X}, and the set of edges covered by a set
of vertices is the union of the sets covered by each vertex.

The following problem was asked by Erdős and Gyárfás [1]:

Problem 1 Let H be an r-wise intersecting multihypergraph on n vertices.
What fraction of edges must be covered by the “best” t points?

By the word “best” above, we understand the t points that cover the largest
fraction of edges. Erdős and Gyárfás remarked that for n ≤ rt, the best ratio
is 1, i.e. suitable t points cover everything. They also proved that for n = rt+1,
the best ratio is 1− 1/

(
rt+1
r

)
. In particular, this shows for n = 5, t = 2, r = 2,

that the ratio is 9/10. The first unknown case was n = 6, t = 2, r = 2.

The problem arises as a generalization of a problem studied by Mills [6]. We
state this here in the dual, as it was studied by Mills. We say that a family F
of subsets of the set M covers the pairs of M if ∀a, b ∈M , there is an F ∈ F
such that a, b ∈ F . This is equivalent to its dual being intersecting.

Problem 2 If F is a family of n subsets of an m-element set which covers
the pairs, how large must the largest set be compared to m?

In the above notation of Erdős and Gyárfás this is the case r = 2, t = 1.
This quantity, which we shall denote M1(n) and call the Mills Number was
determined by Mills [6] for n ≤ 13. Füredi [2] determined some nice general
result forM1 (see [3] and [4]). Pach and Surányi [7] showed thatM1(q

2+q+1) =
(q + 1)/(q2 + q + 1) if and only if there exists a projective plane of order q.

In this paper we investigate the case r = 2, t = 2. To make the notion of
“fraction of edges” more precise and easier to handle, we introduce a weight
function. Let wt : E → R be a nonnegative normalized weight function; this
means that wt(X) ≥ 0 and

∑
X∈E wt(X) = 1. (For example the weight of a

subset of the vertices could be the number of times this set occurs as an edge
in the multihypergraph, divided by the total number of edges.) In this way,
we need only consider hypergraphs (those with no multiple edges). Although
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the weights may be irrational, it is clear that for the optimal case, the weights
will all be rational, and in this way we see that these two formulations are
equivalent.

Furthermore, we define the weight covered by a single vertex v to be

wt(v) :=
∑

v∈X∈E
wt(X),

and the weight covered by two vertices u and v to be

wt(u ∨ v) :=
∑

X∩{u,v}6=∅
X∈E

wt(X)

With these definitions, we can better define the quantity studied. For every
positive integer n, the Mills Number (also called the First Mills Number) is
defined by

M1(n) := min
H

min
wt

M1(H, wt),

where the first minimum is taken over all intersecting hypergraphs on n ver-
tices, the second one is over all nonnegative normalized weight functions on
E(H) and

M1(H, wt) := max
v∈V

wt(v).

Similarly, the Second Mills Number is

M2(n) := min
H

min
wt

M2(H, wt),

M2(H, wt) := max
u,v∈V

wt(u ∨ v).

We have the following results for M2:

Theorem 3 Let n = q2 + q + 1. If there exists a projective plane of order q,
then M2(n) = (2q + 1)/n, otherwise M2(n) > (2q + 1)/n.

Theorem 4 The following are the exact values of the Second Mills Number

n: 4 5 6 7 8 9 10

M2(n): 1 9/10 4/5 5/7 5/7 9/13 2/3

We mention here that for n = 4 the calculation is trivial and for n = 5 this
follows from the more general result of Erdős and Gyárfás [1] mentioned above.
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2 Coverings and Matchings

A matching is a subfamily of pairwise disjoint edges. The matching number
ν(H) is the maximum number of edges in a matching of H. A cover of H is a
subset T ⊂ V which meets all the edges of H, and the covering number τ(H)
is the size of the smallest cover of H.

A fractional matching in a hypergraph H is a nonnegative function on the
edges w : E → R, such that

∑
X3v

w(X) ≤ 1 ∀v ∈ V.

The value of w, written |w|, is the total sum
∑

X∈E w(X). The fractional
matching number of H, written ν∗(H) is defined as the largest value of a
fractional matching. A fractional cover of H is a nonnegative function on the
vertices t : V → R, such that

∑
v∈X

t(v) ≥ 1 ∀X ∈ E.

The value of t, written |t|, is the total sum
∑

v∈V t(v). The fractional covering
number of H, written τ ∗(H) is defined as the smallest value of a fractional
cover. By the Duality Theorem of linear programming, we have

ν(H) ≤ ν∗(H) = τ ∗(H) ≤ τ(H).

It can easily be seen by scaling of the weight function, that the First Mills
Number satisfies

M1(n) =
1

ν∗(n)

where ν∗(n) = max ν∗(H), the maximum taken over all intersecting hyper-
graphs on n vertices.

For the purposes of investigating the Second Mills Number, we introduce frac-
tional matchings and coverings of order 2. A fractional matching of order 2 in
a hypergraph H is a nonnegative function on the edges w2 : E → R, such that

∑
X∩{u,v}6=∅

w2(X) ≤ 1 ∀u, v ∈ V.

The value of w2, written |w2|, is the total sum
∑

X∈E w2(X). The fractional
matching number of order 2 of H, written ν∗2(H) is defined as the largest value
of a fractional matching of order 2. A fractional cover of order 2 of H is a
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function on the pairs of vertices t2 :
(
V
2

)
→ R such that

∑
{u,v}∩X 6=∅

t2({u, v}) ≥ 1, ∀X ∈ E.

The value of t2, written |t2|, is the total sum
∑
{u,v}∈(V

2)
t2({u, v}). The frac-

tional covering number of order 2 ofH, written τ ∗2 (H) is defined as the smallest
value of a fractional cover of order 2. Computing these two quantities are also
dual linear programming problems, and by the Duality Theorem we conclude
that v∗2(H) = τ ∗2 (H). Again, by scaling the weights, we see that

M2(n) =
1

ν∗2(n)

where ν∗2(n) = max ν∗2(H), the maximum taken over all intersecting hyper-
graphs on n vertices. For every hypergraph H, it is easy to see that ν∗2(H) ≤
ν∗(H) and τ ∗(H) ≤ 2τ ∗2 (H) (if t2 is a fractional cover of order 2 then t(v) :=∑

u t2({u, v}) is a fractional cover with value 2|t2|) it follows that M1(n) ≤
M2(n) ≤ 2M1(n) for all n.

Conjecture 5 M2(n) < 2M1(n) for all n.

3 General results

We start this section by giving a general lower bound for the Second Mills
Number. This lower bound is tight in the cases where n = 4, 5, 6, 7, and 10.
In addition, it is tight whenever n = q2 + q+ 1 and there is a projective plane
of order q. Let

L(k, n) := min

(
2

k − 1
,
k(2n− k − 1)

n(n− 1)

)
.

and
L(n) := max

k∈N
1<k≤n

L(k, n)

Theorem 6 For every n > 2 the following inequality holds:

M2(n) ≥ L(n).

Proof: The proof uses repeated applications of the Pigeon Hole Principle. Let
H be an (arbitrary) intersecting hypergraph on n vertices, wt a nonnegative
normalized weight function on E(H) and 1 < k ≤ n an integer. It is enough to
show that M2(H, wt) ≥ L(k, n). In particular, if there is an edge of size ≤ k−1
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in H, then the best two points from this edge cover at least 2/(k−1). Actually
as we may assume that the weight of this edge is nonzero, the best two points
cover strictly more then 2/(k−1). Otherwise every edge has size at least k and
we show that there are two vertices that cover at least k(2n−k−1)/n(n−1).
By the normalization of the weight function, we have∑

x

wt(x) ≥ k.

Hence there is a v such that wt(v) ≥ k/n. We now consider the hypergraph
obtained by removing vertex v and all edges containing it. The best vertex u
here covers at least

k(1− wt(v))

n− 1
.

Together, u and v cover at least

wt(u ∨ v) ≥ wt(v) +
k(1− wt(v))

n− 1
=
wt(v)(n− 1− k) + k

n− 1
≥

≥ kn− k − k2 + nk

n(n− 1)
=
k(2n− k − 1)

n(n− 1)
.

This completes the proof. 2

We give an alternate proof in order to make the language of fractional coverings
more familiar to the reader. Let H be an (arbitrary) intersecting hypergraph
on n vertices and k > 1 be an integer. If there is an edge X of size k − 1,
then the function t2 defined to be t2(u, v) = 1

k−2 for u, v ∈ X and 0 otherwise

is a good fractional cover of order 2 with value |t2| = k−1
2

, so τ ∗2 (H) ≤ k−1
2

.
If no edge has size k − 1 but there is an edge with smaller size take X to
be a set of size k − 1 containing the smaller edge and the same argument
works. Otherwise all edges must have size ≥ k. In this case define t2 to be
t2(u, v) = 2

k(2n−k−1) for all u, v ∈ V (H). This is a good fractional cover of

order 2 with value |t2| = n(n−1)
k(2n−k−1) , so τ ∗2 (H) ≤ n(n−1)

k(2n−k−1) and this completes
the second proof.

We will use the function L(n) in the next section, with specific hypergraphs
to show the exact value of M2 for some small values of n. Here instead we give
a few more general results.

Pach and Surányi [7] showed that

Theorem Let n = q2 + q + 1. If there exists a projective plane of order q,
then M1(n) = (q + 1)/n, otherwise M1(n) > (q + 1)/n.

We use this result to prove the analogous statement for M2, which we men-
tioned in the Introduction, and repeat here:
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Theorem 1 Let n = q2 + q + 1. If there exists a projective plane of order q,
then M2(n) = (2q + 1)/n, otherwise M2(n) > (2q + 1)/n.

Proof: This can be proved directly without referring to the result of Pach
and Surányi, but the proof is considerably shorter using their result. The
lower bound proved above gives M2(n) ≥ L(q+1, n) = (2q+1)/n. If there is a
projective plane on n points, then M2(n) = (2q+ 1)/n because the projective
plane achieves this bound. Assume that M2(n) = (2q + 1)/n and let H be a
hypergraph and wt a weight function attaining this bound. Because equality
holds here, equality must hold in each of the inequalities in the proof of the
lower bound corresponding to the case k = q+1. It follows that the first point
covers (q + 1)/n, thus M1(H, wt) = (q + 1)/n. Now we may use the result of
Pach and Surányi to conclude that M1(n) = (q + 1)/n and so there must be
a projective plane of order q. 2

From the lower bound and the density of prime powers, we get the asymptotic
result that

Theorem 7 M2(n) ≈ 2/
√
n.

One of the interesting results to follow in the next section is that M2(8) =
M2(7) = 5/7. We conjecture that this is true whenever there is a projective
plane, namely:

Conjecture 8 If n = q2 + q + 1 and there exists a projective plane of order
q, then M2(n+ 1) = M2(n).

We show here that this is not the case for n+ 2.

Theorem 9 If n = q2 + q + 1, q > 1, and there exists a projective plane of
order q, then M2(n+ 2) ≤ (4q2 − 2q − 3)/(2q3 − 3) < M2(n).

Proof: We construct a hypergraph on n+ 2 = q2 + q + 3 points adding two
points to the projective plane on n points. Let x be a point of the projec-
tive plane. We essentially blow x up into a projective plane on three points.
Specifically, we replace x by x1, x2, x3, and every edge X that passed through
x is replaced by three new edges, X1, X2, X3, where Xi contains all the points
from X excluding only x, and of the three new points only misses xi. All of
the edges not passing through x are unchanged. This new hypergraph is in-
tersecting, and there are two types of edges, Type I which go through two of
the xi’s and Type II which do not. These will get different weights. Let

wt(Y ) =


t−1

2q3−3 if Y is Type I,
2t−3
2q3−3 if Y is Type II.
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It is easy to check that the best two points cover (4q2 − 2q − 3)/(2q3 − 3),
which for q > 1 is less than that in the projective plane (here any two points
cover: (2q + 1)(q2 + q + 1)). 2

We conjecture that this is the case in general:

Conjecture 10 M2(n+ 2) < M2(n) for all n.

4 Results for small n

We mentioned earlier that for the cases n = 4, 5, 6, 7, and 10, the lower
bound L(n) is achieved. n = 8 and n = 9 will follow in the next section as
they require a more sophisticated lower bound. n = 7 corresponds to the Fano
Plane PG(2,2), and is briefly discussed with all projective planes and is omitted
here. For the other cases, it is enough to give an example of a hypergraph and
a weight function so that the weight covered by any two points is equal to
the lower bound. In the examples to follow, all edges have equal weight. The
matrices given below are incidence matrices of the hypergraphs, there are 0-1
matrices, with rows are indexed by vertices and columns by edges. A 1 in
position i, j indicates that vertex i lies on edge j. We use a dash to indicate a
zero entry.

For n = 4, L(4) = 1, so there is nothing to prove, any two points of an
intersecting hypergraph on 4 vertices cover all the edges.

M2(5) = L(5) = 9
10

. The example is the hypergraph on 5 points with all 3-sets
for edges, equally weighted. This is clearly intersecting and every pair of points
misses one edge, so each pair covers 9/10.

M2(6) = L(6) = 4
5
. The example is unique and is the two-graph of the icosa-

hedron [8]. More precisely, consider a 5-cycle plus an isolated point. From this
construct a 3-regular hypergraph where the edges are all 3-sets of vertices that
contain one edge in the pentagon. There are then two types of edges, either a
pair of adjacent vertices and the opposite vertex of the 5-cycle, or a pair of ad-
jacent vertices and the isolated point. The hypergraph is clearly intersecting,
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and any two points miss 2 of the 10 edges.

1 1 1 1 1 − − − − −

1 1 − − − 1 1 1 − −

− − 1 1 − 1 1 − 1 −

1 − 1 − − − − 1 1 1

− 1 − − 1 − 1 − 1 1

− − − 1 1 1 − 1 − 1


M2(10) = L(10) = 2

3
. The hypergraph achieving this is not unique. We present

one here that can be described very nicely. Consider a 3× 3 grid of points xi,j
(1 ≤ i, j ≤ 3). Add one more additional point y. Consider the 6 sets that go
through y and either a row or column of the grid, and the 9 sets that arise
from taking the union of a row and a column from the grid, and excluding the
intersection point. This is intersecting and any pair of points covers 2/3 of the
edges. We give the incidence matrix:

1 1 1 1 1 1 − − − − − − − − −

1 − − 1 − − − 1 1 1 − − 1 − −

1 − − − 1 − 1 − 1 − 1 − − 1 −

1 − − − − 1 1 1 − − − 1 − − 1

− 1 − 1 − − 1 − − − 1 1 1 − −

− 1 − − 1 − − 1 − 1 − 1 − 1 −

− 1 − − − 1 − − 1 1 1 − − − 1

− − 1 1 − − 1 − − 1 − − − 1 1

− − 1 − 1 − − 1 − − 1 − 1 − 1

− − 1 − − 1 − − 1 − − 1 1 1 −



5 Nontrivial lower bounds

5.1 General approach

In order to get sharp results we sometimes need nontrivial lower bounds for
M2. The general approach for this is the following.
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Let S be the family of all intersecting hypergraphs on n points. Suppose it is
divided into some (not necessarily disjoint) subfamilies:

S = S1 ∪ S2 ∪ · · · ∪ Sk.

Further suppose that we have functions ti :
(
{1...n}

2

)
→ R (i = 1 . . . k) such

that ti is a good fractional cover of order 2 for all hypergraphs in the family
Si (in this section every cover will be of order 2). Then clearly

M2(n) ≥ 1

max(|ti|)
.

In order to use this idea we have to find subdivisions and appropriate fractional
covers. Two examples are shown for this technique in the next subsections.
The language we used is slightly different from that above, but the idea is the
same.

5.2 The case n = 8

Theorem 11 M2(8) = 5/7

Proof: That M2(8) ≤ 5/7 is obvious since the Fano plane (PG(2, 2)) is
a good construction for it. We prove that M2(8) ≥ 5/7 in an indirect way.
Suppose there is an intersecting edge-weighted hypergraph H on 8 vertices,
say V = {1, 2, 3, 4, 5, 6, 7, 8}, such that wt(x∨ y) < 5/7 for all x, y ∈ V , which
means that τ ∗2 (H) > 7/5. We will get contradictions for families of possible
hypergraphs by showing a fractional cover of order two for that family which
has value ≤ 7/5. We will define a set of hypergraphs, exhibit a fractional cover
of order two, and then show that it has weight ≤ 7/5, showing that H is not
in this set. We then proceed, considering all those intersecting hypergraphs
on 8 vertices for which we have not yet given a covering or order 2, eventually
ruling out all hypergraphs. When giving the values of such a cover t we will
write t(x, y) instead of t({x, y}) and will give only the non-zero values. As the
hypergraphs are unlabeled, we can label each to our advantage, for instance,
when considering a hypergraph with an edge of size 3, we may assume that
this edge is {1, 2, 3}.

Case i. H contains a two-set ({1, 2}) or a one-set ({1}). Let t(1, 2) = 1. As
H is intersecting, t is clearly a good fractional cover and |t| = 1 < 7/5.

We conclude from this that H does not have any two-sets or one-sets.

Case ii. All edges of H have at least 4 elements. Let t(x, y) = 1/22 for all
1 ≤ x < y ≤ 8. This is a good fractional cover for H and |t| = 28/22 < 7/5.
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Hence H must have a three-set A = {1, 2, 3}.

Case iii. There are no three-sets in H meeting A in one point. Let t(x, y) =
1/3 whenever x, y ∈ A and t(x, y) = 1/27 whenever x, y 6∈ A. We state that
t is a good fractional cover for H. The three-sets of H meet A in at least
two points, so they get at least 1 from t. The other sets of H contain at
least four points and either meet A in more than one point, in this case they
get at least 1, or meet A in one point and get at least 2/3 + 9/27 = 1. As
|t| = 3/3 + 10/27 < 7/5 we can conclude that there must be a three-set
B = {3, 4, 5} meeting A in one point.

Case iv. There are no three-sets in H meeting both A and B in one point
different from 3. Let t(x, y) = 1/5 whenever x = 3 and y ∈ {1, 2, 4, 5} or
{x, y} = {1, 2} or {4, 5}. Let t(x, y) = 1/15 whenever x, y 6∈ A ∪ B. This is a
good fractional cover for H as the three-sets of H either meet A∪B in {3}, in
which case they get 4/5 + 3/15 = 1, or they meet A∪B in at least two points,
in which case they cover at least 5/5 (we are assuming that this set does not
intersect A and B in one point each, different from {3}). The other sets of H
have at least four elements and get at least 4/5 + 3/15 = 1 or 5/5 = 1, using
the intersecting property. |t| = 6/5 + 3/15 = 7/5.

We now know that there is another three-set C = {1, 5, 6} ∈ H.

Case v. There are three three-sets inH: A1, A2, A3 that all intersect pairwise
in the same point, say a. We call this a 3-3-star. Let t(x, y) = 2/15 whenever
x = a and x 6= y ∈ ∪iAi and t(x, y) = 1/5 whenever a 6= x, y ∈ Ai for some i.
This is a good fractional cover forH. As there are eight points and all sets have
size at least three, every set of H intersects ∪iAi in at least two points. If a set
contains a then it gets at least 12/15 + 1/5 = 1, otherwise it contains at least
one point different from a from all three sets and gets at least 6/15 + 3/5 = 1.
|t| = 12/15 + 3/5 = 7/5.

We now conclude that H does not contain a 3-3-star.

Case vi. At this point we know that H does not contain one- and two-sets, it
contains A,B,C defined above and there are no 3-3-stars in it. For simplicity
call the points 1, 3, 5 vertex-points, 2, 4, 6 edge-points and 7, 8 outer points. We
call a vertex-point and an edge-point opposite if no set from A,B,C contains
both. Let t(x, y) = 1/10 whenever x and y are vertex-points, t(x, y) = 3/20
whenever x is a vertex-point and y is a non-opposite edge-point, and t(x, y) =
1/60 if exactly one of x, y is an outer point. We want to show that t is a good
fractional cover for H. Let D be a set of H and E = D ∩ (A ∪ B ∪ C). If E
contains the three edge-points or the three vertex-points then E itself gets at
least 18/20+6/60 = 1. If E contains two vertex-points then either E contains
at least one edge-point as well and gets at least 3/10 + 12/20 + 6/60 = 1 or D
contains at least one outer point and gets at least 3/10+12/20+8/60 > 1. If E
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contains one vertex-point then either E contains two edge-points (one of them
must be opposite to the vertex-point) and gets at least 2/10+15/20+6/60 > 1
or D contains the opposite edge-point and the two outer points (there is no
3-3-star) and gets at least 2/10 + 12/20 + 12/60 = 1. So t is a good vertex
cover of H and |t| = 3/10 + 18/20 + 12/60 = 7/5.

With this last case, we have competed the proof. 2

5.3 The case n = 9

Theorem 12 M2(9) = 9/13

Proof: That M2(9) ≤ 9/13 follows from Theorem 9. We should mention that
in the construction given in the proof of that theorem, the weights will be equal
for this case (q = 2) and the hypergraph achieving 9/13 can be described as
follows: 

1 1 − − 1 1 1 − − − − − −

1 − 1 − − − − 1 1 1 − − −

1 − − 1 − − − − − − 1 1 1

− 1 1 − − − − − − − 1 1 1

− 1 − 1 − − − 1 1 1 − − −

− − 1 1 1 1 1 − − − − − −

− − − − 1 1 − 1 1 − 1 1 −

− − − − 1 − 1 1 − 1 1 − 1

− − − − − 1 1 − 1 1 − 1 1


The proof of the lower bound is very similar to the proof given above. We have
the same cases, with only one new one added between Case iv and Case v. We
give only the differences here. We want to show fractional covers of order two
with value ≤ 13/9.

Case ii. Use weights 1/26 instead of 1/22.

Case iii. Use weights 1/36 instead of 1/27.

Case iv. Use weights 1/25 instead of 1/15.

Case iv i
ii
.There is a point a and four sets A1, A2, A3, A4 in H such that the

intersection of any two is a. From the contradiction of the previous case we
know that there must be a three-set intersecting both A1 and A2 in one point
different from a. But this set could not intersect both A3 and A4, so this case
does not occur.
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Case v. The weights are the same but in the proof when we need that every
set of H intersects ∪iAi in more than one point, we prove it by using the
impossibility of the previous case.

Case vi. Use weights 10/108 instead of 1/10, 15/108 instead of 3/20, and
2/108 instead of 1/60. 2

6 The cases n = 11 and 12

We end with the first two open cases.

Conjecture 13 M2(11) = 5/8 and M2(12) = 7/12.

We will show that these are in fact upper bounds for the Second Mills number
by presenting multihypergraphs which achieve these values.

For n = 11 we have

3 3 3 3 − − − − 2 2 2 − − − − − − − − −

− − − − 3 3 3 3 2 2 2 − − − − − − − − −

3 − 3 − 3 − 3 − − − − 2 2 2 − − − − − −

− 3 − 3 − 3 − 3 − − − 2 2 2 − − − − − −

3 − − 3 − 3 3 − − − − − − − 2 2 2 − − −

− 3 3 − 3 − − 3 − − − − − − 2 2 2 − − −

3 − 3 − − 3 − 3 − − − − − − − − − 2 2 2

− 3 − 3 3 − 3 − − − − − − − − − − 2 2 2

− − − − − − − − 2 2 − 2 2 − 2 2 − 2 2 −

− − − − − − − − 2 − 2 2 − 2 2 − 2 2 − 2

− − − − − − − − − 2 2 − 2 2 − 2 2 − 2 2


Here the numbers 2 and 3 indicate that in the multihypergraph these edges

would appear twice and three times, respectively. There would be a total of
48 edges, so the weight functions would be 2/48 and 3/48, respectively.

For n = 12 there is a nice hypergraph called a twisted projective plane 3 which
is the unique hypergraph having the property that all of its edges have size

3 A twisted projective plane is a q-regular intersecting hypergraph of degree q with
q2 + q vertices, q2 + q edges, and the edges cover all pairs. It is only known to exist
for q ≤ 3. Cf. [5].
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4, each vertex has degree 4, and it is intersecting. It can be represented as
the residues {0, 1, 4, 6} modulo 12, which are cyclically permuted to give all
edges. If can easily be verified that the best two points cover 7/12, and that
L(12) = 19/33. 

1 1 − − 1 − 1 − − − − −

− 1 1 − − 1 − 1 − − − −

− − 1 1 − − 1 − 1 − − −

− − − 1 1 − − 1 − 1 − −

− − − − 1 1 − − 1 − 1 −

− − − − − 1 1 − − 1 − 1

1 − − − − − 1 1 − − 1 −

− 1 − − − − − 1 1 − − 1

1 − 1 − − − − − 1 1 − −

− 1 − 1 − − − − − 1 1 −

− − 1 − 1 − − − − − 1 1

1 − − 1 − 1 − − − − − 1


For the cases n = 11, 12, we can try similar methods as those used above

for n = 8, 9. We assume that there is a hypergraph that beats one of these
and then we show that there are no edges of size smaller than 4; there exists
an edge of size 4; for every edge X of size 4 there is another edge Y of size
4 that intersects X in one point; and for every two edges X and Y of size 4
that intersect in one point, there is an edge Z of size 4 that intersects both in
one point such that X, Y , and Z have no point in common. Beyond this step,
arguments similar to those for n = 8, 9 become very complicated.
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[3] Z. Füredi, Covering pairs by q2+q+1 sets, J. Combin. Theory Ser. A. 54 (1990)
282–289.
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