1. Problem Set 1.2.1

- 5) This is calculus! \(x(t) = (1/3)t^3 - e^t + 3 \).
- 6) \(x(t) = 100e^{0.05t} \). At \(t = 1 \) this gives 105.13, as compared with 105.12 for monthly compounding.
- 10) If \(\dot{x} = 0 \) then \(x = \gamma/\alpha \). The solution for Problem 7 for arbitrary initial data \(x(0) = k \) is
 \[
 x(t) = (k - \gamma/\alpha)e^{-\alpha t} + \gamma/\alpha,
 \]
 which tends to \(\gamma/\alpha \) as \(t \to \infty \) since \(\alpha > 0 \).
- 12) \(\frac{\partial}{\partial t} f(s + t) = \frac{\partial}{\partial t} f(s + t) = f'(s + t) \), so the partial-differential equation reduces to \(2f' = \alpha f \). The solution is \(u(s,t) = C \exp((1/2)\alpha(s + t)) \) where \(C \) is an arbitrary constant.
- 14) The solution is \(x(t) = x_0 \exp(\sin t) \); it is periodic.
- 20) Set \(F(u,v) = \int_{t_0}^{t} g(v,s) \, ds \). If \(u = u(t) \) and \(v = v(t) \) and \(f(t) = F(u(t),v(t)) \), the chain rule gives
 \[
 f'(t) = \frac{\partial F}{\partial u} u'(t) + \frac{\partial F}{\partial v} v'(t).
 \]
 Since \(f(t) = F(t,t) \) we put \(u(t) = v(t) = t \), and obtain the stated result.

2. Problem Set 1.3.1

- 1) If \(\dot{x} = k_0 x^{1+\epsilon} \) then
 \[
 x^{-(1+\epsilon)} \frac{dx}{dt} = \frac{d}{dt} \left(-x^{-\epsilon}/\epsilon \right) = k_0,
 \]
 so \(x^{-\epsilon} = C - k_0 t \) where \(C \) is a constant. Evaluating this gives
 \[
 x(t) = \left(x_0^{-\epsilon} - \epsilon k_0 t \right)^{-(1/\epsilon)},
 \]
 which tends to infinity as \(t \) tends to \(t_\ast = x_0^{-\epsilon}/\epsilon k_0 \).
2) The function G of the hint satisfies the condition $G(x_0, y_0) = 0$. Furthermore
\[\frac{\partial G}{\partial y}(x_0, y_0) = \frac{1}{g(y_0)} \neq 0. \]
Under these conditions the implicit-function theorem guarantees that there exists a unique solution $y = \phi(x)$ of the equation $G(x, y) = 0$ reducing to y_0 when $x = x_0$, in a sufficiently small neighborhood of x_0.

5) The right-hand side is homogenous of degree zero and the solution, with $y = xv$, is given implicitly by
\[\int \frac{ds}{\frac{a+bs}{c+ds} - s} = \ln x. \]

10) Since by assumption
\[\frac{\partial (pM)}{\partial y} = \frac{\partial (pN)}{\partial x} \quad \text{and} \quad \frac{\partial (qM)}{\partial y} = \frac{\partial (qM)}{\partial y}, \]
it follows immediately that the same relation holds with $\alpha p + \beta q$ in place of p or q.