Answers to Selected Problems in Chapters 1 and 2

• Problem Set 1.4.1

 5) The first part of the question is a verification. For the second, note that for the function to satisfy a Lipschitz condition on \([0, a)\) it would be necessary that

 \[|f(x) - f(0)| = \frac{x^2}{3} \leq Lx \quad \text{for some constant} \quad L, \]

 or that \(L \geq x^{-1/3} \) on this interval. This is not possible.

• Problem Set 2.1.1

 4) For \(x < 0 \) \(v'' = -6x \) and for \(x > 0 \) \(v'' = 6x \) so the limit of \(v'' \) is zero. It is a simple calculation that \(v'(0) = v''(0) = 0 \), and this verifies the continuity of \(v'' \). The Wronskian is zero at each point of the interval but the functions are linearly independent.

 7) Unless all the coefficients \(c_1, \ldots, c_k \) vanish the expression could vanish only at a finite number of points whereas it is required to vanish on an interval.

 10)
 * a) \(u_1(x) = 1, u_2(x) = x \)
 * b) \(u_1(x) = 1, u_2(x) = \exp(-2x) \)
 * c) \(u_1(x) = 1, u_2(x) = \int_0^x \exp(-s^2/2) \, ds \)

 13) It is a verification that the given functions are solutions. Their Wronskian is \(-2/x^4\), which is nowhere zero and in particular does not vanish on any interval excluding the origin.

 14) That each is a solution is a verification. Their Wronskian is

 \[(\sin x - x \cos x)x \cos x - (\cos x + x \sin x)x \sin x = -x^2, \]

 nonvanishing on any interval excluding the origin.

 20) Suppose to the contrary \(u \) has more than one zero and let \(x_1 \) and \(x_2 \) be consecutive zeros. We must have \(u'(x_1) \neq 0 \) since otherwise \(u \) would vanish identically; assume for definiteness that \(u'(x_1) > 0 \). Then, since \(x_1 \) and \(x_2 \) are consecutive zeros, \(u > 0 \) on
Since it vanishes at x_2, it must have a positive maximum at (say) x_* in (x_1, x_2). Then $u'(x_*) = 0$ whereas $u''(x_*) \leq 0$. But by the differential equation
\[u''(x_*) = -q(x_*)u(x_*) > 0, \]
a contradiction.

21) The pair of equations
\[
\begin{align*}
 u'p(x) + uq(x) &= -u'', \\
 v'p(x) + vq(x) &= -v''
\end{align*}
\]
have unique solutions for p and q provided $u'v - uv' = W$ does not vanish; this provides the coefficients p, q.

- Problem Set 2.1.2
 1) A particular integral is $U(x) = x$ and the most general solution is $u = x + c_1 \cos x + c_2 \sin x$. The solution with the given initial data is $u = x - \sin x$.
 3) The equation may be written
\[u'' + \frac{p'}{p}u' + \frac{q}{p} = \frac{r}{p}, \]
so a particular integral is
\[U(x) = \int_a^x \frac{u_1(s)u_2(x) - u_1(x)u_2(s)}{W(s)} \frac{r(s)}{p(s)} ds. \]
Since one finds that $W(s) = c/p(s)$ where c is a constant, this becomes
\[U(x) = \int_a^x \frac{u_1(s)u_2(x) - u_1(x)u_2(s)}{c} r(s) ds. \]

- Problem Set 2.3.1
 1) The Wronskian is $W = 2$ and is constant because the coefficient $a_1(x)$ vanishes.