Solutions to Problem Set 8

• PS 7.3.1

 - 4) Let \(y(t) = x(t+T) \) and note that it satisfies the same equation:
 \[
 \dot{y} = \dot{x}(t+T) = f(x(t+T), t+T) = f(x(t+T), t) = f(y, t).
 \]
 Since by assumption \(y(t_1) = x(t_1) \) they are equal for all \(t \) by uniqueness.

 - 5) See the second of the supplementary problems below.

 - 7) Let \(\xi(t) \) be a solution of the initial value problem
 \[
 \dot{\xi} = \xi f(\xi, 0), \quad \xi(0) = c.
 \]
 Then the vector function \((\xi(t), 0)\) is a solution of the given system and, by uniqueness, the only such solution with initial data \((c, 0)\).

 - 8) To see that the nonwandering set \(N \) is closed for some flow \(\phi(t,.) \), consider a sequence \(\{p_k\} \) of points of \(N \) converging to a point \(p_* \). We need to show that \(p_* \in N \), i.e., we choose any neighborhood \(B_* \) of \(p_* \) and any time \(T_* > 0 \), and we need to show that there is a point \(q \in B_* \) such that \(\phi(t, q) \in B_* \) for some \(t > T_* \). Choose a point \(p_k \) of the sequence lying in \(B_* \) and choose a small enough neighborhood \(b \) of \(p_k \) that \(b \subset B_* \). Since \(\phi(t, p_k) \) returns to \(b \) and therefore to \(B_* \) for some \(t > T_* \), this shows that \(p_* \in N \), i.e., \(N \) is closed.

 To see that \(N \) is positively invariant, let \(p_0 \in N \) and consider, for arbitrary \(\tau > 0 \), \(p_1 = \phi(\tau, p_0) \). Let \(B_1 \) be an arbitrary neighborhood of \(p_1 \) and \(T_1 > 0 \). We need to show that there is a point \(q_1 \) of \(B_1 \) such that \(r_1 = \phi(t_1, q_1) \in B_1 \) for \(t_1 > T_1 \). To see this consider the image of the neighborhood \(B_1 \) under the mapping \(\phi(-\tau,.) \). This is a neighborhood \(B_0 \) of \(p_0 \). We can therefore find \(q_0 \in B_0 \) such that \(r_0 = \phi(t_0, q_0) \in B_0 \) for \(t_0 > T_1 \). Then with \(t_1 = t_0 \) we have the corresponding points \(q_1, r_1 \) as described above.
• PS 7.4.1

1) Solutions: If \(y(t) = h(x(t)) \) then the condition given follows by differentiating with respect to \(t \) and using the differential equations. If the condition holds and one solves the problem

\[
\dot{x} = f(x, h(x)), \quad x(0) = x_0,
\]

the system is satisfied by setting \(y(t) = h(x(t)) \) and therefore represents the unique solution with \(x(0) = x_0 \) and \(y(0) = h(x_0) \).

3) If \(\dot{x} = f(x, y), \quad \dot{y} = g(x, y) \) is defined in \(\mathbb{R}^2 \), then this system is Hamiltonian if \(\partial f / \partial x + \partial g / \partial y = 0 \), and this is true for the system in question if \(R = 0 \). To find \(H \) note that

\[
\frac{\partial H}{\partial x} = x^2 + y
\]

so \(H(x, y) = x^2y + (1/2)y^2 + k(x) \). We determine the function \(k(x) \) from the other equation

\[
-\frac{\partial H}{\partial x} = -2xy - k'(x) = -2(1 + y)x
\]

implying that \(k' = 2x \). Therefore

\[
H(x, y) = x^2y + (1/2)y^2 + x^2.
\]

4) In polar coordinates the equations are \(\dot{r} = r(1 - r) \) and \(\dot{\theta} = 1 \). The origin is an equilibrium point and the circle \(r = 1 \) is a periodic orbit into which nearby orbits spiral, whether starting from the inside or the outside.

5) In polar coordinates \(\dot{r} = r|1 - r| \) and \(\dot{\theta} = 1 \). Again the origin is an equilibrium point and the circle \(r = 1 \) is a periodic orbit but now orbits starting inside the circle spiral into the periodic orbit, orbits starting outside spiral away.

Solutions for Supplementary Problems for Chapter 7

1. Consider the system

\[
\dot{x} = -y + x(r^4 - 3r^2 + 1), \quad \dot{y} = x + y(r^4 - 3r^2 + 1),
\]

2
where $r^2 = x^2 + y^2$. Show that the only equilibrium point is at the origin, and that $\dot{r} > 0$ if $r = 3$ and $\dot{r} < 0$ if $r = 1$. Infer from these that there is a periodic orbit in the annular region $1 < r < 3$.

Since

$$x \dot{x} + y \dot{y} = 2r \dot{r} = r^2(r^4 - 2r^2 + 1)$$

a necessary condition for an equilibrium point is that the right-hand side vanish. This is true at the origin, which is an equilibrium point. It is also zero for values of r at which the other factor vanishes but at those points $\dot{x} = y$ and $\dot{y} = -x$ so these are not equilibrium points. The formula above can be used to show that $\dot{r} > 0$ at $r = 3$ and that $\dot{r} < 0$ at $r = 1$. Thus, integrating backwards in time, orbits are confined between these two circles and therefore have an α-limit set, which is a periodic orbit by the Poincaré-Bendixson theory.

2. Suppose the system of equations

$$\dot{x}_1 = f_1(x_1, x_2), \quad \dot{x}_2 = f_2(x_1, x_2)$$

is given in a simply-connected domain D of the plane, and the functions f_1 and f_2 are C^1 there.

(a) Suppose there is a real-valued, C^1 function $m(x_1, x_2)$ such that $\text{div}(mf)$ does not vanish identically in D and does not change sign there. Show that there can be no periodic orbit in D.

(b) Suppose $f_1 = x_2$ and $f_2 = -ax_1 - bx_2 + cx^2_1 + dx^2_2$. Use the function $m = b \exp\{-2dx_1\}$ to infer that there are no periodic orbits of this system in \mathbb{R}^2.

(a) By assumption, if there is a periodic orbit J of period T, enclosing the region D then, by Green’s theorem in the plane,

$$0 \neq \int_D \text{div}(mf) \, dx_1 dx_2 = \oint_J (-mf_2 \, dx_1 + mf_1 \, dx_2)$$

$$= \int_0^T m (-f_2 \dot{x}_1 + f_1 \dot{x}_2) \, dt = 0$$

because $\dot{x}_1 = f_1$, $\dot{x}_2 = f_2$.

(b) Calculating $\text{div}(mf)$ gives $-b^2 \exp(-2dx_1)$, which is of one sign.