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Abstract

The theory of quasirandomness has greatly expanded from its
inaugural graph theoretical setting to several different combinatorial
objects such as hypergraphs, tournaments, permutations, etc. However,
these quasirandomness variants have been done in an ad-hoc case-by-
case manner. In this paper, we propose three new hierarchies of
quasirandomness properties that can be naturally defined for arbitrary
combinatorial objects. Our properties are also “natural” in more
formal sense: they are preserved by local combinatorial constructions
(encoded by open interpretations). We show that our quasirandomness
properties have several different but equivalent characterizations that
are similar to hypergraph quasirandomness properties. We also prove
several implications and separations comparing them to each other
and to what has been known for hypergraphs.

The main notion explored by our statements and proofs is that of
unique coupleability: two limit objects are uniquely coupleable if there
is a unique limit object in the combined theory that is an alignment
(i.e., a coupling) of these two objects.

1 Introduction

The theory of graph quasirandomness introduced by Thomason [Tho87] and
Chung–Graham–Wilson [CGW89] studies deterministic graphs that look
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random. The main discovery of this theory is that several properties that
hold asymptotically almost surely for the sequence of Erdős–Rényi ran-
dom graphs (Gn,p)n∈N are equivalent when rephrased as properties of a
deterministic graph sequence (Gn)n∈N. Since then, the theory of quasiran-
domness has expanded not only within graph theory [CG92, SS97, SS03,
Sha08, Yus10, Jan11, CFS18] but also towards studying quasirandomness for
other combinatorial objects such as tournaments [CG91, KS13, CR17], per-
mutations [Coo04, Coo05, KP13, CKN+20] and hypergraphs [CG90, Chu90,
KRS02, KNRS10, DR11, LM15b, LM17, Tow17, AHCH+18].

The theory of quasirandomness was one of the motivations and driving
forces behind the theory of dense limits of combinatorial objects (we refer
the reader to [Lov12] for the case of graphs and to [Aus08, AC14, CR20] for
the general case). The starting point of the latter theory is that if (Nn)n∈N is
a sequence of combinatorial objects such that for every fixed combinatorial
object M , the normalized number of (unlabeled induced) copies p(M,Nn)
of M in Nn converges to some limit φ(M), then the sequence (Nn)n∈N can
alternatively be represented as a limit object that captures all these limit
values. But as the theory of graph (and other) limits has been maturing, and
in particular after the uniqueness theorem was proved in [BCL10] (see [Lov12,
Theorem 13.10] for graphs and [CR20, Theorem 3.9] for the general case),
it has turned out that in a sense this theory transcends counting. Namely,
limit objects can be described, up to an appropriate notion of isomorphism
(or, as Lovász dubbed it, cryptomorphism), using different languages and
quite different kinds of mathematics and statistics ([Lov12, Theorem 11.52]
and [CR20, Theorem 6.3]) and only one of those descriptions is based on
sampling statistics p(M,−) per se [Raz07]. Arguably, it is this versatility that
is largely responsible for the wide spread of graph limits and their connections
to many other areas.

The situation with quasirandomness remains somewhat different, and
we are aware only of a few attempts to study it intrinsically, that is, based
on principles other than counting. One of the equivalent properties in the
seminal paper [CGW89] (P3) was of spectral nature, namely it requested
the second largest eigenvalue of Gn to be o(|Gn|). This spectral theme was
further continued for (linear) quasirandom hypergraphs in [LM15a, LM17].

Even though most other quasirandomness properties in the literature
are stated in terms of counting, it is still possible to extract from them
something intrinsic. For example, the property P4 in [CGW89] (see also [SS97,
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Theorem 2.4]) implies that quasirandom limits W are the only graphons with
the following unique inducibility property: if (Gn)n∈N converges to W then
the sequence of induced graphs (Gn|Un)n∈N also converges to W as long as
|Un| ≥ Ω(|Gn|). As another example, using graphon language [LS06], we can
extract a trivial intrinsic characterization of quasirandom limits in terms of
an independence property: a graphon W : [0, 1]2 → [0, 1] is quasirandom if
and only if W a.e. does not depend on its variables, that is, it is a.e. constant.

In this paper we attempt to initiate a more systematic study of quasiran-
dom properties that can be reasonably identified as “intrinsic” (for reasons
that will become clear very shortly, we will also use in this context the word
“natural”), and let us first explain what we roughly mean by this. Our expla-
nation will be deliberately informal and open-ended; instead of trying to give
a rigorous definition, we present a set of tests that in our view have to be
passed and then describe some concrete properties we will be studying in this
paper that pass these tests.

First and foremost, we view this paper as a continuation of [Raz07,
CR20], which in particular implies that we require qualifying properties to
be formulated in an uniform way for arbitrary universal theories in a finite
relational language. For examples of what can be expressed in that language
see [CR20, Sct. 2.1 and Sct. 7].

The next two requirements are somewhat derivative of the first.
We require that the property should not refer to densities of concrete

models and their explicit values (thus, this is more about the formulation of
the property than the class of objects defined by it.) The reason is that any
such definition is necessarily somewhat arbitrary. For example, there is no
such thing as “edge densities” in the theories of tournaments and permutations
so their ad hoc analogues had to be found when defining quasirandom objects
in those contexts. Of the quasirandom graph properties mentioned above,
the description as a constant graphon definitely satisfies this criterion, and
so does the inducibility property (the tweak of P4 in [CGW89]). Spectral
properties also pass the test but unfortunately they fail (given our current
state of knowledge) the previous universality test.

The next requirement is that we want the property to be preserved
under open interpretations, and this is where the word “natural” (like in
“natural transformations” – open interpretations do form a category [CR20,
Sct. 2.2]) comes in. In plain words, everything that can be syntactically defined
in a quasirandom object must display proportionally strong quasirandom
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properties. Again, in an implicit form this requirement was exploited in the
previous literature both in positive and negative manner. For example, the
proofs of the implications P10 =⇒ P11 =⇒ P1(s) in the seminal paper on
quasirandom tournaments [CG91] can be viewed as divided into two parts.
First one proves that all “couplings” of a quasirandom graph with a linear
ordering are the same and hence completely determined by the random
coupling. Then the tournament obtained from the resulting quasirandom
ordered graph via the “arc-orientation” interpretation must be quasirandom.
This example is paradigmatic for many parts of our paper. As for “negative”
use, let us note that most separations in the hierarchy of quasirandom
hypergraphs [AHCH+18, LM15b, Tow17] can be viewed as coming from the
fact that these properties are not preserved under open interpretations between
the theories of hypergraphs of possibly different arity. We will elaborate on
this in Section 8 (see Theorem 3.15).

Our final requirement is more “traditional”, and it is well-rooted in the
previous literature. Namely, we require that the property should be satisfied
asymptotically almost surely for some “natural” random model of some
“natural” theory T . Examples of “natural” random models include, of course,
the Erdős–Rényi model and its generalization to hypergraphs, the random
tournament, the random permutation, etc.

This list of requirements may appear to be rather restrictive, so let us
describe quasirandom properties we are studying; they are essentially far-
reaching generalizations of what we already discussed above. Several more
remarks are in place before we begin.

1. We have deliberately decided against attempting to state our properties
in the language of finite combinatorial objects and their asymptotic
behavior – it is probably possible but the result might be rather ugly
and disappointing. Instead, we use the language of graphons [LS06],
hypergraphons [ES12] and theons [CR20] for the geometric view of
our objects and that of flag algebras [Raz07] for a concise algebraic
description. We remark that we are not the first authors to make
this election, and the advantages of using the continuous setting are
illustrated by the fact that such proofs are often more elegant and less
technical than their finite world counterparts [Jan11, KP13, Tow17].
This view is more instructive, too: for example, by looking back through
the lenses of graphons, we can extract an elegant graphon proof of
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quasirandomness of property P2(4) of [CGW89] based on the Lebesgue
Density Theorem from a paper as early as [DF81, Theorem 3.10].

However, for the benefit of more combinatorially-oriented reader we try
to inject as much of “finite intuition” as possible in appropriate places.

2. Our properties are not equivalent with those previously studied in
the literature even for hypergraphs (see Figure 2). Hence the reader
interested only in this case can safely assume that our base theory is
Tk -Hypergraph for some k ≥ 3, and the objects are just hypergraphons. But
let us mention that more complicated objects like colorings, orderings,
couplings, etc. will pop up in the statements and the proofs anyway.

3. Finally, the description below is loose and sweeps under the rug some
important technicalities. Proper definitions are deferred to Section 2.2.

Independence[`] If we want to realize the quasirandom (that is, constant)
graphon of density p as a 2-hypergraphon G ⊆ [0, 1]3, one way of doing
it is by

G def
=
{

(x{1}, x{2}, x{1,2})
∣∣ x{1,2} ≤ p

}
. (1)

This 2-hypergraphon has one peculiar property: it does not depend on
first-order coordinates x{1}, x{2}, and this property is perfectly general-
izable. Namely, we call a combinatorial object φ `-independent if it has
a representation similar to (1) that does not depend on the coordinates
xA with |A| ≤ `. This is the strongest in the hierarchy of our properties,
and it relatively easily implies all the others, with the same value of
the parameter `. Let us also remark that if the object is given in an
implicit form, say as a positive homomorphism φ ∈ Hom+(A[T ],R)
from the flag algebra, then Independence[`] only talks about the ex-
istence of the required geometric realization or, equivalently, about
the possibility of straightening up any geometric realization1 using spe-
cific families of measure-preserving functions [Lov12, Ch. 7.3], [ES12,
Sct. 4.1], [CR20, Sct. 3]. As an example of a non-straight representation,
the 2-hypergraphon

G ′ def
=
{

(x{1}, x{2}, x{1,2})
∣∣ (x{1} + x{2} + x{1,2}) mod 1 ≤ p

}
(2)

1In the case of a T -on N , we require that this transformation be uniform over all P -ons
NP forming N .
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represents the same limit as the one in (1) but does depend on first-order
coordinates.

UCouple[`] (Unique `-coupleability) Roughly speaking (the exact defini-
tion in the language of open interpretations will be given in Section 2.2),
two combinatorial objects φ and ψ are uniquely coupleable if any two
alignments of these objects on the same ground set (a coupling) give the
same object in the combined theory. In that case, this unique coupling
can be described by the random alignment, called independent coupling,
and this allows us to compute the combined object (represented as a
flag-algebraic homomorphism) by a very simple formula. For example,
quasirandom graphs of density p ∈ [0, 1] are uniquely coupleable with
any 2-coloring of the vertices as well as with the linear ordering. They
are not uniquely coupleable with themselves, except for the trivial case
p ∈ {0, 1}. Now, to every combinatorial object φ we associate its rank
dually to the notion of Independence: rk(φ) ≤ ` if and only if φ has a
representation as a T -on N in which all P -ons NP depend only on the
coordinates xA with |A| ≤ `. We call an object φ uniquely `-coupleable
if it is uniquely coupleable with all objects ψ such that rk(ψ) ≤ `.

UInduce[`] (Unique `-inducibility) One equivalent way to view the in-
duced subgraph G|V is this: we first color the vertices into two colors,
say, green (corresponding to V ) and red. Then instead of removing red
vertices, we remove all edges adjacent to at least one red vertex. In
this form, it has a perfect generalization in higher dimensions. Namely,
we start as in the previous paragraph and consider couplings of a com-
binatorial object φ with an `-hypergraphon ψ (note that rk(ψ) ≤ `).
The unique coupleability requires that for any two such couplings ξ1

and ξ2, we have ξ1(M) = ξ2(M) for any model M of the combined
theory. Unique inducibility by ψ relaxes this property by requiring that
ξ1(M) = ξ2(M) holds only for those M that are based on a clique in the
hypergraphon ψ. The object φ is uniquely `-inducible if it is uniquely
inducible by any `-hypergraphon ψ.

From the loose formulation of the properties above, one can already see
that the first two “naturality” requirements are satisfied: the formulations
are made for arbitrary theories and do not refer to densities of concrete
models and their explicit values. As for the third “naturality” requirement
(Theorem 3.3), while the fact that Independence[`] is preserved under open
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interpretations follows easily from the general theory, for UCouple[`] and
UInduce[`], this will follow from an amalgamation property (Theorem 5.1)
that roughly says that couplings can be lifted through open interpretations
(Proposition 5.2).

As we mentioned before, the quasirandom k-hypergraph satisfies Independence[k−
1]. The situation for asymmetric combinatorial objects is more diverse.
For example, the quasirandom tournament satisfies UCouple[1] but not
Independence[1] and this example can be generalized to higher values of
`. One interesting example for unique inducibility is the linear order as it
satisfies UInduce[`] for every ` without being a trivial object.

All our properties are anti-monotone in ` in the sense that for any of
the above, we have the implications P [`] =⇒ P [` − 1] (see Theorem 3.1)
and as for relations between the properties (Theorem 3.2), we show that
Independence[`] implies UCouple[`] and that UCouple[`] implies2 UInduce[`]
(see Figure 1).

In terms of separations, we show that no upward implication holds, that
is, none of the studied quasirandomness properties with parameter ` can
imply the same, or for that matter any other, property with parameter `+ 1
(Theorem 3.5). As for separations between different families of properties,
we show that UCouple[`] does not imply Independence[`] (Theorem 3.6) and
UInduce[`] does not imply even UCouple[1] (Theorem 3.7). We have not been
able to extend the latter result to UCouple vs. Independence, that is to show
that UCouple[`] does not imply Independence[`′] for a single pair `′ < `; in
fact these are the only relations involving the three families of properties
that we leave open. All these separations are relatively easy when we are
working with arbitrary theories, but we show that they still hold even if we
restrict ourselves to the theory of k-hypergraphs, for k ≥ `+ 2 (Theorems 3.8
and 3.9).

Next, we provide the following alternate characterizations (summarized in
Theorems 3.10 and 3.11) of these classes.

Weak `-independence Every combinatorial object φ can be represented,
in a canonical way, by an infinite countable random model K defined
from a collection of independent random variables (θA)A indexed by
finite non-empty subsets of N+ (see e.g. [CR20, proof of Theorem 3.4]).
We say that φ is weakly `-independent if K is independent from (θA |

2This implication is obvious from the definition.
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...

...

Independence[4]
...

UCouple[4]

Independence[3] UInduce[4]

UCouple[3]

Independence[2] UInduce[3]

UCouple[2]

Independence[1] UInduce[2]

UCouple[1]

UInduce[1]

Figure 1: Implications between quasirandomness properties. This is almost a
Hasse diagram: only the relations between UCouple[`] and Independence[`′]
for `′ < ` are left open.
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|A| ≤ `) as a random variable (full Independence[`] requires this to
happen “pointwise”). This weak version of independence turns out to
be equivalent to UCouple[`] (Theorem 3.10(iv)).

`-Locality One of the defining properties of the countable random modelK is
locality: the marginals (K|Vi | i ∈ I) are mutually independent whenever
the collection of finite sets (Vi)i∈I is pairwise disjoint. The notion of
`-locality strengthens this property to require mutual independence of
(K|Vi | i ∈ I) whenever the collection of finite sets (Vi)i∈I have pairwise
intersections of size at most `. It is clear that weak `-independence
implies `-locality, but we prove that the converse also holds, hence
`-locality is also equivalent to UCouple[`] (Theorem 3.10(vi)).

Symmetric `-locality The notion of symmetric `-locality relaxes the notion
of `-locality by requiring only mutual independence of the events (K|Vi ∼=
Mi | i ∈ I) for all choices of (Vi)i∈I with pairwise intersections of size
at most ` and all choices of models Mi, i.e., we only care about the
submodels K|Vi up to isomorphism. We show that symmetric `-locality
is equivalent to UInduce[`] (Theorem 3.11(iii)).

The right way to view the definitions of unique coupleability and unique
inducibility is that each ψ of rank ≤ ` generates a test for the respective prop-
erty that φ has to pass. It is natural to ask for a smaller and more explicit set
of universal tests that guarantees each property. We show (Theorem 3.10(ii))
that φ ∈ UCouple[`] is equivalent to φ being uniquely coupleable with a non-
degenerate quasirandom `′-hypergraphon ψ`′,p in every dimension `′ ≤ `.
We further prove (Theorem 3.10(iii)) that it is also equivalent to φ being
uniquely coupleable with their independent coupling ψ1,p1 ⊗ . . . ⊗ ψ`,p` ; for
the reasons explained right after the statement of the theorem, it does not
immediately follow from the previous item (ii). In the particular case ` = 1,
this means that the fact that φ is uniquely coupleable with a single non-trivial
vertex-coloring implies it must also be uniquely coupleable with any rank 1
limit object, such as linear orders, permutations, etc.

Our findings for unique inducibility are by far less conclusive but at least
we can show that it is sufficient to consider only hypergraphons ψ with any
fixed non-trivial edge density p ∈ (0, 1) (Theorem 3.11(ii)).

Of all choices of parameters, arguably the most interesting one is when ` is
exactly one less than the maximum arity k of a predicate of the language. In
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the theory of k-hypergraphs the three classes with ` = k− 1 become the same
and are satisfied only by the full quasirandom hypergraph, that is, the almost
sure limit of the generalization of the Erdős–Rényi model. If we consider
general theories of arity at most k, it is not hard to see (Theorem 3.12)
that (k − 1)-independent objects are (essentially) quasirandom colored k-
hypergraphs. The property UCouple[k − 1] in arity at most k corresponds to
independent couplings of quasirandom colored k-hypergraphs with general-
izations of quasirandom tournaments (Theorem 3.13). The case of unique
inducibility is (again) considerably more complicated: UInduce[1] in arity 2
corresponds to (essentially) independent couplings of quasirandom colored
graphs with an aligned coupling of several biased quasirandom tournaments;
this latter aligned coupling is so that all biases are in the same direction. But
since this latter proof is very technical and does not seem to easily generalize
to arbitrary arities k, we do not include it in the paper.

Finally, let us compare our properties to the known hypergraph quasir-
andomness properties (Figure 2). In [Tow17], Towsner defined k-hypergraph
quasirandomness properties Disc[A] for every antichain A of non-empty

subsets of [k]
def
= {1, . . . , k} and showed that Disc[

(
[k]
`

)
] and Disc[A`] are

equivalent to CliqueDisc[`] and Dev[`] of [LM15b], respectively, where A`
def
=

{A ∈
(

[k]
k−1

)
| [k − `] ⊆ A}. It is immediate from definitions that UInduce[`]

implies CliqueDisc[`] (Theorem 3.14). In terms of separations between our
properties and the ones from the literature, we show the strongest sepa-
ration possible. The strongest Disc[A] property that is not equivalent to
full quasirandomness is Dev[k − 1] and this does not imply even UInduce[1]
(Theorem 3.15). In the other direction, the weakest Disc[A] property that
is not implied by CliqueDisc[`] is Disc[{[`+ 1]}] and this is not implied by
Independence[`] (Theorem 3.16).

The paper is organized as follows. In Section 2 we give necessary prelim-
inaries. In Section 3 we formally state our main results. In Section 4, we
prove some basic facts that will be used throughout the text. In Section 5, we
show that our properties are natural, that is, that they are preserved under
open interpretations. In Section 6 we prove the alternative formulations of
UInduce, and in Section 7 we prove the alternative formulations of UCouple.
The proofs are done in this slightly reversed order because they are simpler
for the unique inducibility; besides, some auxiliary statements we need for
that part are later re-used for the unique coupleability. In Section 8, we
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Independence[k − 1] UInduce[k − 1] CliqueDisc[k − 1] Dev[k]

Dev[k − 1]

Independence[k − 2] Disc[{[k − 1]}]
UInduce[k − 2]

CliqueDisc[k − 2]

Independence[k − 3] Disc[{[k − 2]}]
UInduce[k − 3]

CliqueDisc[k − 3]

... Disc[{[k − 3]}]
...

...

Independence[2]
...

UInduce[2]

CliqueDisc[2]

Independence[1] Disc[{[2]}]
UInduce[1]

CliqueDisc[1]

Disc[{[1]}]

Figure 2: Hasse diagram of quasirandomness hypergraph properties in arity
k. The top four equivalent properties represent full quasirandomness.
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show separations between different classes of properties. In Section 9, we
completely classify the properties Independence[k − 1] and UCouple[k − 1]
when all arities are at most k. The paper is concluded with a few remarks
and open problems in Section 10.

2 Preliminaries and notation

Throughout the text, we will use the notation N def
= {0, 1, . . .} for the non-

negative integers and N+
def
= N \ {0} for the positive integers. We also let

[n]
def
= {1, . . . , n} and (n)m

def
= n(n− 1) · · · (n−m+ 1). The usage of the arrow

� for a function will always presume the function to be injective. For a
set V , we let (V )` be the set of all injective functions α : [`] � V and for
such an α, we may use the notation αi for α(i) when convenient. We let

2V
def
= {A ⊆ V } be the set of all the subsets of V , let

(
V
`

) def
= {A ⊆ V | |A| = `}

and let
(
V
>`

) def
= {A ⊆ V | |A| > `}. For V ⊆ N+ and A ∈

(
V
`

)
, we let

ιA : [`]� V be the function enumerating the set A in the increasing order
(so im(ιA) = A). We let r(V ) be the set of all finite non-empty subsets of V

and r(V, `)
def
= {A ∈ r(V ) | |A| ≤ `} be the set of all non-empty subsets of V

of size at most `. We will be frequently abusing notation by identifying [n]
with n, e.g., we will use r(n, `) as a shorthand for r([n], `). Random variables
will always be typed in math bold face. We denote by SV the group of
bijections V � V so that Sn is the group of permutations on n elements.

2.1 Model theory and limit theory

We will be working in the framework of [CR20], in which combinatorial objects
are encoded as models of a canonical theory. We will also be using the same
notation as in [CR20] with some small additions.

For a finite relational language L, we let TL be the pure canonical theory
on L, that is, the theory whose axioms are

∀~x,

 ∨
1≤i<j≤k(P )

xi = xj

→ ¬P (x1, . . . , xk(P )). (3)

for every P ∈ L. For a canonical theory T and a set V , let KV [T ] be the set
of (labeled) models of T with vertex set V . We use the symbol ∼= to indicate
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that two models are isomorphic. For n ∈ N+, we let Mn[T ]
def
= Kn[T ]/ ∼=

be the set of n-element (unlabeled) models up to isomorphism; we also

let M[T ]
def
=
⋃
n∈N+

Mn[T ]. For n = |V | and K ∈ KV [T ], we denote by
[K] ∈Mn[T ] the isomorphism type of K.

Other important examples of canonical theories include the theory of
k-hypergraphs Tk -Hypergraph, whose language contains a single predicate E of

arity k(E)
def
= k and whose axioms are (3) for P = E and

∀~x, (E(x1, . . . , xk)→ E(xσ(1), . . . , xσ(k))) (σ ∈ Sk); (4)

the theory of (simple) graphs TGraph
def
= T2 -Hypergraph; the theory of (strict)

linear orders TLinOrder, whose language contains a single binary predicate ≺
with the axioms

∀x,¬(x ≺ x);

∀~x, (x1 6= x2 → (x1 ≺ x2 ∨ x2 ≺ x1));

∀~x, (x1 ≺ x2 ∧ x2 ≺ x3 → x1 ≺ x3);

and the theory of c-colorings Tc -Coloring, whose language contains c unary
predicates χ1, . . . , χc and that has axioms

∀x,¬χi(x) ∨ ¬χj(x) (1 ≤ i < j ≤ c);

∀x,
∨
i∈[c]

χi(x).

Note that T2 -Coloring and T1 -Hypergraph are isomorphic in the category Int
(see [CR20, Sct. 2.2]).

Given an atomless complete3 probability space Ω = (X,A, µ), a set V

and ` ∈ N, we let EV,`(Ω)
def
= Xr(V,`), equipping it with the completion of the

product measure of |r(V, `)| copies of µ, which by abuse of notation we also

denote by µ (cf. [CR20, Definition 7.3]). Likewise, EV (Ω)
def
= Xr(V ). Given an

injective function α : V1 � V2, we define the projection α∗ : EV2,`(Ω)→ EV1,`(Ω)

3 In [CR20, Sct. 7] we carefully considered incomplete spaces as well and drew finer
distinctions between various assumptions on them, cf. the discussion in [Lov12, page 218].
It was needed to differentiate between weak theons (satisfying the axioms a.e.) and strong
ones (satisfying them everywhere off-diagonal), as well as for removal lemmas. As we prefer
to avoid dwelling into these issues in this paper, we make the simplifying assumption of
completeness once and for all.
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by α∗(x)A
def
= xα(A) (this is consistent with the notation for the projection

α∗ : EV2(Ω)→ EV1(Ω) defined analogously in [CR20, Definition 2.19], which
we will also use). The spaces used in this paper most often are ([0, 1]t,Lt, λt),
where Lt is the σ-algebra of Lebesgue measurable subsets of [0, 1]t and λt

is the (t-dimensional) Lebesgue measure; these will be denoted simply by
[0, 1]t. When Ω = [0, 1], we will omit Ω from the notation (e.g., a P -on
without reference to any space Ω is assumed to be a measurable subset of

Ek(P )
def
= Ek(P )([0, 1])). For spaces Ω and Ω′, we let Ω× Ω′ be the completion

of the product space. Finally, we will often abuse notation by identifying the
spaces EV (Ω× Ω′) and EV (Ω)× EV (Ω′) via the correspondence EV (Ω× Ω′) 3
x↔ (y, z) ∈ EV (Ω)× EV (Ω′) given by yA

def
= (xA)1 and zA

def
= (xA)2 for every

A ∈ r(V ). An analogous identification will be done for products of finitely
many spaces.

We also adopt the same conventions as in [CR20]: unless we explicitly say
otherwise, all our languages are assumed to be finite first-order relational lan-
guages, all our theories are assumed to be canonical (in particular, also univer-
sal and we will typically omit universal quantifiers from their axioms) and all
our structures are assumed to be canonical (i.e., models of TL, or equivalently,

structures K such that RP (K)
def
= {α ∈ V (K)k(P ) | K � P (α1, . . . , αk(P ))} is

contained in (V (K))k(P ) for every P ∈ L).
Recall that a sequence of finite (unlabeled) models (Nn)n∈N is convergent if

|Nn| < |Nn+1| and for every fixed finite model M , the limit limn→∞ p(M,Nn)
exists, where p(M,N) denotes the normalized number of unlabeled induced
copies of M in N . We will be using three cryptomorphic ways of representing
convergent sequences: flag-algebraic homomorphisms [Raz07], theons [CR20,
Scts. 3 and 7] and exchangeable arrays [CR20, Definition 5.7]. In this language,
a hypergraphon of [ES12] is, up to zero-measure change, a Tk -Hypergraph-on
and there is a (not one-to-one) correspondence between graphons W of [LS06]
and TGraph-ons N that preserves densities given by

W 7→ {x ∈ E2 | x{1,2} < W (x{1}, x{2})}
WN ←[ N ,

where

WN (x{1}, x{2})
def
= λ({x{1,2} | (x{1}, x{2}, x{1,2}) ∈ N}). (5)
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Furthermore, for M ∈M[T ] we let

〈M〉 def
=
|Aut(M)|
|M |!

M (6)

denote4 the element of the flag algebra A[T ] encoding the labeled (induced)
density of M .

The main theorem of dense limit theory says that positive homomorphisms,
theons and local exchangeable arrays all encode convergent sequences.

Theorem 2.1 ([LS06, Raz07], [CR20, Theorem 6.3] see also [CR20, Sct. 7]).
Fix an atomless complete probability space Ω and consider the following
objects for a theory T .

i. A convergent sequence (Nn)n∈N of models of T .

ii. A positive homomorphism φ ∈ Hom+(A[T ],R).

iii. A T -on N over Ω.

iv. A local exchangeable array K supported on models of T .

The objects above are cryptomorphic in the sense that given an instance
of one of them, one can “explicitly” construct instances of the others that
satisfy the following for every M ∈M[T ]:

lim
n→∞

p(M,Nn) = φ(M) = φN (M) = P[K|[|M |] ∼= M ].

One of the (easy) directions of the cryptomorphism above will be of
particular importance to us, namely, how to construct a local exchangeable
array K from a given T -on N over Ω = (X,A, µ). Intuitively, the only thing
we have to do is to independently sample countably many points from our
theon. Formally, let θ = (θA)A∈r(N+) be picked in EN+(Ω) according to [the
product measure] µ, that is, each θA picked in X according to µ independently
of all other coordinates. The exchangeable array K corresponding to N with
respect to θ is defined by

V (K)
def
= N+, RP (K)

def
= {α ∈ (N+)k(P ) | α∗(θ) ∈ NP} (7)

4Note that if we think of M as a flag algebra type, then this notation is compatible
with [Raz07, Definition 8]. But in this paper, like in [CR20], we try to avoid flag algebras
in non-trivial types.
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and we have φN (M) = P[K|[|M |] ∼= M ] for every M ∈ M[T ] (see [CR20,
proof of Theorem 3.4]).

Once we capture combinatorial objects as models of canonical theories,
local combinatorial constructions are then captured by open interpretations
(see [CR20, Sct. 2.2]) in the sense that if I : T1  T2 is an open interpre-
tation and K is a model of T2, there is a naturally defined model I(K)

of T1 given by V (I(K))
def
= V (K) and RP (I(K))

def
= {α ∈ (V (K))k(P ) |

K � I(P )(α1, . . . , αk(P ))}. The simplest but most important type of open
interpretations are the structure-erasing interpretations, which are open in-
terpretations of the form I : T1  T1 ∪ T2, where T1 ∪ T2 is the disjoint
union of the theories T1 and T2. They act identically on the language of T1,
and the corresponding combinatorial construction corresponds to erasing all
information of T2. Convergent sequences behave very well with respect to
open interpretations, namely, if (Nn)n∈N is a convergent sequence of models of
T2, then (I(Nn))n∈N is a convergent sequence of models of T1. This behavior
is translated to operations on the limit objects of Theorem 2.1. Namely, if
φ ∈ Hom+(A[T2],R), the T2-on N and the array K correspond to a conver-

gent sequence (Nn)n∈N of models of T2 under Theorem 2.1, then φI
def
= φ ◦ πI

(where πI is π(U,I) in [Raz07, Definition 4 and Theorem 2.6] when U(x) is

x = x; see also [CR20, Theorem 2.14]), I(N ) given by I(N )P
def
= T (I(P ),N )

(see [CR20, Definition 3.5]) and I(K) are limit objects corresponding to
(I(Nn))n∈N for Theorem 2.1 (see [CR20, Remark 6]).

Finally, let us denote the identity interpretation of a theory T by idT : T  
T and for interpretations I : T1  T3 and J : T2  T4, we denote by I ∪
J : T1 ∪ T2  T3 ∪ T4 the amalgamation interpretation that acts as I on T1

and acts as J on T2.

2.2 Quasirandomness properties

In this section we formalize all notions of quasirandomness presented in the
introduction.

Definition 2.2 (rank and independence). The rank of a peon N ⊆ Ek(Ω)
over Ω = (X,A, µ), denoted rk(N ), is the minimum r ∈ N such that N
can be written as N = H × X([k]

>r) for some H ⊆ Ek,r(Ω). The rank of an
Euclidean structure N is the maximum rank rk(N ) of its peons.

Dually, for ` ∈ N, a peon N ⊆ Ek(Ω) is called `-independent if it can be
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written as N = Ek,`(Ω)×H for some H ⊆ X([k]
>`) and an Euclidean structure

is called `-independent if all of its peons are `-independent.
For ` ∈ N, an Euclidean structure N on L over Ω is weakly `-independent

if the exchangeable array K corresponding to N with respect to θ picked in
EN+(Ω) according to µ (see (7)) is independent from (θA | A ∈ r(N+, `)) as a
random variable.

Given φ ∈ Hom+(A[T ],R), the rank of φ, denoted rk(φ), is the minimum
rank of a T -on N such that φN = φ. Dually, we say φ ∈ Hom+(A[T ],R) is
`-independent (resp., weakly `-independent) if there exists an `-independent
(resp., weakly `-independent) T -on N such that φN = φ. We will refer to
the former property as Independence[`] but we do not introduce any special
notation for weak independence as it will be shown to be equivalent to another
property below.

Definition 2.3 (couplings). Given canonical theories T1, . . . , Tt and φi ∈
Hom+(A[Ti],R) (i ∈ [t]), a coupling of φ1, . . . , φt is a positive homomorphism
ξ ∈ Hom+(A[

⋃
i∈[t] Ti],R) such that ξIi = φi for every i ∈ [t], where Ii : Ti  ⋃

j∈[t] Tj is the structure-erasing interpretation.

The most important coupling is the independent coupling defined below.
In the finite world, the independent coupling of limits of sequences (N i

n)n∈N
with V (N i

n) = V (N j
n) corresponds to the almost sure limit of the random

sequence (Nn)n∈N where Nn is obtained by first randomly permuting the
vertices of each N i

n uniformly and independently and coupling the result.

Definition 2.4 (independent coupling, semantic version). For i ∈ [t], let N i

be a Ti-on over Ωi. The independent coupling of N 1, . . . ,N t is the (
⋃
i∈[t] Ti)-

on N 1 ⊗ · · · ⊗ N t over
∏

i∈[t] Ωi defined by

(N 1 ⊗ · · · ⊗ N t)P
def
=

x ∈∏
j∈[t]

Ek(P )(Ωj)

∣∣∣∣∣∣ πi(x) ∈ N i
P

 ,

whenever P is in the language of Ti and where πi denotes the natural projection
on the i-th coordinate.

Definition 2.5 (independent coupling, syntactic version). For i ∈ [t], let φi ∈
Hom+(A[Ti],R). The independent coupling φ1⊗· · ·⊗φt ∈ Hom+(A[

⋃
i∈[t] Ti],R)

of φ1, . . . , φt is defined by

(φ1 ⊗ · · · ⊗ φt)(〈M〉)
def
=
∏
i∈[t]

φi(〈Ii(M)〉),
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for every M ∈M[
⋃
i∈[t] Ti], where Ii : Ti  

⋃
j∈[t] Tj is the structure-erasing

interpretation.

These two definitions are obviously consistent: if N i is a Ti-on over Ωi

such that φN i = φi (i ∈ [t]), then (φ1 ⊗ · · · ⊗ φt) = φN 1⊗···⊗N t . In particular,
this implies that φ1 ⊗ · · · ⊗ φt ∈ Hom+(A[

⋃
i∈[t] Ti],R) (which can be also

verified by a direct computation).

Definition 2.6 (unique coupleability and inducibility). We say that φ1, . . . , φt
are uniquely coupleable if the independent coupling is their only coupling.
For ` ∈ N, we say that φ ∈ Hom+(A[T ],R) is uniquely `-coupleable if for
every theory T ′ and every ψ ∈ Hom+(A[T ′],R) with rk(ψ) ≤ `, φ and ψ are
uniquely coupleable. We will be using the abbreviation UCouple[`] for this
property.

Given ` ∈ N+, φ ∈ Hom+(A[T ],R) and ψ ∈ Hom+(A[T` -Hypergraph],R), we
say that φ is uniquely inducible by ψ if for any coupling ξ of φ and ψ and for
every M ∈M[T ∪ T` -Hypergraph] such that I(M) is a complete `-hypergraph,
we have ξ(M) = (φ⊗ ψ)(M), where I : T` -Hypergraph  T ∪ T` -Hypergraph is the
structure-erasing interpretation. We say that φ is uniquely `-inducible if it
is uniquely inducible by every ψ ∈ Hom+(A[T` -Hypergraph],R), and we will be
using the abbreviation UInduce[`]. For completeness, we declare every φ to
satisfy UInduce[0].

Remark 1. Since T1 -Hypergraph
∼= T2 -Coloring, for ` = 1 we prefer to work

with the following equivalent formulation of UInduce[1] that can be deduced
from this isomorphism. φ ∈ Hom+(A[T ],R) is uniquely inducible by ψ ∈
Hom+(A[T2 -Coloring],R) if for any coupling ξ of φ and ψ and for every M ∈
M[T ∪ T2 -Coloring] such that Rχ1(M) = V (M), we have ξ(M) = (φ⊗ ψ)(M).
Then φ is uniquely 1-inducible if it is uniquely inducible by every ψ ∈
Hom+(A[T2 -Coloring],R).

Also, as we will see below (Theorem 3.1), UInduce[`] implies UInduce[`′]
for any `′ ≤ `. Hence, we could have equivalently required in this definition
unique inducibility by every ψ ∈ Hom+(A[T`′ -Hypergraph],R) with `′ ≤ `.

These three properties are central to our paper. If P is any of them, we
will say interchangeably that φ satisfies P [`] or that φ ∈ P [`].

Definition 2.7 (locality). Let N be a T -on over Ω = (X,A, µ) and let K
be the exchangeable array corresponding to N with respect to θ picked in
EN+(Ω) according to µ (see (7)).

We say that N is `-local if for every collection (Vi)i∈I of finite subsets of
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N+ with pairwise intersections of size at most `, the marginals (K|Vi | i ∈ I)
are mutually independent.

We say that N is symmetrically `-local if for every collection (Vi)i∈I of
finite subsets of N+ with pairwise intersections of size at most `, the random
variables ([K|Vi ] | i ∈ I) (recall that [K] is the isomorphism type of K) are
mutually independent.

We say that φ ∈ Hom+(A[T ],R) is `-local (resp., symmetrically `-local)
if there exists an `-local (resp., symmetrically `-local) T -on N such that
φ = φN .

Note that both the notions of 0-locality and symmetric 0-locality coincide
with the notion of locality for K (see [CR20, Definition 5.12]). Besides, it is
very easy to give an explicit purely syntactic description of both locality and
symmetric locality in the style of Definition 2.5; this in particular implies that
for an `-local (resp., symmetrically `-local) φ ∈ Hom+(A[T ],R), every T -on
N with φ = φN must necessarily be `-local (resp., symmetrically `-local).

Finally, let us state the properties CliqueDisc[`] and Disc[A] in the limit
language.

Definition 2.8. Let K
(t)
n ∈ Mn[Tt -Hypergraph] be the complete t-uniform hy-

pergraph on n vertices and let ρt
def
= K

(t)
t . Let φ ∈ Hom+(A[Tk -Hypergraph],R)

and ` ∈ [k].
We say that φ satisfies CliqueDisc[`] ([LM15b]) if for every ψ ∈ Hom+(A[T` -Hypergraph],R)

and every coupling ξ of φ and ψ, we have

ξ(K
(k,`)
k ) = φ(ρk)ψ(K

(`)
k ),

where K
(k,`)
k ∈ Mk[Tk -Hypergraph ∪ T` -Hypergraph] is the model obtained by

aligning ρk and K
(`)
k (i.e., the model of size k that is a complete hypergraph

in both theories).
Given an antichain A ⊆ r(k), let LA be the language containing one predi-

cate symbol PA of arity k(PA)
def
= |A| for every A ∈ A. We say that φ satisfies

Disc[A] ([Tow17, AHCH+18]) if for every ψ ∈ Hom+(A[TLA ],R) and every
coupling ξ of φ and ψ, ifK is the exchangeable array inKN+ [Tk -Hypergraph∪TLA ]
associated with ξ, then we have

P[(1, . . . , k) ∈ RE(K) ∧ ∀A ∈ A, ιA ∈ RPA(K)]

= φ(ρk) · P[∀A ∈ A, ιA ∈ RPA(K)],

that is, the events (1, 2, . . . , k) ∈ RE(K) and ∀A ∈ A, ιA ∈ RPA(K) are
independent.
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In [Tow17], the definition of Disc[A] further requires symmetry of the
predicate symbols PA, but it was shown in [AHCH+18] that this condition
can be dropped.

2.3 Useful theories and objects

In this final preliminary subsection, we define some theories and limit objects
that are necessary to formally state some of our main results.

We will denote by ψlin the (unique) element of Hom+(A[TLinOrder],R). As
for the rest, we start with a very general definition (that nonetheless will be
used in full generality in Theorem 3.13) and then derive all others as special
cases.

For c ≥ 2, let Πc
def
= {p = (pi)

c
i=1 ∈ (0, 1)c |

∑c
i=1 pi = 1} be the interior

of the standard (c− 1)-dimensional simplex. Also, given x ∈ En, let σx ∈ Sn
be the unique permutation such that x{σ−1

x (1)} < · · · < x{σ−1
x (n)} when the

coordinates (x{i} | i ∈ [n]) are distinct, and define it arbitrarily otherwise.

Definition 2.9 (Sk-action theories). Let k ∈ N+, let L be a language con-
taining only predicate symbols of arity exactly k, let Θ: Sk × L → L be a

(left) action of Sk on L and write σ · P def
= Θ(σ, P ). The canonical theory TΘ

is defined as the theory over L with axioms( ∧
1≤i<j≤k

xi 6= xj

)
≡

(∨
P∈L

P (x1, . . . , xk)

)
; (8)

P (xσ(1), . . . , xσ(k)) ≡ (σ · P )(x1, . . . , xk) (P ∈ L, σ ∈ Sk); (9)

¬P (x1, . . . , xk) ∨ ¬P ′(x1, . . . , xk) (P, P ′ ∈ L, P 6= P ′). (10)

Given a Θ-invariant p = (pP )P∈L ∈ [0, 1]L with
∑

P∈L pP = 1, the (Θ, p)-
quasirandom homomorphism is the homomorphism ψΘ,p ∈ Hom+(A[TΘ],R)
corresponding to picking at random for each k-set A, independently of other k-
sets, an orbit O ⊆ L of the action Θ with probability

∑
P∈O pP then uniformly

at random choosing an Sk-equivariant assignment of the k-tuples with image
A to the elements of O. A TΘ-on N Z representing ψΘ,p is given by5

N Z
P

def
= {x ∈ Ek | x[k] ∈ Zσx·P} (P ∈ L), (11)

5We will check that all axioms of TΘ are satisfied and provide an alternate syntactic
description as part of Proposition 9.1.
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where Z = (ZP )P∈L is a measurable partition of [0, 1] with λ(ZP ) = pP
(P ∈ L).

Let us now note a few special cases that will play an active role in our
paper.

Definition 2.10 (c-colored k-hypergraphs). Let L = {E1, . . . , Ec} and as-
sume that the action Θ is trivial. In that case we will denote the theory TΘ by
Tc,k and call it the theory of c-colored k-hypergraphs. The (Θ, p)-quasirandom
homomorphism will be called quasirandom c-colored k-hypergraphon with
densities p and denoted by ψk,p.

Definition 2.11 (quasirandom k-hypergraphons). Let us further specify c = 2
in the previous definition. Since E2 is the negation of E1 and hence can be
safely removed, the theory TΘ is isomorphic to Tk -Hypergraph. For p ∈ (0, 1),
the (Θ, (p, 1 − p))-quasirandom homomorphism is called the quasirandom
k-hypergraphon of density p; it will also be denoted by ψk,p.

Definition 2.12 (Colorings). Letting instead k = 1 in Definition 2.9, and
keeping the action Θ trivial, we see that TΘ is naturally isomorphic to the
theory Tc -Coloring. The quasirandom object will be called c-coloring with
densities p, p ∈ Πc, and denoted by ψp ∈ Hom+(A[Tc -Coloring],R). For c = 2
and p ∈ (0, 1), ψ(p,1−p) will be often abbreviated to ψp (which, in view of
Remark 1, is also the same as ψ1,p ∈ Hom+(A[T1 -Hypergraph],R)).

Definition 2.13 (k-tournaments). Let now L = {E1, E2} and k ≥ 2, but this
time the action Θ is not trivial but instead given by the sign homomorphism
sgn: Sk → S2. Then the only Θ-invariant p is p1 = p2 = 1/2 and, as in
the case of hypergraphons, we can exclude E2 from the theory. We call it
the theory of k-tournaments and denote by Tk -Tournament; intuitively, this
theory corresponds to choosing one of the two possible orientations for every
k-set. The quasirandom object ψΘ,(1/2,1/2) will then be called the quasirandom
k-tournamon and denoted by ψk; thus, ψk ∈ Hom+(A[Tk -Tournament],R), and
ψ2 is the ordinary quasirandom tournamon.

3 Main results

In this section we present the main results. We remark that some of these
results follow trivially from definitions and we will point these out as we go
along.
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Theorem 3.1. The properties Independence, UCouple and UInduce are
anti-monotone in the sense that P [`] =⇒ P [`− 1].

For Independence and UCouple, this theorem trivially follows from defi-
nitions. Even though it is possible to give an ad hoc proof that UInduce is
also anti-monotone, this follows trivially from its equivalence with symmetric
locality (Theorem 3.11 below) and the fact that symmetric locality is trivially
anti-monotone.

Theorem 3.2. For any ` ∈ N, Independence[`] =⇒ UCouple[`] =⇒
UInduce[`].

The second implication follows trivially from the definitions.

The next theorem concerns preservation of properties under open inter-
pretations.

Theorem 3.3 (Naturality). Let I : T1  T2 be an open interpretation and
let ` ∈ N. The following hold for any φ ∈ Hom+(A[T2],R).

i. If φ is uniquely coupleable with some ψ ∈ Hom+(A[T ′],R), then φI is
uniquely coupleable with ψ.

ii. If φ ∈ Independence[`], then φI ∈ Independence[`].

iii. If φ ∈ UCouple[`], then φI ∈ UCouple[`].

iv. If φ ∈ UInduce[`], then φI ∈ UInduce[`].

Item (ii) follows trivially from the definition of I(N ) applied to an `-
independent T2-on N such that φ = φN . Note also that item (iii) follows
trivially from item (i). Furthermore, applying this theorem to the axiom-
adding interpretation I : TL  T , where L is the language of T , we see that
all our main notions do not depend on non-logical axioms. Nonetheless, using
theories and theons (as opposed to arbitrary Euclidean structures) helps to
better orient ourselves and put many of the results in the “right” focus.

The next theorem says that both Independence and UCouple are pre-
served under independent couplings.

Theorem 3.4. Let φ1 ∈ Hom+(A[T1],R) and φ2 ∈ Hom+(A[T2],R). The
following hold for ` ∈ N.

i. If φ1, φ2 ∈ Independence[`], then φ1 ⊗ φ2 ∈ Independence[`].
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ii. If φ1, φ2 ∈ UCouple[`], then φ1 ⊗ φ2 ∈ UCouple[`].

Remarkably, this is not true for UInduce, and a good example is provided
by the quasirandom permuton (see the end of this section).

The next five theorems concern separations between properties, either
allowing general theories or restricted to the theory of hypergraphs.

Theorem 3.5. Independence[`] does not imply UInduce[` + 1], not even
when restricted to the theory of k-hypergraphs as long as k > `.

In fact, this theorem is a consequence of Theorems 3.14 and 3.16 below.

The following two theorems are included since the separating objects are
quite natural and explicit and the proofs are simpler. But in a sense they will
be superseded by Theorems 3.8 and 3.9.

Theorem 3.6. For every ` ∈ N+, the quasirandom (`+ 1)-tournamon ψ`+1

satisfies UCouple[`] but does not satisfy Independence[`].

Theorem 3.7. The linear order ψlin ∈ Hom+(A[TLinOrder],R) satisfies UInduce[`]
for every ` ∈ N but does not satisfy UCouple[1].

Theorem 3.8. For ` ≥ 1, there exists φ ∈ Hom+(A[T(`+2) -Hypergraph],R)
satisfying UCouple[`] but not satisfying Independence[`].

Theorem 3.9. For ` ≥ 1 odd, there exists φ ∈ Hom+(A[T(`+2) -Hypergraph],R)
satisfying UInduce[`] but not satisfying UCouple[1].

The next theorem lists several properties that are equivalent to UCouple[`].
These include both alternative formulations and complete sets of tests for
unique coupleability.

Theorem 3.10 (Characterization of UCouple). Let ` ∈ N+. The following
are equivalent for φ ∈ Hom+(A[T ],R).

i. φ ∈ UCouple[`].

ii. For every `′ ∈ [`], there exists p ∈ (0, 1) such that φ is uniquely
coupleable with the quasirandom `′-hypergraphon ψ`′,p.

iii. There exist p1, . . . , p` ∈ (0, 1) such that φ is uniquely coupleable with
the independent coupling ψ1,p1 ⊗ · · · ⊗ ψ`,p` of the quasirandom `′-
hypergraphons ψ`′,p`′ for `′ ∈ [`].

iv. φ is weakly `-independent.
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v. Every T -on N with φN = φ is weakly `-independent.

vi. φ is `-local.

vii. φ⊗ ψlin satisfies UInduce[`].

Note that since `′-hypergraphons have rank at most `′, a posteriori, we
can also strengthen items (ii) and (iii) by replacing existential quantifiers
on p, p1, . . . , p` with universal ones. Also, since the linear order has rank
1, a posteriori, we can strengthen item (vii) to say that every coupling
of φ with the linear order satisfies UInduce[`]. In the actual proof of the
implication (ii) =⇒ (i) (that, arguably, is our technically most difficult result),
we go in the opposite direction and painstakingly “bootstrap” the premise
in (ii) to the unique coupleability with increasingly larger families of objects.

Let us also point out that, given Theorem 3.4(ii), one might expect that,
in general, if each one of ψ1, . . . , ψt is uniquely coupleable with a given φ,
then the same should hold for their independent coupling ψ1 ⊗ · · · ⊗ ψt; this
would immediately give (ii) =⇒ (iii) in Theorem 3.10. However, this question
has turned out surprisingly difficult in full generality (see Section 10 for a
discussion).

The next, more modest, theorem provides properties equivalent to UInduce[`].

Theorem 3.11 (Characterization of UInduce). The following are equivalent
for ` ∈ N+ and φ ∈ Hom+(A[T ],R).

i. φ ∈ UInduce[`].

ii. There exists p ∈ (0, 1) such that φ is uniquely inducible by every
ψ ∈ Hom+(A[T` -Hypergraph],R) with ψ(ρ`) = p.

iii. φ is symmetrically `-local.

The next two theorems completely classify Independence[k − 1] and
UCouple[k − 1] when all arities are at most k. These can be thought of as
analogues of full quasirandomness for these families of properties.

Theorem 3.12. Let k ∈ N+ and suppose that k(P ) ≤ k for all P ∈ L. Let T
be a theory over L and φ ∈ Hom+(A[T ],R). Then φ ∈ Independence[k−1] if
and only if there exist c ∈ N+, p ∈ Πc and an open interpretation I : T  Tc,k
such that φ = ψIk,p.
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Theorem 3.13. Let k ∈ N+ and suppose that k(P ) ≤ k for all P ∈ L. Let T
be a theory over L and φ ∈ Hom+(A[T ],R). Then φ ∈ UCouple[k − 1] if and
only if there exists a language L′ whose predicate symbols have arity exactly
k, an action Θ: Sk × L′ → L′, a Θ-invariant p = (pP )P∈L′ ∈ [0, 1]L

′
with∑

P∈L′ pP = 1 and an open interpretation I : T  TΘ such that φ = ψIΘ,p.

3.1 Comparison to ad hoc theories

Hypergraphs. The theory of hypergraphons has been most inspirational
to our work as it also pertains to quasirandomness of “different strength”,
arranged in hierarchies like ours. In fact, the last three theorems compare our
notions with the hierarchies based on various discrepancy properties from the
literature.

As we remarked in the introduction, the results of [Tow17] imply that
Dev[k − 1] = Disc[Ak−1] is the strongest discrepancy property below full
quasirandomness and Disc[{[` + 1]}] is the weakest discrepancy property
above CliqueDisc[`]. This together with Theorems 3.1, 3.2 and 3.9 and
the three theorems below justify the Hasse diagram of Figure 2 between the
families Independence and UInduce and the discrepancy properties in the
literature.

The following theorem trivially follows from definitions.

Theorem 3.14. For every k ≥ ` ≥ 1 and every φ ∈ Hom+(A[Tk -Hypergraph],R),
if φ ∈ UInduce[`], then φ ∈ CliqueDisc[`].

Theorem 3.15. For every k ∈ N+, there exists φ ∈ Hom+(A[Tk -Hypergraph],R)
satisfying Dev[k − 1] but not satisfying UInduce[1].

Theorem 3.16. For every k > ` ≥ 1, there exists φ ∈ Hom+(A[Tk -Hypergraph],R)
satisfying Independence[`] but not satisfying Disc[{[`+ 1]}].

Table 1 contains pointers to where each of the theorems (or their parts)
are proved.

Permutations. In our language, the quasirandom permuton [Coo04,
KP13] is simply ψlin ⊗ ψlin (see [CR20, Example 6]). It does not satisfy even
the weakest of our properties UInduce[1]. This can be easily verified by a
direct computation, but a more instructive way would be to apply Theorem 3.7
and Theorem 3.10(i)≡(vii). Since, on the other hand, ψlin ∈ UInduce[1], we
see that the analogue of Theorem 3.4 is not true for unique inducibility.
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Theorem Proof location
3.1 Section 6
3.2 Section 4
3.3 Section 5
3.4 Section 4
3.5 Section 8
3.6 Section 8
3.7 Section 8
3.8 Section 8
3.9 Section 8
3.10 (i)≡(ii)≡(iii) Lemma 7.8

(i)≡(iv)≡(v) Lemma 4.4
(iv) =⇒ (vi) Lemma 4.7
(vi) =⇒ (vii) Lemma 7.9
(vii) =⇒ (ii) Lemma 7.10

3.11 (i)≡(ii) Lemma 6.1
(iii) =⇒ (i) Lemma 6.3
(i) =⇒ (iii) Lemma 6.13

3.12 Section 9
3.13 Section 9
3.14 Trivial (see Definitions 2.6 and 2.8)
3.15 Section 8
3.16 Section 8

Table 1: Proof locations for theorems of Section 3.

26



These observations suggest an interesting research direction; we will return
to it in Section 10.

Words. In our language, quasirandom words defined in [HKPS20] are
simply ψlin ⊗ ψp (p ∈ (0, 1), ψp ∈ Hom+(A[T2 -Coloring],R)). This is clearly
generalizable to ψp ∈ Hom+(A[Tc -Coloring],R) (p ∈ Πc), corresponding to
quasirandom word sequences over the alphabet [c] with given letter frequencies
(p1, . . . , pc). In this way, one can immediately recover existence and uniqueness
of the limits of arbitrary (not necessarily quasirandom) convergent sequences
from the general theory in [CR20].

In terms of comparisons, since ψp 6∈ UInduce[1], the same is true for the
quasirandom “wordeons” ψlin ⊗ ψp.

Latin squares. This is a very interesting example since it is the first
time we have encountered an ad hoc theory of limit objects that is provably
different from what might be extracted from our framework.

Recall (see e.g. [DK74]) that there are two major forms of representing a
Latin square: as a multiplication table of a quasigroup and as an orthogonal
array. As it turns out, they lead to different theories.

The limit theory of Latin squares based on the tabular representation was
developed in [GHHS20], and the corresponding theory of quasirandomness
was continued in [CKLM20]. In the language of theons, this theory can
be handled only after a fashion, in the same vein as limits of functions on
finite vector spaces [CR20, Sct. 7.5], that is by introducing countably many
auxiliary predicate symbols. In this way one immediately gets existence and
uniqueness, but other than that the result will be somewhat ugly and not
particularly instructive.

The orthogonal array representation opens up another possibility. Recall
that in this representation a Latin square is simply an n2-subset of [n]×[n]×[n]
such that its projection onto every two coordinates is bijective. Uniformly
sampling from this set, we will get a model of TLinOrder ∪ TLinOrder ∪ TLinOrder.
Hence a “Borromean” (as in “Borromean rings”) view of limits of Latin squares
would be simply an element of Hom+(A[TLinOrder ∪ TLinOrder ∪ TLinOrder],R)
such that all three permutons obtained from it by erasing one of the orders
are quasirandom.

One obvious example is the quasirandom limit of Latin squares ψlin ⊗
ψlin ⊗ ψlin. But there are others. Indeed, in complete analogy with permu-
tons, limits of Latin squares (in our sense) can be uniquely identified with
probability distributions on [0, 1]3 such that all three 2-dimensional marginals
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are uniform. Under this identification, ψlin ⊗ ψlin ⊗ ψlin corresponds to the
uniform probability measure on [0, 1]3 and a non-quasirandom example is
provided, say, by the uniform probability measure supported on the skewed
quasi-random graphon (2) with p = 1/2.

Finally, since the quasirandom permuton does not satisfy UInduce[1], it
follows that no limit of Latin squares satisfies UInduce[1] as well.

4 Basic properties and the first equivalence

In this section we present some initial properties about the notions we have
defined and prove the easiest equivalence in Theorem 3.10 between items (i),
(iv) and (v). The first proposition says that only trivial objects can have
unique coupleability parameter greater or equal to its rank; this stems from
the fact that non-trivial objects are not uniquely coupleable with themselves.

Proposition 4.1. Let φ ∈ Hom+(A[T ],R) and r
def
= rk(φ).

i. r = 0 if and only if φ ∈
⋂
`∈N UCouple[`].

ii. If r > 0 then φ /∈ UCouple[r].

Proof. Note that r = 0 if and only if all peons NP are trivial (that is, NP = ∅
or NP = Ek(P ) a.e.), which in turn is equivalent to having φ(〈K〉) ∈ {0, 1} for
every finite set V and every K ∈ KV [T ]. This implies that there is a unique
K ∈ KV [T ] with φ(〈K〉) = 1 and this K must further have full automorphism
group Aut(K) = SV .

Let now ψ ∈ Hom+(A[T ′],R) for some theory T ′, and assume that ξ is
a coupling of φ and ψ. Fix a (T ∪ T ′)-on N such that ξ = φN . Then for
every K ∈ KV [T ∪T ′] with V finite we have Tind(K,N ) = Tind(I(K), I(N ))∩
Tind(I ′(K), I ′(N )), where I : T  T∪T ′ and I ′ : T ′  T∪T ′ are the structure-
erasing interpretations.

If r = 0, we get ξ(〈K〉) = φ(〈I(K)〉)ψ(〈I ′(K)〉) (since φ is 0-1 valued) so
the forward direction of item (i) follows.

The backward direction of item (i) clearly follows from item (ii), so let us
prove the latter by contradiction. Suppose that φ ∈ UCouple[r] and fix a T -on

N such that φ = φN and rk(N ) = r. Consider the (T ∪ T )-on H def
= N

·
∪N

in which both copies of each predicate symbol P get mapped to NP , i.e., H is
the coupling of N with itself. Since rk(H) = rk(N ) = r and φ ∈ UCouple[r],
we must have φH = φ⊗ φ.
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Fix a finite set V and K ∈ KV [T ] and let K2 ∈ KV [T ∪ T ] be given by

setting RP (K2)
def
= RP (K) for both copies of each predicate symbol P . Then

we have

φ(〈K〉) = tind(K,N ) = tind(K2,H) = (φ⊗ φ)(〈K2〉) = φ(〈K〉)2,

so we must have φ(〈K〉) ∈ {0, 1}. Hence r = 0, and item (ii) follows.

The next two propositions will make use of the theon uniqueness theo-
rems [CR20, Theorems 3.9 and 3.11, Proposition 7.7]. Recall from [CR20, Def-
inition 3.8 and Sct. 7] that for a sequence of symmetric (i.e., Sd-invariant) func-

tions f = (fd)
k
d=1 with fd : Ed(Ω)→ Ω′ the sequence of functions f̂ = (f̂d)

k
d=1

with f̂d : Ed(Ω)→ Ed(Ω′) is defined by

f̂d(x)A
def
= f|A|(ι

∗
A(x)) (A ∈ r(d)).

As we have seen in the introduction, a positive homomorphism φ ∈
Independence[`] can have geometric realizations far from being `-independent
(cf. (1) and (2)). The next proposition says that for rank the situation is
precisely the opposite.

Proposition 4.2. For every peon N ⊆ Ek(Ω) there exists another peon
H ⊆ Ek(Ω) such that rk(H) = rk(φN ) and H = N a.e. Moreover, if N is
`-independent for some ` ≤ k, then H can be taken to also be `-independent.

Proof. Let µ be the measure of Ω and X be its underlying space, let r
def
=

rk(φN ) and define the function W : Ek,r(Ω)→ [0, 1] by

W (x)
def
= µ({y ∈ X([k]

>r) | (x, y) ∈ N}), (12)

defining it arbitrarily when this set is not measurable. Fubini’s Theorem
ensures that this function is measurable so we define

H def
= W−1(1)×X([k]

>r).

Clearly rk(H) ≤ r. Hence, to prove that H = N a.e., it is sufficient to show
that W is 0-1 valued a.e.

Since rk(φN ) = r, we know that there exists a peon G over some space Ω′ =
(X ′,A′, µ′) such that φG = φN and rk(G) = r. By theon uniqueness [CR20,
Proposition 7.7], there exist sequences f = (fd)

k
d=1, g = (gd)

k
d=1 of symmetric
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measure preserving on h.o.a. (higher order arguments) functions (fd : Ed → Ω
and gd : Ed → Ω′) such that

f̂k(z) ∈ N ≡ ĝk(z) ∈ G (13)

for almost every z ∈ Ek. From the structure of the function f̂k, we can
decompose it as

f̂k(x, y) = (F1(x), F2(x, y)),

for every (x, y) ∈ Ek,r × [0, 1](
[k]
>r), where F1 : Ek,r → Ek,r(Ω) and F2 : Ek →

X([k]
>r) are given by

F1(x)A
def
= f|A|(ι

∗
A(x)), F2(x, y)A

def
= f|A|(ι

∗
A(x, y)).

We perform a similar decomposition of ĝk in terms of functions G1 : Ek,r →
Ek,r(Ω′) and G2 : Ek → (X ′)(

[k]
>r).

Since the functions fd are measure preserving on h.o.a., it follows that F1 is

measure preserving and for every x ∈ Ek,r the restriction F2(x,−) : [0, 1](
[k]
>r) →

X([k]
>r) is measure preserving. Hence Fubini’s Theorem applied to (13) implies

W (F1(x)) = λ({y ∈ [0, 1](
[k]
>r) | (G1(x), G2(x, y)) ∈ G})

for almost every x ∈ Ek,r. But since rk(G) = r, the measure above can
only be 0 or 1 (as G2(x, y) contains only coordinates with |A| > r). Since
F1 is measure preserving, this implies that W (z) ∈ {0, 1} for almost every
z ∈ Ek,r(Ω) and thus H = N a.e.

We have already shown that rk(H) ≤ r and since H = N µ-a.e. implies
φH = φN , the other inequality must also hold.

The last statement is obvious from the construction.

As we have seen in Section 2.1, given an open interpretation I : T1  
T2 and a T2-on H, the T1-on I(H) represents the limit object constructed
from φH via I, i.e., we have φI(H) = φIH. However, given a T1-on N and
φ ∈ Hom+(A[T2],R) such that φI = φN , it is not true that there exists a
T2-on H such that both I(H) = N a.e. and φH = φ (see [CR20, Example 45]).
The next proposition says in essence that this example is the worst that can
happen: at the cost of adding an extra dummy variable, we can find an H
such that I(H)P = NP × Ek(P ) a.e. and φH = φ.
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Proposition 4.3. Let I : T1  T2, let φ ∈ Hom+(A[T2],R), and let N be a
T1-on over Ω such that φI = φN . Then there exists a T2-on H over Ω×Ω such
that φH = φ and I(H)P = NP × Ek(P )(Ω) a.e., for every predicate symbol P
in the language of T1.

Furthermore, if T2 = T1 ∪ T ′ for some T ′ and I is the structure-erasing

interpretation, then H can be taken to satisfy I(H)P
def
= HP = NP × Ek(P )(Ω)

everywhere for every predicate symbol P in the language of T1.

Proof. For i ∈ [2], let Li be the language of Ti and let ki
def
= maxP∈Li k(P ).

Let G be a T2-on over Ω such that φG = φ. Since φI(G) = φI = φN , by theon

uniqueness [CR20, Proposition 7.7], there exists a sequence h = (hd)
k1
d=1 of

symmetric measure preserving on h.o.a. functions (hd : Ed(Ω)× Ed(Ω)→ Ω)
such that

ĥk(P )(x, x̂) ∈ I(G)P ≡ x ∈ NP , (14)

for every P ∈ L1 and almost every (x, x̂) ∈ Ek(P )(Ω)× Ek(P )(Ω). Extend the
family h by defining hd : Ed(Ω) × Ed(Ω) → Ω for k1 < d ≤ max{k1, k2} as

hd(x, x̂)
def
= x[d], and note that hd is symmetric and measure preserving on

h.o.a.
Define then the T2-on H over Ω× Ω by

HQ
def
= ĥ−1

k(Q)(GQ) (15)

for every Q ∈ L2. By (the easy direction of) theon uniqueness [CR20,
Proposition 7.7], it follows that φH = φG = φ. On the other hand, the
definition of H ensures that

(x, x̂) ∈ I(H)P ≡ ĥk(P )(x, x̂) ∈ I(G)P

for every P ∈ L1 and every (x, x̂) ∈ Ek(P )(Ω) × Ek(P )(Ω), which together
with (14) implies I(H)P = NP × Ek(P )(Ω) a.e.

For the case when T2 = T1 ∪ T ′ for some T ′ and I is the structure-erasing
interpretation, we define H instead by using (15) only for Q ∈ L2 \L1 and use

HP
def
= NP × Ek(P )(Ω) for every P ∈ L1 (as required). By (14) this is only a

zero-measure change from the previous definition so we still have φH = φ.

Propositions 4.2 and 4.3 allow us to show the equivalence in Theorem 3.10
between items (i), (iv) and (v).
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Lemma 4.4 (Theorem 3.10(i)≡(iv)≡(v)). The following are equivalent for
φ ∈ Hom+(A[T ],R) and ` ∈ N.

i. φ ∈ UCouple[`].

ii. φ is weakly `-independent.

iii. Every T -on N with φ = φN is weakly `-independent.

Proof. (iii) =⇒ (ii) is trivial.

(ii) =⇒ (i).
LetN be a T -on over some space Ω = (X,A, µ) such that the exchangeable

array K corresponding to N with respect to θ picked in EN+(Ω) according
to µ is independent from (θA | A ∈ r(N+, `)). Let ψ ∈ Hom+(A[T ′],R) for
some theory T ′ be such that rk(ψ) ≤ ` and let ξ ∈ Hom+(A[T ∪ T ′],R) be
any coupling of φ and ψ. We have to prove that ξ = φ⊗ ψ.

Let also I : T  T ∪ T ′ and I ′ : T ′  T ∪ T ′ be the structure-erasing
interpretations. By Proposition 4.3, there exists a (T ∪ T ′)-on H over Ω× Ω
such that ξ = φH and

HP = NP × Ek(P )(Ω) (16)

for every P in the language of T . By possibly changing zero-measure sets
of the peons corresponding to T ′ using Proposition 4.2, we may also assume
rk(I ′(H)) = rk(ψ) ≤ `.

Let us pick η in EN+(Ω) according to µ and independently from θ; we
view (θ,η) as a EN+(Ω × Ω)-valued random variable distributed according
to µ⊗ µ. Let L be the exchangeable array corresponding to H with respect
to (θ,η). Note that (16) implies that I(L) = K, which in turn implies
that I(L) is independent from ((θA | A ∈ r(N+, `)),η). On the other
hand, since rk(I ′(H)) ≤ `, it follows that I ′(L) is completely determined by
((θA,ηA) | A ∈ r(N+, `)), so I(L) is independent from I ′(L). This means
that for m ∈ N+ and K ∈ Km[T ∪ T ′], we have

ξ(〈K〉) = P[L|[m] = K] = P[I(L)|[m] = I(K) ∧ I ′(L)|[m] = I ′(K)]

= P[I(L)|[m] = I(K)] · P[I ′(L)|[m] = I ′(K)] = φ(〈I(K)〉) · ψ(〈I ′(K)〉),

so ξ = φ⊗ ψ, hence item (i) follows.

Let us prove (i) =⇒ (iii). Let Ω = (X,A, µ) be an atomless complete
probability space and N be a T -on over Ω with φ = φN . We have to prove
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that the exchangeable array K corresponding to N with respect to θ picked
in EN+(Ω) according to µ is independent from (θA | A ∈ r(N+, `)). For that, it
is sufficient to show that for any m ∈ N, any K ∈ Km[T ] and any measurable
set B ⊆ Em,`(Ω), the events K|[m] = K and (θA | A ∈ r(m, `)) ∈ B are
independent.

Let Q be a new m-ary predicate symbol and consider the (T ∪ T{Q})-
on H over Ω given by HP

def
= NP for every P in the language of T and

HQ
def
= B × X([m]

>`). Let also I : T  T ∪ T{Q} and I ′ : T{Q}  T ∪ T{Q} be
the structure-erasing interpretations so that φH is a coupling of φ and φI

′
H.

Since rk(φI
′
H) ≤ rk(HQ) ≤ ` and φ ∈ UCouple[`], we have φH = φ ⊗ φI

′
H.

Finally, let S be the set of all L ∈ Km[T ∪ T{Q}] such that I(L) = K and
(1, 2, . . . ,m) ∈ RQ(L). Then we have

P[K|[m] = K ∧ (θA | A ∈ r(m, `)) ∈ B] =
∑
L∈S

φH(〈L〉)

= φ(〈K〉)
∑
L∈S

φI
′

H(〈I ′(L)〉) = P[K|[m] = K] · P[(θA | A ∈ r(m, `)) ∈ B],

which completes the proof.

The alternative characterization of UCouple via weak independence gives
easy proofs of Theorems 3.2 and 3.4.

Proof of Theorem 3.2. Independence[`] =⇒ UCouple[`].
Let N be an `-independent T -on, and let K be the exchangeable array

corresponding to N . Then each RP (K) depends only on the coordinates
θA with |A| > ` (see (7)) and hence is independent from (θA | A ∈ r(A, `)).
Therefore, N is weakly `-independent and Independence[`] =⇒ UCouple[`]
follows from Lemma 4.4.

The implication UCouple[`] =⇒ UInduce[`] follows trivially from the
definitions.

Proof of Theorem 3.4. For item (i), if N 1 and N 2 are `-independent theons
then N 1 ⊗N 2 is also `-independent, from which the statement follows.

For item (ii), pick arbitrarily theons N 1 and N 2 such that φi = φN i . Let
(θ1,θ2) be uniformly distributed in EN+×EN+ , and let K be the exchangeable
array corresponding to N 1⊗N 2 with respect to (θ1,θ2). Note that for i ∈ [2]
and for the structure-erasing interpretation Ii : Ti  T1∪T2, the exchangeable
array corresponding to N i with respect θi is Ii(K).
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By Lemma 4.4, it is sufficient to show that if Ii(K) is independent from
(θiA | A ∈ r(N+, `)) for i ∈ [2], then K is independent from ((θ1A,θ

2
A) | A ∈

r(N+, `)). This immediately follows from the following easily verifiable general
fact:

Claim 4.5. Let X1,X2,Y1,Y2 be mutually independent random variables,
and let f1(X1, Y1), f2(X2, Y2) be functions such that fi(Xi,Yi) is independent
from Xi (i = 1, 2). Then (f1(X1,Y1), f2(X2,Y2)) is independent from
(X1,X2).

In our context, we set Xi = (θiA | |A| ≤ `), Yi = (θiA | |A| > `) and let fi
compute the array Ii(K) from (Xi, Yi) (thus (f1(X1, Y1), f2(X2, Y2)) computes
the array K from (X1, X2, Y1, Y2)).

The next lemma says that unique coupleability satisfies a “chain rule”
analogous to the chain rule for mutual independence of random variables.

Lemma 4.6. Let φi ∈ Hom+(A[Ti],R) for i ∈ [t] and suppose that for every
i ∈ [t− 1], φi+1 is uniquely coupleable with φ1⊗ · · · ⊗ φi. Then φ1, . . . , φt are
uniquely coupleable.

Proof. The proof is by induction in t. The result for t = 1 is trivial. For
t ≥ 2, let ξ ∈ Hom+(A[

⋃t
i=1 Ti],R) be a coupling of φ1, . . . , φt and let

I :
⋃t−1
i=1 Ti  

⋃t
i=1 Ti be the structure-erasing interpretation. Since ξI is a

coupling of φ1, . . . , φt−1, by inductive hypothesis we must have ξI = φ1 ⊗
· · · ⊗ φt−1 so ξ is also a coupling of φ1 ⊗ · · · ⊗ φt−1 and φt, hence we must
have ξ = φ1 ⊗ · · · ⊗ φt.

We finish this section with the (almost trivial) implication (iv) =⇒ (vi) of
Theorem 3.10.

Lemma 4.7 (Theorem 3.10(iv) =⇒ (vi)). Let ` ∈ N. If φ is weakly `-
independent, then φ is `-local.

Proof. Let K be the exchangeable array corresponding to some theon N
with respect to θ picked in EN+(Ω) according to µ such that φ = φN and
suppose K is independent from (θA | A ∈ r(N+, `)). Since for V ∈ r(N+) the
marginal K|V depends only on (θA | A ∈ r(V )), the marginals (K|Vi | i ∈ I)
are mutually independent as long as the sets Vi have pairwise intersections of
size at most `. This follows from the following general observation.

34



Claim 4.8. LetX,Y1, . . . ,Yn be mutually independent random variables and
fi(X, Yi) be functions such that (f1(X,Y1), . . . , fn(X,Yn)) is independent
of X. Then f1(X,Y1), . . . , fn(X,Yn) are mutually independent.

In our situation, X = (θA | A ∈ r(N+, `)), Yi = (θA | A ∈ r(Vi)\r(N+, `))
and fi computes the marginal K|Vi from (θA | A ∈ r(Vi)).

This completes the proof that φ is `-local.

5 Naturality

The objective of this section is to show Theorem 3.3, that is, to show that our
quasirandomness properties are preserved under open interpretations. For
this, we need to do a bit of abstract nonsense.

Recall from [CR20, Sct. 2.2] that the category Int has pushouts (otherwise
known as amalgamated sums, fibred coproducts, etc.). More concretely, for
open interpretations I1 : T  T1 and I2 : T  T2, a pushout of (I1, I2) is
given by the theory T ′ obtained from T1 ∪ T2 by adding the axioms

∀~x, (I1(P )(~x) ≡ I2(P )(~x)) (17)

for every P in the language of T and the open interpretations Ji : Ti  T ′

(i ∈ [2]) that act identically on the language of Ti so that

T T1

T2 T ′

I1

I2 J1

J2

is commutative and has the standard universality property.
The following theorem says that we can also amalgamate limit objects

along pushouts. Let us warn that unless the theory T is trivial (in which case
a “canonical” amalgamation is provided by the independent coupling), we
are not aware of any natural, functorial construction here.

Theorem 5.1. Let

T T1

T2 T ′

I1

I2 J1

J2
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be a pushout of Int and let φ1 ∈ Hom+(A[T1],R) and φ2 ∈ Hom+(A[T2],R)
be such that φI11 = φI22 . Then there exists ψ ∈ Hom+(A[T ′],R) such that
ψJ1 = φ1 and ψJ2 = φ2.

Proof. First we claim that it is enough to show the case when T ′ is obtained
from T1 ∪ T2 by adding the axioms (17). Indeed, if ψ is constructed for such
particular case, then we can get our desired element of Hom+(A[T ′],R) for a
general pushout T ′ as ψI for the universal isomorphism I between the pushout
theories.

Let us prove then the particular case. Let L, L1 and L2 be the languages
of T , T1 and T2, respectively. For i ∈ [2], let N i be a Ti-on (over [0, 1]) such
that φi = φN i . Since φI1(N 1) = φI11 = φI22 = φI2(N 2), by Proposition 4.3, there
exists a T1-on H1 over [0, 1]2 such that I1(H1)P = I2(N 2)P × Ek(P ) λ-a.e. for
every P ∈ L.

Define then the Euclidean structure H on L1

·
∪ L2 over [0, 1]2 by

HP
def
=

{
H1
P , if P ∈ L1;

N 2
P × Ek(P ), if P ∈ L2.

Let us show that H is a (weak) T ′-on. To show this, it is enough to show
(see [CR20, Definition 3.5, Remark 5, Theorem 3.7], by reaxiomatizing T, T1, T2

to be substitutionally closed, T ′ also becomes substitutionally closed) that
T (I1(P ),H) = T (I2(P ),H) λ-a.e. for every P ∈ L. But this follows from

T (I1(P ),H) = T (I1(P ),H1) = I1(H1)P ;

T (I2(P ),H) = T (I2(P ),N 2)× Ek(P ) = I2(N 2)× Ek(P ).

Finally, since we trivially have J1(H) = H1 and J2(H)P = N 2
P × Ek(P ) for

every P ∈ L2, it follows that ψ
def
= φH satisfies ψJ1 = φ1 and ψJ2 = φ2.

The next proposition makes use of this amalgamation property to “lift”
couplings through interpretations.

Proposition 5.2 (Coupling lifting). Let I : T1  T2 be an open inter-
pretation, let T be a canonical theory and let φ ∈ Hom+(A[T ],R) and
φ2 ∈ Hom+(A[T2],R). If ξ is a coupling of φI2 and φ, then there exists a

coupling ξ̂ of φ2 and φ such that ξ = ξ̂I∪idT .
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Proof. This follows from Theorem 5.1 and the fact that

T1 T2

T1 ∪ T T2 ∪ T

I

I∪idT

is a pushout in Int, where the vertical arrows are the structure-erasing
interpretations.

Equipped with this “lifting” construction, we can prove Theorem 3.3 about
naturality of our properties.

Proof of Theorem 3.3. For item (i), let Ii : Ti  T ∪ Ti be the structure-
erasing interpretation for i ∈ [2] and note that if ξ is a coupling of φI with ψ,

then Proposition 5.2 gives us a coupling ξ̂ of φ with ψ such that ξ = ξ̂I∪idT .
Since φ is uniquely coupleable with ψ we must have ξ̂ = φ⊗ ψ, from which
we get ξ = ξ̂I∪idT = φI ⊗ ζ, hence φI and ψ are uniquely coupleable.

Item (ii) follows trivially from the fact that if N is an `-independent T2-on
with φ = φN , then I(N ) is an `-independent T1-on with φI(N ) = φI .

Item (iii) follows trivially from item (i).
For item (iv), we let ψ ∈ Hom+(A[T` -Hypergraph],R) and ξ be a coupling

of φI with ψ and we make the same construction of the coupling ξ̂ of φ
and ψ of item (i) using Proposition 5.2. For i ∈ [2], let Ji : T` -Hypergraph  
Ti ∪ T` -Hypergraph be the structure-erasing interpretation and note that if

M ∈M[T1 ∪ T` -Hypergraph] is such that J1(M) ∼= K
(`)
|M |, then we have

ξ(M) = ξ̂I∪idT (M)

= ξ̂
(∑{

M ′ ∈M|M |[T2 ∪ T` -Hypergraph]
∣∣∣ I(I2(M ′)) ∼= I1(M) ∧ J2(M ′) ∼= K

(`)
|M |

})
= ψ(K

(`)
|M |) · φ

(∑{
M ′ ∈M|M |[T2]

∣∣ I(M ′) ∼= I1(M)
})

= ψ(K
(`)
|M |) · φ

I(I1(M))

= (φI ⊗ ψ)(M),

where the third equality follows from the fact that φ ∈ UInduce[`]. Hence
φI ∈ UInduce[`].
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6 Unique inducibility

In this section we prove Theorem 3.11. We start by showing the equivalence
between items (i) and (ii). Curiously, the case ` = 1 is the hardest one to
prove.

Lemma 6.1 (Theorem 3.11(i)≡(ii)). Let ` ∈ N+ and φ ∈ Hom+(A[T ],R).
Then φ ∈ UInduce[`] if and only if there exists p ∈ (0, 1) such that φ is
uniquely inducible by every ψ ∈ Hom+(A[T` -Hypergraph],R) with ψ(ρ`) = p.

Proof. The forward implication is obvious.
For p ∈ (0, 1), let us say that φ is uniquely p-inducible if it is uniquely

inducible by every ψ ∈ Hom+(A[T` -Hypergraph],R) with ψ(ρ`) = p. Then the
backward implication amounts to showing that unique p-inducibility implies
unique q-inducibility for every p, q ∈ (0, 1) (the cases q ∈ {0, 1} are trivial).

Let I : T  T ∪T` -Hypergraph and J : T` -Hypergraph  T ∪T` -Hypergraph be the
structure-erasing interpretations. Let us assume that φ is uniquely p-inducible
and let us show that φ is uniquely inducible by any ψ ∈ Hom+(A[T` -Hypergraph],R)
with ψ(ρ`) = q. Let ξ be a coupling of φ and ψ.

Our objective is to prove that for every m ∈ N and every M ∈Mm[T ∪
T` -Hypergraph] with J(M) ∼= K

(`)
m we have

ξ(M) = φ(I(M))ψ(K(`)
m ). (18)

For m < ` this is trivial (as ψ(K
(`)
m ) = 1), so suppose m ≥ `.

Let I ′ : T` -Hypergraph  T` -Hypergraph ∪ T2 -Coloring be an open interpretation
(to be specified later); note that the diagram

T` -Hypergraph T T` -Hypergraph

T ∪ T` -Hypergraph T ∪ T` -Hypergraph

T ∪ T` -Hypergraph ∪ T2 -Coloring

T` -Hypergraph ∪ T2 -Coloring

J

I′

I I J

idT ∪I′

(19)
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is commutative, where the unlabeled arrows are structure-erasing interpre-

tations. For t ∈ [0, 1] let ξ̂t
def
= ξ ⊗ ψt be the independent coupling of ξ and

the 2-coloring ψt of densities (t, 1− t) (see Definition 2.12); note that the fact

that (19) is commutative implies that ξ̂idT ∪I′
t is a coupling of φ and (ψ⊗ψt)I

′
.

We start by showing (18) in the case p ≤ q. In this case, we take

I ′(E)(x1, . . . , x`)
def
= E(x1, . . . , x`) ∧

∧
i∈[`]

χ1(xi),

that is, I ′ keeps edges that are monochromatic in color 1. Let t
def
= (p/q)1/`

and note that for n ≥ ` we have

(ψ ⊗ ψt)I
′
(K(`)

n ) = ψ(K(`)
n )tn = ψ(K(`)

n )

(
p

q

)n/`
,

which in particular implies that (ψ ⊗ ψt)I
′
(ρ`) = p. On the other hand, we

also have ξ̂idT ∪I′
t (M) = ξ(M)tm, so unique p-inducibility of φ gives

ξ(M)tm = ξ̂idT ∪I′
t (M) = φ(I(M))(ψ ⊗ ψt)I

′
(K(`)

m ) = φ(I(M))ψ(K(`)
m )tm,

from which (18) follows.

We now show (18) in the case ` ≥ 2 and q < p. In this case, we let

I ′(E)(x1, . . . , x`)
def
=

E(x1, . . . , x`) ∧
∧
i∈[`]

χ1(xi)

 ∨ ∧
i∈[`]

χ2(xi)

that is, I ′ declares edges to be either old edges that are monochromatic in

color 1 or any `-set that is monochromatic in color 2. Let f(x)
def
= x`q+(1−x)`

and note that f(0) = 1 and f(1) = q, so there exists t ∈ (0, 1) such that
f(t) = p. Since ` ≥ 2, for n ≥ `, we have

(ψ ⊗ ψt)I
′
(K(`)

n ) = ψ(K(`)
n )tn + (1− t)n,

which in particular implies that (ψ⊗ψt)I
′
(ρ`) = f(t) = p. On the other hand,

we also have ξ̂idT ∪I′
t (M) = ξ(M)tm+φ(I(M))(1−t)m, so unique p-inducibility

of φ gives

ξ(M)tm + φ(I(M))(1− t)m = ξ̂idT ∪I′
t (M) = φ(I(M))(ψ ⊗ ψt)I

′
(K(`)

m )

= φ(I(M))(ψ(K(`)
m )tm + (1− t)m),
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from which (18) follows.

The case q < p and ` = 1 is more complicated as the construction analogous
to the above does not work: cliques in arity 1 need not be monochromatic.

Let us prove first the sub-case q = p2. The idea, roughly speaking, is that
when ` = 1, unique p-inducibility says that any “subset of vertices” of relative
size p in φ induces φ and since a “subset of vertices” of relative size p2 can
be seen as having relative size p in some “subset of vertices” that itself has
relative size p in the whole space, it must also induce φ.

It is worth noting that this idea can be implemented almost literally in
the geometric language. But that would require working with theons that
have different ground sets in different coordinates so we prefer to present a
syntactic argument instead, similar to the one above.

We work with the theory T2 -Coloring instead of T1 -Hypergraph (see Remark 1).

Let ξ be a coupling of φ and ψ
def
= ψp2 ∈ Hom+(A[T2 -Coloring],R); we want to

show that for every M ∈M[T ∪ T2 -Coloring] with Rχ1(M) = V (M), we have

ξ(M) = φ(I(M))p2m,

where m
def
= |M | and I : T  T ∪ T2 -Coloring is the structure-erasing interpre-

tation.
Let I1, I2 : T2 -Coloring  T3 -Coloring be the interpretations given by

I1(χ1)(x)
def
= χ1(x) ∨ χ2(x);

I1(χ2)(x)
def
= χ3(x);

I2(χ1)(x)
def
= χ1(x);

I2(χ2)(x)
def
= χ2(x) ∨ χ3(x).

Let ψ̂
def
= ψ(p2,p−p2,1−p) ∈ Hom+(A[T3 -Coloring],R) and note that ψ̂Ii = ψpi for

i ∈ [2].

Let J : T2 -Coloring  T ∪ T2 -Coloring and Ĵ : T3 -Coloring  T ∪ T3 -Coloring be
the structure-erasing interpretations. Our definitions ensure that the following
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diagram is commutative.

T2 -Coloring T T2 -Coloring

T ∪ T2 -Coloring T ∪ T2 -Coloring

T ∪ T3 -Coloring

T3 -Coloring

J

I1

I I J

I2

idT ∪I1 idT ∪I2

Ĵ

(20)

For every n ∈ N, let Cn ∈ Mn[T2 -Coloring] be the unique model with all
vertices satisfying χ1.

Since ψ̂I2 = ψ, by Proposition 5.2, there exists a coupling ξ̂ of φ and ψ̂
such that ξ̂idT ∪I2 = ξ. We now make use of the operator π(¬χ3,idT ∪I2) : A[T ∪
T2 -Coloring] → Au[T ∪ T3 -Coloring] [Raz07, Definition 4], where u =

∑
{N ∈

M1[T ∪T3 -Coloring] | I1(Ĵ(N)) ∼= C1} and Au[T ∪T3 -Coloring] is the localization
by the multiplicative system {u, u2, . . . , un, . . .}. Intuitively, it corresponds
to applying the interpretation idT ∪I2, followed by throwing away vertices of
color 3. (All densities have to be re-normalized by a power of u, this is why
we need to localize.) Since

ξ̂(u) = ξ̂Ĵ◦I1(C1) = ψ̂I1(C1) = p > 0, (21)

we can apply [Raz07, Theorem 2.6] and form the element ζ
def
= ξ̂◦π(¬χ3,idT ∪I2) ∈

Hom+(A[T ∪ T2 -Coloring],R). We claim that ζI = φ.
To see this, note that for N ∈M[T ], we have

ζI(N) =

∑
N ′ ξ̂(N

′)

ξ̂(u)|N |
,

where the sum is over allN ′ ∈M|N |[T∪T3 -Coloring] such that I((idT ∪I2)(N ′)) ∼=
N and J((idT ∪I1)(N ′)) ∼= C|N |. But since (20) is commutative, the condition
I((idT ∪I2)(N ′)) ∼= N is equivalent to I((idT ∪I1)(N ′)) ∼= N , which together
with (21) gives

ζI(N) =
ξ̂idT ∪I1(N̂)

p|N |
,
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where N̂ ∈M|N |[T ∪T2 -Coloring] is the unique model such that I(N̂) ∼= N and

J(N̂) ∼= C|N |.

Since ξ̂(idT ∪I1)◦J(C1) = ψ̂I1(C1) = p and ξ̂(idT ∪I1)◦I = ξI = φ, unique

p-inducibility of φ implies that ξ̂idT ∪I1(N̂) = p|N |φ(N) and thus ζI = φ.
Now we claim that ζJ = ψp. Indeed, note that

ζJ(C1) =

∑
{ξ̂(N) | N ∈M1[T ∪ T3 -Coloring] ∧ J((idT ∪I2)(N)) ∼= J((idT ∪I1)(N)) ∼= C1}

ξ̂(u)

=
ξ̂Ĵ(Ĉ1)

p
=
ψ̂(Ĉ1)

p
= p,

where Ĉ1 ∈ M1[T3 -Coloring] is the model whose unique vertex satisfies χ1,
hence ζJ = ψp.

This means that ζ is a coupling of φ and ψp, so for our fixed M ∈
Mm[T ∪ T2 -Coloring] with Rχ1(M) = V (M), unique p-inducibility of φ gives

ξ(M) = ξ̂idT ∪I2(M) = ξ̂(π(¬χ3,idT ∪I2)(M)) · ξ̂(u)m

= ζ(M) · pm = φ(I(M)) · p2m,

as desired.

From the case ` = 1 and q = p2 < p, with a simple induction, we can
derive the case when ` = 1 and q = p2k < p for some k ∈ N+.

Finally, for the case ` = 1 and arbitrary q < p, we let k ∈ N+ be large
enough so that p2k < q and putting together the previous cases gives that
unique p-inducibility implies unique p2k-inducibility, which in turn implies
unique q-inducibility.

The rest of this section is devoted to various relations between the unique
inducibility and the clique discrepancy for hypergraphons; we will also use
our findings to prove the last remaining equivalence (i)≡(iii) in Theorem 3.11.

It was proved in [Tow17, AHCH+18] that for ` < k, CliqueDisc[`] is
equivalent to the non-induced labeled density of every `-linear hypergraph
H (i.e., hypergraphs whose edges have pairwise intersections of size at most
`) being pe(H). We restate below this result in the language of exchangeable
arrays.
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Theorem 6.2 ([Tow17, AHCH+18]). Let ` ∈ [k−1], let φ ∈ Hom+(A[Tk -Hypergraph],R)
and let K be the corresponding exchangeable array. Then φ ∈ CliqueDisc[`]
if and only if for every finite collection (Vi)i∈I of finite subsets of N+ of size k
each and with pairwise intersections of size at most ` we have

P[∀i ∈ I,K|Vi ∼= ρk] =
∏
i∈I

P[K|Vi ∼= ρk].

Even though this theorem only makes sense in the theory of hypergraphs,
we can derive the implication (iii) =⇒ (i) of Theorem 3.11 for general theories
from it.

Lemma 6.3 (Theorem 3.11(iii) =⇒ (i)). If φ ∈ Hom+(A[T ],R) is symmetri-
cally `-local, then φ ∈ UInduce[`].

Proof. Let I : T  T ∪ T` -Hypergraph and J : T` -Hypergraph  T ∪ T` -Hypergraph

be the structure-erasing interpretations.
Our objective is to show that for every ψ ∈ Hom+(A[T` -Hypergraph],R),

every coupling ξ of φ and ψ, every m ∈ N and every M ∈Mm[T∪T` -Hypergraph]

with J(M) ∼= K
(`)
m , we have

ξ(M) = φ(I(M))ψ(K(`)
m ). (22)

Let us first consider the case m ≤ `. In this case, note that for the ex-
changeable array K corresponding to φ, by letting V1 = V2 = [m], symmetric
`-locality of φ gives

φ(I(M)) = P[K|[m]
∼= I(M)] = P[K|[m]

∼= I(M)]2 = φ(I(M))2,

so φ(I(M)) ∈ {0, 1}, hence (22) follows.
Suppose now that m > ` and let I ′ : Tm -Hypergraph  T be the open

interpretation that declares m-edges to be isomorphic copies of I(M), that
is, it is given by

I ′(E)(x1, . . . , xm)
def
=
∨
σ∈Sm

Dopen(I(M))(xσ(1), . . . , xσ(m)).

Let us show that φI
′ ∈ Hom+(A[Tm -Hypergraph],R) satisfies CliqueDisc[`].

Let K be the exchangeable array corresponding to φ so that I ′(K) is the
exchangeable array corresponding to φI

′
. Then if (Vi)i∈[t] is a finite collection
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of finite subsets of N+ of size m each and with pairwise intersections of size
at most `, then

P[∀i ∈ [t], I ′(K)|Vi ∼= ρm] = P[∀i ∈ [t],K|Vi ∼= M ]

=
∏
i∈[t]

P[K|Vi ∼= M ] =
∏
i∈[t]

P[I ′(K)|Vi ∼= ρm],

where the second equality follows from the fact that φ is symmetrically `-local.
By Theorem 6.2, it follows that φI

′
satisfies CliqueDisc[`].

Note now that the diagram

Tm -Hypergraph Tm -Hypergraph ∪ T` -Hypergraph T` -Hypergraph

T T ∪ T` -Hypergraph

I′ I′∪idT` -Hypergraph J

I

is commutative, where the unlabeled arrows are structure-erasing interpre-
tations. This implies that ξI

′∪idT` -Hypergraph is a coupling of φI
′

and ψ, so we
get

ξ(M) = ξI
′∪idT` -Hypergraph (K(m,`)

m ) = φI
′
(ρm)ψ(K(`)

m ) = φ(I(M))ψ(K(`)
m ),

where the second equality follows from φI
′ ∈ CliqueDisc[`].

Let us now prove an important fact about CliqueDisc[`] and `-flattenings
defined below.

Definition 6.4. For a peon N over Ω = (X,A, µ) and ` ∈ N, the `-flattening
of N is the function W `

N : Ek,`(Ω)→ [0, 1] defined by

W `
N (x)

def
= µ({y ∈ X([k]

>`) | (x, y) ∈ N}),

and defined arbitrarily when the set above is not measurable.

Note that the construction in (12) is precisely an `-flattening, and so is
the construction of a graphon in the ordinary sense from TGraph-on (cf. (1),
(2) and (5)).

Lemma 6.5. Let N be a Tk -Hypergraph-on over Ω = (X,A, µ) such that φN
satisfies CliqueDisc[`]. Then W `

N = φN (ρk) a.e.
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Proof. It is sufficient to prove that the two measures on Xr(k,`) given by

Y 7→
∫
Y
W `
N dµ and ν(Y )

def
= φN (ρk)µ(Y ) coincide, and for that we only have

to consider the basis of our σ-algebra, i.e., sets of the form

Y =
∏

A∈r(k,`)

VA.

In other words, for every collection VA ⊆ X (A ∈ r(k, `)) of measurable sets
we have to prove that ∫

Y

W `
N dµ = φN (ρk) · µ(Y ). (23)

Recall from [Tow17, AHCH+18] that CliqueDisc[`] is equivalent to Disc[
(

[k]
`

)
]

(see Definition 2.8) and for the language L([k]
` ) containing one predicate symbol

PA of arity ` for each A ∈
(

[k]
`

)
, define the TL

([k]
` )
∪ Tk -Hypergraph-on H over Ω

by

HE
def
= NE; HPA

def
= ι∗A(Y ) = {x ∈ E`(Ω) | ∀A′ ∈ r(A), xι−1

A (A′) ∈ VA′}.

Let then K be the exchangeable array corresponding to H. Since φN satisfies
CliqueDisc[`] = Disc[

(
[k]
`

)
], we get∫

Y

W `
N dµ = P

[
(1, . . . , k) ∈ RE(K) ∧ ∀A ∈

(
[k]

`

)
, ιA ∈ RPA(K)

]
= φN (ρk) · P

[
∀A ∈

(
[k]

`

)
, ιA ∈ RPA(K)

]
= φN (ρk) · µ(Y ),

as desired.

To prove the final implication (i) =⇒ (iii) in Theorem 3.11, we will need a
small generalization of the easier direction of Theorem 6.2 for disjoint unions
of theories of hypergraphs.

Definition 6.6 (~k-hypergraphs). Given ~k = (k1, . . . , kt) ∈ Nt
+, we let T~k -Hypergraph

def
=⋃

i∈[t] Tki -Hypergraph and in this theory, we denote the predicate symbol cor-
responding to the i-th hypergraph by Ei. Models of T~k -Hypergraph will be

called ~k-hypergraphs and for one such model M , we let Ei(M)
def
= {im(α) |
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α ∈ REi(M)} be its i-th edge set. We also denote by Ii : Tki -Hypergraph  
T~k -Hypergraph the structure-erasing interpretation corresponding to the i-th
edge set.

Proposition 6.7. Let ~k = (k1, . . . , kt), let ` ≤ mini∈[t] ki, let i1, . . . , is ∈ [t]

and let (Vj)
s
j=1 be such that Vj ∈

(N+

kij

)
and |Vj ∩ Vj′| ≤ `, whenever j 6= j′.

Let φ ∈ Hom+(A[T~k -Hypergraph],R) be such that all φIi (i ∈ [t]) satisfy
CliqueDisc[`] and let K be the corresponding exchangeable array. Then

P[∀j ∈ [s], Vj ∈ Eij(K)] =
∏
j∈[s]

P[Vj ∈ Eij(K)].

Proof. Let N be a Tk -Hypergraph-on such that φN = φ and note that

P[∀j ∈ [s], Vj ∈ Eij(K)] = λ

⋂
j∈[s]

(α∗j )
−1(NEij )


= λ({x ∈ EN+ | ∀j ∈ [s], α∗j (x) ∈ NEij }),

where αj ∈ (N+)kij is such that im(αj) = Vj. Since the sets Vj have pairwise
intersections of size at most `, in the set above, the coordinates xA with
|A| > ` are only constrained by at most one of the α∗j , so Fubini’s Theorem
gives

P[∀j ∈ [s], Vj ∈ Eij(K)] =

∫
EV,`

∏
j∈[s]

W `
NEij

(α∗j (x)) dλ(x),

where V
def
=
⋃
j∈[s] Vj.

Since each φIi satisfies CliqueDisc[`], by Lemma 6.5, it follows that
W `
NEi

= φIi(ρki) a.e., so we get

P[∀j ∈ [s], Vj ∈ Eij(K)] =
∏
j∈[s]

φIij (ρkij ) =
∏
j∈[s]

P[Vj ∈ Eij(K)],

as desired.

Proposition 6.7 (and Theorem 3.14) will be sufficient to handle the case
in the definition of symmetric `-locality when all sets have size at least `. For
smaller sets, we need the notion of categoricity of elements of Hom+(A[T ],R)
defined below.
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Definition 6.8. For φ ∈ Hom+(A[T ],R), let Th(φ) be the theory obtained
from T by adding the axiom ∀~x,¬Dopen(M)(~x) for every M ∈ M[T ] such
that φ(M) = 0, i.e., it is the theory whose models are precisely the ones that
have positive density in φ.

Recall that in model theory a theory T is called `-categorical if it has ex-
actly one model of size ` up to isomorphism. We say that φ ∈ Hom+(A[T ],R)
is `-categorical if Th(φ) is `-categorical.

Remark 2. Since
∑

M∈M`[T ] φ(M) = 1, it follows that φ is `-categorical if

and only if φ(M) ∈ {0, 1} for every M ∈M`[T ].

Lemma 6.9. Let I : T1  T2 be an open interpretation and let φ ∈ Hom+(A[T2],R)
be `-categorical. Then φI is `-categorical.

Proof. Since for M ∈ M`[T1], we have φI(M) =
∑
{φ(N) | N ∈ M`[T2] ∧

I(N) ∼= M}, it follows that φI(M) > 0 if and only if M ∼= I(N0) for the
unique model N0 ∈M`[Th(φ)].

Lemma 6.10. If φ ∈ Hom+(A[Tk -Hypergraph],R) is `-categorical for ` ≥ k
then φ(ρk) ∈ {0, 1}, that is, the hypergraphon φ is either empty or complete.

Proof. Let M be the unique k-hypergraph on ` vertices such that φ(M) = 1.

Then M ∈ {K(k)
` , K

(k)

` } as φ(K
(k)
` ) = φ(K

(k)

` ) = 0 would have contradicted
Ramsey’s Theorem. The lemma follows.

Lemma 6.11. If φ ∈ Hom+(A[T ],R) is `-categorical and 0 ≤ `′ ≤ `, then φ
is `′-categorical.

Proof. LetM ∈M`′ [T ] and consider the open interpretation I : T`′ -Hypergraph  
T that declares m-edges to be isomorphic copies of M . By Lemma 6.9, it
follows that φI is `-categorical, and it follows from Lemma 6.10 that φI is
either the empty or the complete hypergraphon. Now, φ is `′-categorical by
Remark 2.

Lemma 6.12. If φ ∈ Hom+(A[T ],R) satisfies UInduce[`], then φ is `′-
categorical for every 0 ≤ `′ ≤ `.

Proof. By Lemma 6.11, it is enough to show the case `′ = `. Let I : T  
T∪T` -Hypergraph and J : T` -Hypergraph  T∪T` -Hypergraph be the structure-erasing
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interpretations. Let N be a T -on such that φN = φ and for M ∈M`[T ], let
H be the T ∪ T` -Hypergraph-on given by

HP
def
= NP ; HE

def
=

⋃
K∈K`[T ]
K∼=M

Tind(K,N )

for every predicate symbol P in the language of T .
Let M̂ ∈ M`[T ∪ T` -Hypergraph] be such that I(M̂) ∼= M and J(M̂) ∼= ρ`.

Then

φ(M) = φH(M̂) = φ(M)φJH(ρ`) = φ(M)2,

where the second equality follows since φ ∈ UInduce[`]. Hence φ(M) ∈ {0, 1}
for every M ∈M`[T ], so φ is `-categorical by Remark 2.

Remark 3. The converse to Lemma 6.12 is very far from being true. For
example, every graphon is 1-categorical, and, slightly less trivially, every
tournamon is 2-categorical. They are seldom uniquely 1-inducible.

We can finally prove the last implication of Theorem 3.11.

Lemma 6.13 (Theorem 3.11(i) =⇒ (iii)). If φ ∈ Hom+(A[T ],R) satisfies
UInduce[`], then φ is symmetrically `-local.

Proof. Let K be the exchangeable array corresponding to φ. We need to show
that for every finite collection (Vi)i∈[t] of finite subsets of N+ with pairwise
intersections of size at most ` and every collection (Mi)i∈[t] of models of T ,
we have

P[∀i ∈ [t],K|Vi ∼= Mi] =
∏
i∈[t]

P[K|Vi ∼= Mi].

By Lemma 6.12, we know that φ is `′-categorical for every 0 ≤ `′ ≤ `,
which implies that if |V | ≤ `, then P[K|V ∼= M ] = φ(M) ∈ {0, 1}, i.e., the
event K|V ∼= M is trivial. So we may assume that |Vi| > ` for every i ∈ [t].

Let ~k = (k1, . . . , kt) be given by ki
def
= |Vi| and consider the interpretation

I : T~k -Hypergraph  T that declares Ei-edges to be isomorphic copies of Mi. In
other words, I is given by

I(Ei)(x1, . . . , xki)
def
=
∨
σ∈Ski

Dopen(Mi)(xσ(1), . . . , xσ(ki)).
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By Theorem 3.3, we know that for every i ∈ [t] we have φI◦Ii ∈ UInduce[`]
and by Theorem 3.14, it follows that φI◦Ii ∈ CliqueDisc[`]. Then we have

P[∀i ∈ [t],K|Vi ∼= Mi] = P[∀i ∈ [t], Vi ∈ Ei(I(K))]

=
∏
i∈[t]

P[Vi ∈ Ei(I(K))] =
∏
i∈[t]

P[K|Vi ∼= Mi],

where the second equality follows from Proposition 6.7.

We finish this section with the (now trivial) proof of Theorem 3.1.

Proof of Theorem 3.1. The facts Independence[`] =⇒ Independence[`−1]
and UCouple[`] =⇒ UCouple[` − 1] follow easily from definitions. The
fact that UInduce[`] =⇒ UInduce[`− 1] follows since symmetric `-locality
trivially implies symmetric (`−1)-locality and from Lemmas 6.3 and 6.13.

7 Unique coupleability

In this section we prove Theorem 3.10. We start with the equivalence (i)≡(ii)≡(iii).
While implications (i) =⇒ (iii) and (iii) =⇒ (ii) are fairly straightforward,
the proof of the implication (ii) =⇒ (i) is more involved and naturally splits
into five rather independent parts:

1. Show that unique coupleability of φ with the quasirandom `′-hypergraphon
ψ`′,p for some p ∈ (0, 1) implies the same statement for every p ∈ (0, 1).

2. Show that unique coupleability of φ with the quasirandom `′-hypergraphon
ψ`′,p for all p ∈ (0, 1) implies that φ is unique coupleable with the quasir-
andom c-colored `′-hypergraphon ψ`′,q for every c ≥ 2 and every q ∈ Πc.

3. Show that unique coupleability of φ with all quasirandom colored `′-
hypergraphons for `′ ∈ [`] implies that φ is uniquely coupleable with
all independent couplings ψ1,p1 ⊗ · · · ⊗ ψ`,p` of quasirandom colored
`′-hypergraphons for `′ ∈ [`].

4. Show that in an arbitrary theory T ′, the set of elements that are uniquely
coupleable with φ ∈ Hom+(A[T ],R) is closed in Hom+(A[T ′],R) in the
L1-topology.
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5. Show that for any pure canonical theory TL, the set of all elements
of the form (ψ1,p ⊗ · · · ⊗ ψ`,p)I , where I : TL  

⋃`
k=1 Tc,k is an open

interpretation, is dense in the set of ψ ∈ Hom+(A[TL],R) of rank at
most ` (again in the L1-topology) and apply Theorem 3.3.

Let us point out that items 1, 2 and 3 combined show a strengthened
version of implication (ii) =⇒ (iii) that allows for multiple colors and arbitrary
densities. Furthermore, most likely items 4 and 5 in this program can be
replaced with an ad hoc argument but we prefer this more structured approach.

We start with item 1.

Lemma 7.1. Let ` ∈ N+ and φ ∈ Hom+(A[T ],R). If there exists p ∈ (0, 1)
such that φ is uniquely coupleable with the quasirandom `-hypergraphon ψ`,p,
then φ is uniquely coupleable with ψ`,q for every q ∈ (0, 1).

Proof. Let Cq be the set of all couplings of φ with ψ`,q. Our objective is to
show that |Cq| = 1. Without loss of generality, let us suppose that p < q
(otherwise, we can use the complementation automorphism C : T` -Hypergraph  

T` -Hypergraph given by C(E)(~x)
def
=
∧

1≤i<j≤` xi 6= xj ∧¬E(~x) and Theorem 3.3).
Intuitively, we are going to “dilute” ψ`,q by a factor t = p/q so that it will turn
into ψ`,p. The simplest way to make this intuition precise is by introducing
yet another quasirandom hypergraphon ψ`,t on the same ground set and then
taking its intersection with ψ`,q.

Formally, we consider the commutative diagram

T` -Hypergraph T T` -Hypergraph

T ∪ T` -Hypergraph T ∪ T` -Hypergraph

T ∪ T` -Hypergraph ∪ T` -Hypergraph

T` -Hypergraph ∪ T` -Hypergraph

J

I′

I I J

idT ∪I′

Ĵ

(24)

where I, J , Ĵ and the unlabeled arrows are the structure-erasing interpreta-
tions, with the unlabeled arrows keeping the second copy of T` -Hypergraph, and
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I ′ is given by

I ′(E)(x1, . . . , x`) = E(x1, . . . , x`) ∧ E ′(x1, . . . , x`).

Here E corresponds to the first copy of T` -Hypergraph and E ′ corresponds to
the second one.

We now define the dilution map F : Cq → Cp by

F (ξ)
def
= (ξ ⊗ ψ`,t)idT ∪I′ ,

where t
def
= p/q ∈ (0, 1). The fact that F (ξ) is indeed an element of Cp follows

from

((ξ ⊗ ψ`,t)idT ∪I′)I = (φ⊗ ψ`,t)I = φ;

((ξ ⊗ ψ`,t)idT ∪I′)J = (ψ`,q ⊗ ψ`,t)I
′
= ψ`,p.

For M ∈M[T ] and U ⊆
(
V (M)
`

)
, let MU be the model of T ∪ T` -Hypergraph

obtained from M by declaring the `-hypergraph edge set to be U , that is, we
have I(MU) = M and E(J(MU)) = U . Then we have

F (ξ)(〈MU〉) = t|U |
∑

W⊆([m]
` )

U⊆W

(1− t)|W\U |ξ(〈MW 〉).

By Möbius inversion, it follows that F is injective6, hence |Cq| ≤ |Cp| = 1 as
claimed.

We now proceed to item 2 of our program.

Lemma 7.2. Let φ ∈ Hom+(A[T ],R) and ` ∈ N+ and suppose that for every
p ∈ (0, 1), φ is uniquely coupleable with the quasirandom `-hypergraphon
ψ`,p. Then for every c ≥ 2 and every q ∈ Πc, φ is uniquely coupleable with
the quasirandom c-colored `-hypergraphon ψ`,q.

6The left-inverse is given by

F−1(ζ)(〈MU 〉) = t−|U |
∑

W⊆([m]
` )

U⊆W

(
1− 1

t

)|W\U |
ζ(〈MW 〉).
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Proof. For i ∈ [c], consider the following commutative diagram

T` -Hypergraph T ∪ T` -Hypergraph T

Tc,` T ∪ Tc,`

J

I′i idT ∪I′i

I

Ic

Jc

where I, Ic, J and Jc are structure-erasing and I ′i is given by

I ′i(E)(x1, . . . , x`)
def
= Ei(x1, . . . , x`).

The set Km[Tc,`] of labeled models of size m can be naturally identified

with functions f :
(

[m]
`

)
→ [c]: given m ∈ N and f :

(
[m]
`

)
→ [c], Cf ∈ Km[Tc,`]

is given by

V (Cf )
def
= [m]; REi(Cf )

def
= {α ∈ ([m])` | f(im(α)) = i} (i ∈ [c]).

Let F
def
= C−1. Given further K ∈ Km[T ] and f :

(
[m]
`

)
→ [c], let Kf be the

alignment of K and Cf , that is, Kf is the unique model in Km[T ∪ Tc,`]
such that Ic(Kf) = K and Jc(Kf) = Cf . Similarly, given U ⊆

(
[m]
`

)
, let

KU ∈ Km[T ∪ T` -Hypergraph] be the unique model such that I(KU) = K and
RE(KU) = {α ∈ ([m])` | im(α) ∈ U}.

Let ψ
def
= ψ`,q ∈ Hom+(A[Tc,`],R) and let ξ be a coupling of φ and ψ. Our

goal is to show that

ξ(〈Kf〉) = ψ(〈Cf〉)φ(〈K〉) (25)

for every m ∈ N, every K ∈ Km[T ] and every f :
(

[m]
`

)
→ [c]. Note that to

improve readability, here and in the forthcoming calculations, K and Kf are
identified with their isomorphism classes [K], [Kf ] in Mm.

If m < `, then (25) holds trivially and if φ(〈K〉) = 0, then both sides
of (25) are 0, so suppose m ≥ ` and φ(〈K〉) > 0. Note that ξ(idT ∪I′i)◦J = ψI

′
i =

ψ`,qi ∈ Hom+(A[T` -Hypergraph],R), hence ξidT ∪I′i is a coupling of φ and ψ`,qi ,
so we must have ξidT ∪I′i = φ⊗ ψ`,qi . Note also that for m ∈ N, K ∈ Km[T ]

and U ⊆
(

[m]
`

)
, we have

πidT ∪I′i(〈KU〉) =
∑

f : ([m]
` )→[c]

f−1(i)=U

〈Kf〉. (26)
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Pick now f :
(

[m]
`

)
→ [c] at random according to the distribution

P[f = f ]
def
=
ξ(〈Kf〉)
φ(〈K〉)

.

The identity (26) allows us to compute, for A ∈
(

[m]
`

)
and i ∈ [c], that

P[f(A) = i] =
∑

f : ([m]
` )→[c]

f(A)=i

ξ(〈Kf〉)
φ(〈K〉)

=
∑

U⊆([m]
` )

A∈U

ξidT ∪I′i(〈KU〉)
φ(〈K〉)

=
∑

U⊆([m]
` )

A∈U

q
|U |
i (1− qi)(

m
` )−|U | = qi,

where the the second equality follows from (26) and the third equality follows
since ξidT ∪I′i = φ ⊗ ψ`,qi . Since ψ(〈Cf〉) =

∏
A∈([m]

` ) qf(A), to complete the

proof of (25), it remains to show that the values (f(A) | A ∈
(

[m]
`

)
) of f are

mutually independent.
For that purpose, it is in turn sufficient to prove that for every fixed

A0 ∈
(

[m]
`

)
and every fixed i0 ∈ [c], the event f(A0) = i0 is independent from

f |W , where W
def
=
(

[m]
`

)
\ {A0}.

To do so, we will generate the distribution of f in a very specific way. LetN
be a T -on such that φ = φN and note that ψ`,qi0 = φN ′ ∈ Hom+(A[T` -Hypergraph],R)
for the (`− 1)-independent T` -Hypergraph-on N ′ given by

N ′E
def
= {x ∈ E` | x[`] < qi0}. (27)

Since ξidT ∪I′i0 = φ ⊗ ψ`,qi0 = φN⊗N ′ , by Proposition 4.3 applied to the
interpretation idT ∪I ′i0 , there exists a (T ∪ Tc,`)-on H over [0, 1]4 such that
φH = ξ and

HP = NP × Ek(P )([0, 1]3) a.e (P ∈ L);

HEi0
= E` ×N ′E × E`([0, 1]2) a.e.,

(28)

where L is the language of T .
Let now (θ1,θ2,θ3,θ4) be picked at random in EN+([0, 1]4) according to

λ and let K be the exchangeable array corresponding to H with respect to

(θ1,θ2,θ3,θ4). Denote also F
def
= F (Jc(K|[m])); F = (F (A0),F |W ), and let

E be the event Ic(K|[m]) = K. Then the function f is equidistributed with
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the function F conditioned by the event E. It remains to note that by (28),
the event F (A0) = i0 depends only on the coordinate θ2A0

(warning: we do
not claim that the whole random variable F (A0) depends only on θ2A0

). On
the other hand, both E and F |W do not depend on it; more precisely, E
depends only on θ1 and F |W depends on those θjB with j ∈ [4], |B| ≤ ` and
B 6= A0.

We now address item 3 of our program (cf. the second remark made after
the statement of Theorem 3.10).

Lemma 7.3. Let φ ∈ Hom+(A[T ],R) and ψi ∈ Hom+(A[Ti],R) for i ∈ [t].
Let also `1 ≤ · · · ≤ `t and suppose that the following hold.

i. For every i ∈ {1, . . . , t− 1}, we have rk(ψi) ≤ `i.

ii. For every i ∈ {2, . . . , t}, we have ψi ∈ Independence[`i−1].

iii. For every i ∈ {1, . . . , t}, φ and ψi are uniquely coupleable.

Then φ, ψ1, . . . , ψt are uniquely coupleable.

Proof. The proof is by induction on t. For t = 1, the result is trivial. For
t = 2, let Ii : T ∪Ti  T ∪T1∪T2, Ji : Ti  T ∪T1∪T2 and J : T  T ∪T1∪T2

be the structure-erasing interpretations. Let L, L1 and L2 be the languages
of T , T1 and T2, respectively. Let also N be a T -on with φN = φ and H2 be
an `1-independent T2-on with φH2 = ψ2. Fix a coupling ξ of φ, ψ1, ψ2. Since
φ and ψ2 are uniquely coupleable, we know that ξI2 = φ⊗ ψ2 = φN⊗H2 . By
Proposition 4.3, there exists a (T ∪T1 ∪T2)-on G over [0, 1]4 such that φG = ξ
and

GP =

{
NP × Ek(P )([0, 1]3), if P ∈ L;

Ek(P ) ×H2
P × Ek(P )([0, 1]2), if P ∈ L2.

On the other hand, for the predicate symbols P in L1, by possibly changing
zero-measure sets of the corresponding P -ons GP using Proposition 4.2, we
may suppose that rk(J1(G)) ≤ rk(ψ1) ≤ `1.

Let us pick θ
def
= (θ1,θ2,θ3,θ4) at random in EN+([0, 1]4) according to λ

and let K be the exchangeable array corresponding to G with respect to
θ. Then we know that J(K) depends only on θ1, J1(K) depends only on
((θ1

A,θ
2
A,θ

3
A,θ

4
A) | |A| ≤ `1) and J2(K) depends only on (θ2

A | |A| > `1) (as
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H2 is `1-independent), so J2(K) is independent from (J(K), J1(K)). This
means that for every m ∈ N and every K ∈ Km[T ∪ T1 ∪ T2], we have

ξ(〈K〉) = P[K|[m] = K]

= P[J(K)|[m] = J(K) ∧ J1(K)|[m] = J1(K) ∧ J2(K)|[m] = J2(K)]

= P[J(K)|[m] = J(K) ∧ J1(K)|[m] = J1(K)] · P[J2(K)|[m] = J2(K)]

= P[I1(K)|[m] = I1(K)] · P[J2(K)|[m] = J2(K)]

= ξI1(〈I1(K)〉) · ψ2(〈J2(K)〉)
= φ(〈J(K)〉) · ψ1(〈J1(K)〉) · ψ2(〈J2(K)〉),

where the last equality follows since φ is uniquely coupleable with ψ1 and ξI1

is a coupling of φ and ψ1. Therefore ξ = φ⊗ ψ1 ⊗ ψ2.

For the case t ≥ 3, let I : T ∪
⋃t
i=2 Ti  T ∪

⋃t
i=1 Ti be the structure-

erasing interpretation and note that for a coupling ξ of φ, ψ1, . . . , ψt, it follows
that ξI is a coupling of φ, ψ2, . . . , ψt. By inductive hypothesis, we must have

ξI = φ ⊗ ψ̂, where ψ̂
def
=
⊗t

i=2 ψi. In fact, since φ, ψ2, . . . , ψt are uniquely

coupleable, it also follows that φ is uniquely coupleable with ψ̂ (as any coupling

of φ with ψ̂ can be seen as a coupling of φ, ψ2, . . . , ψt). But by Theorem 3.4,

we know that ψ̂ ∈ Independence[`1] and since ξ can also be seen as a coupling

of φ, ψ1, ψ̂, we get ξ = φ⊗
⊗t

i=1 ψi from the previous case.

Lemma 7.4. Let c ≥ 2, p ∈ Πc and k ∈ N+. Then the quasirandom c-colored
k-hypergraphon ψk,p satisfies Independence[k − 1] and rk(ψk,p) = k.

Proof. Note that ψk,p can be represented by the Tc,k-on N k,p given by

N k,p
Ei

def
=

{
x ∈ Ek

∣∣∣∣∣
i−1∑
j=1

pj ≤ x[k] <
i∑

j=1

pj

}
(i ∈ [c]),

hence ψk,p ∈ Independence[k − 1] and rk(ψk,p) ≤ k. Since c ≥ 2, it follows
that rk(ψk,p) > 0, so by Theorem 3.2 and Proposition 4.1, we must have
rk(ψk,p) = k.

Proceeding to item 4 in the program, we introduce the L1-topology on
theons that is a direct analogue of the L1-topology on graphons [Lov12,
Sct. 8.2.5 and Sct. 8.3].
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Definition 7.5. If T is a theory in a language L and φ1, φ2 ∈ Hom+(A[T ],R),
then the L1-distance between φ1 and φ2 is defined as

δ1(φ1, φ2)
def
= min
N 1,N 2

∑
P∈L

µ(N 1
P 4N 2

P ), (29)

where the minimum is taken over T -ons N 1 and N 2 over the same space such
that φ1 = φN 1 and φ2 = φN 2 .

It is not immediately clear from this definition that the minimum in (29)
is actually attained, nor is it clear why δ1 is a metric.

The first issue is easy to address by giving an alternative purely algebraic
definition. Namely, for any P ∈ L introduce the element dP ∈ A[T ∪ T ] as

dP
def
=

∑
K∈Kk(P )[T∪T ]

idk(P )∈RP1 (K)4RP2 (K)

〈K〉,

where P1 and P2 are the two copies of P in L
·
∪ L, and let

dT
def
=
∑
P∈L

dP .

This element measures the distance in a coupling of φ1, φ2 so we have

δ1(φ1, φ2) = inf
ξ
ξ(dT ), (30)

where ξ runs over all couplings of φ1 and φ2. Their set is determined in
Hom+(A[T ∪ T ],R) by countably many linear equations and hence compact.
Therefore the minimum in (30) and (29) is actually achieved.

The second issue is trickier, and the proof is similar to the analogous proof
that δ1 is a metric in the case of graphons. Fortunately, we already did most
of the necessary (and notationally heavy) work in the proof of Proposition 4.3;
we defer the remaining part to Appendix A.

Let us finally remark why we need L1-topology at all instead of the
standard and much nicer density topology (i.e., the one induced by the
inclusion Hom+(A[T ],R) ⊆ [0, 1]M[T ] from the product topology). One
simple explanation is that the set of all ψ ∈ Hom+(A[T ′],R) that are uniquely
coupleable with some φ ∈ Hom+(A[T ],R) is not closed in the latter.
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Example 1. Let φp ∈ Hom+(A[TGraph],R) be the quasirandom graphon of
density p ∈ (0, 1). If (Gn)n∈N (Gn ∈ Mn[TGraph]) is a sequence of graphs
converging to φp, then the associated step functions ψn converge to φp in
the density topology. Since rk(ψn) = 1 and φp ∈ Independence[1], it follows
that φp and ψn are uniquely coupleable, but φp = limn→∞ ψn is obviously not
uniquely coupleable with itself.

The example above illustrates another crucial difference between the
L1-topology and density topology: rank is lower semi-continuous in the
former but not the latter. In fact, for pure canonical theories TL, the set
{ψ ∈ Hom+(A[TL],R) | rk(ψ) ≤ r} is closed in L1-topology but dense in
Hom+(A[TL],R) in density topology (if r ≥ 1).

Lemma 7.6. Let φ ∈ Hom+(A[T ],R) and T ′ be an arbitrary theory. Then
the set of ψ ∈ Hom+(A[T ′],R) that are uniquely coupleable with φ is closed
in the L1-topology.

Proof. Let (ψn)n∈N be a sequence in Hom+(A[T ′],R) converging to ψ in the
L1-topology and suppose every ψn is uniquely coupleable with φ. It is clear
from the definition that δ1(φ ⊗ ψn, φ ⊗ ψ) = δ1(ψn ⊗ ψ), so φ ⊗ ψn also
converges to φ⊗ ψ in the L1-topology. For each n ∈ N, let ζn be a coupling
of ψ and ψn attaining the L1-distance in (30).

Let ξ be a coupling of φ and ψ; we have to show that ξ = φ ⊗ ψ. Let
I : T ′ ∪ T ′  T ∪ T ′ ∪ T ′ and Ji : T

′  T ′ ∪ T ′ be the structure-erasing
interpretations, where Ji keeps the i-th copy of T ′. Since ξ is a coupling of φ
and ψ = ζJ1n , by Proposition 5.2, there exists a coupling ξ̂n of φ and ζn such

that ξ̂idT ∪J1
n = ξ. Note that ξ̂n can also be seen as a coupling of φ, ψ and ψn

as ξ̂In = ζn.

Let now N n be a (T ∪T ′ ∪T ′)-on such that ξ̂n = φNn . By considering the
(T ∪T ′)-ons (idT ∪J1)(N n) and (idT ∪J2)(N n), since ψn is uniquely coupleable
with φ, we conclude from (29) that

δ1(ξ, φ⊗ ψn) ≤
∑
P∈L′

λ(J1(I(N n))P 4 J2(I(N n))P ) = ζn(dT ′) = δ1(ψ, ψn),

where L′ is the language of T ′. Since ψn → ψ and φ ⊗ ψn → φ ⊗ ψ in the
L1-topology, it follows that ξ = φ⊗ ψ.

We proceed to the last item 5 in our program, which is to provide a way
of approximating Euclidean structures with interpretations of independent
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couplings ψ1,p ⊗ · · · ⊗ ψ`,p of quasirandom colored hypergraphons in the
L1-topology.

Lemma 7.7. Let L be a language, φ ∈ Hom+(A[TL],R), r
def
= rk(φ) and ε > 0.

Then there exist c ≥ 2, p ∈ Πc and an open interpretation I : TL  
⋃r
k=1 Tc,k

such that δ1(φ, (
⊗r

k=1 ψk,p)
I) ≤ ε.

Proof. Let N be a TL-on such that φN = φ and rk(N ) = r, that is, for

each P ∈ L, there exists HP ⊆ Ek(P ),r such that NP = HP × [0, 1](
[k(P )]
>r ). By

standard measure theory arguments, for each P ∈ L, there exists a finite
family of pairwise disjoint closed cubes (CP

j )mPj=1 (CP
j ⊆ Ek(P ),r) such that

setting H′P
def
=
⋃mP
j=1C

P
j gives λ(HP 4H′P ) ≤ ε/|L|.

Let X be the set of all coordinates of vertices of all cubes CP
j for all P ∈ L.

The set X induces a partition of [0, 1] into intervals J1, . . . , Jc of positive
length (we can ensure c ≥ 2 by including an extra point if necessary). Define

then p ∈ Πc by letting pi
def
= λ(Ji) > 0 and define the (

⋃r
k=1 Tc,k)-on G by

GEki
def
= {x ∈ Ek | x[k] ∈ Ji} (i ∈ [c], k ∈ [r]),

where for each k ∈ [r], the symbols Ek
1 , . . . , E

k
c correspond to Tc,k.

Let ψ
def
= φG and note that ψ is a coupling of ψ1,p, . . . , ψr,p, so we must

have ψ =
⊗r

k=1 ψk,p by Lemmas 7.3 and 7.4.
Note now that from the definition of X, each cube CP

j ⊆ Ek(P ),r can be
written as a finite union of the form

⋃
u∈UP,j

∏
A∈r(k(P ),r) JiP,u,A . We then

define I : TL  
⋃r
k=1 Tc,k by

I(P )(x1, . . . , xk(P ))
def
=

mP∨
j=1

∨
u∈UP,j

∧
A∈r(k(P ),r)

Ek
iP,u,A

(xιA(1), . . . , xιA(|A|)) (P ∈ L).

Our definition ensures that

I(G)P =

mP⋃
j=1

⋃
u∈UP,j

 ∏
A∈r(k(P ),r)

JiP,u,A × [0, 1](
[k(P )]
>r )


=

mP⋃
j=1

(CP
j × [0, 1](

[k(P )]
>r )) = H′P × [0, 1](

[k(P )]
>r ).
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This implies that

δ1(φ, ψ) ≤
∑
P∈L

λ(NP 4 (H′P × [0, 1](
[k(P )]
>r ))) =

∑
P∈L

λ(HP 4H′P ) ≤ ε,

as desired.

We now have all the ingredients to show the equivalence (i)≡(ii)≡(iii) of
Theorem 3.10.

Lemma 7.8 (Theorem 3.10(i)≡(ii)≡(iii)). Let φ ∈ Hom+(A[T ],R) and ` ∈
N+. Then the following are equivalent.

i. φ ∈ UCouple[`].

ii. For every `′ ∈ [`], there exists p ∈ (0, 1) such that φ is uniquely
coupleable with the quasirandom `′-hypergraphon ψ`′,p.

iii. There exist p1, . . . , p` ∈ (0, 1) such that φ is uniquely coupleable with the
independent coupling ψ1,p1⊗· · ·⊗ψ`,p` of quasirandom `′-hypergraphons
ψ`′,p`′ for `′ ∈ [`].

Proof. Since `′-hypergraphons have rank at most `′, by Proposition 4.2, we
have rk(ψ1,p1 ⊗ · · · ⊗ ψ`,p`) ≤ `, so the implication (i) =⇒ (iii) follows.

Implication (iii) =⇒ (ii) follows from Theorem 3.3 by considering the
structure-erasing interpretations Ik : Tk -Hypergraph  

⋃`
`′=1 T`′ -Hypergraph.

For the non-trivial implication (ii) =⇒ (i), we want to show that φ is
uniquely coupleable with any ψ ∈ Hom+(A[T ′],R) of rank at most `. We can
assume w.l.o.g. that T ′ = TL for some language L. Using Lemma 7.7, for
each n ∈ N, we can find cn ≥ 2, pn ∈ Πcn and In : TL  

⋃r
k=1 Tcn,k such that

δ1(φ, (
⊗r

k=1 ψk,pn)In) ≤ 1/n.
By Lemmas 7.1, 7.2, 7.3 and 7.4, we know that φ is uniquely coupleable

with
⊗r

k=1 ψk,pn and by Theorem 3.3, it follows that φ is also uniquely
coupleable with (

⊗r
k=1 ψk,pn)In .

Finally, since ((
⊗r

k=1 ψk,pn)In)n∈N converges to ψ in the L1-topology, by
Lemma 7.6, it follows that φ is uniquely coupleable with ψ.

We now proceed to add items (vi) and (vii) to the list of equivalent
properties of Theorem 3.10 (recall that (i)≡(iv)≡(v) and (iv) =⇒ (vi) were
proved in Section 4).
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Lemma 7.9 (Theorem 3.10(vi) =⇒ (vii)). If φ ∈ Hom+(A[T ],R) is `-local,
then φ⊗ ψlin satisfies UInduce[`].

Proof. By Lemma 6.3, it is enough to show that φ ⊗ ψlin is symmetrically
`-local. Let K be the exchangeable array corresponding to φ⊗ ψlin, and fix
a finite family of finite sets (Vi)i∈[t] (Vi ⊆ N+) with pairwise intersections of

size at most `. We let Ki
def
= K|Vi ∈ KVi [T ∪ TLinOrder] and let Mi

def
= [Ki] ∈

M|Vi|[T ∪ TLinOrder] be the isomorphism type of Ki. We have to prove that
M1, . . . ,Mt are mutually independent, and for that purpose we are going to
apply Claim 4.8 again.

More specifically, let I : T  T ∪ TLinOrder be the structure-erasing inter-
pretation and Li = I(Ki) ∈ KVi [T ] be the results of erasing linear order.
Likewise, let J : TLinOrder  T ∪ TLinOrder, and let ≤i = J(Ki) be the corre-
sponding (random) linear order on Vi so that Ki = (Li,≤i). In Claim 4.8, we
set X = (≤1, . . . ,≤n), Yi = Li, and let fi(≤1, . . . ,≤n, Li) be the function
first computing Ki from Li and ≤i and then taking its isomorphism type
Mi = [Ki].

We know that the tuple (L1, . . . ,Lt) is independent fromX = (≤1, . . . ,≤t)
(as the coupling of φ and ψlin is independent) and that L1, . . . ,Lt are mu-
tually independent (as φ is `-local). This gives us the first assumption in
Claim 4.8: X,Y1, . . . ,Yn are mutually independent (note that we do not
claim that ≤1, . . . ,≤n are mutually independent, this is in general not true).
It remains to show that (M1, . . . ,Mn) is independent from (≤1, . . . ,≤n),
and it essentially follows from the observation that the function fi(X, Yi)
becomes invertible after fixing its first argument.

More specifically, we compute Li = gi(≤i,Mi), where gi(≤i,Mi) is ob-
tained by first aligning the internal order of V (Mi) with the order ≤i on
Vi, and then discarding it. The crucial property is that Li = gi(≤i,Mi) if
and only if Mi = fi((≤1, . . . ,≤n), Li). Using this, fixing arbitrary models
Mi ∈ M|Vi|[T ∪ TLinOrder] and a particular tuple of values (≤1, . . . ,≤t), we
have the calculation

P[∀i ∈ [t],Mi
∼= Mi | ∀i ∈ [t],≤i = ≤i]

= P[∀i ∈ [t],Li = gi(≤i,Mi) | ∀i ∈ [t],≤i = ≤i]
= P[∀i ∈ [t],Li = gi(≤i,Mi)]

= P[∀i ∈ [t],Mi
∼= Mi].
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This shows that (M1, . . . ,Mt) is indeed independent from (≤1, . . . ,≤t).
We are now in position to apply Claim 4.8 which completes the proof.

Lemma 7.10 (Theorem 3.10(vii) =⇒ (ii)). If the independent coupling of
φ ∈ Hom+(A[T ],R) with ψlin satisfies UInduce[`], then for every `′ ∈ [`],
φ is uniquely coupleable with the quasirandom `′-hypergraphon ψ`′,1/2 ∈
Hom+(A[T`′ -Hypergraph],R).

Proof. Let L be the language of T and note that since UInduce[`] implies
UInduce[`′] (Theorem 3.1), it is sufficient to consider the case `′ = `. Let us
first assume ` ≥ 2.

Note that ψlin can be represented by the TLinOrder-on N< given by

N< def
= {x ∈ E2 | x{1} < x{2}},

and that ψ`,1/2 can be represented as

NE
def
= {x ∈ E` | x[`] ≤ 1/2}.

Let ξ be a coupling of φ and ψ`,1/2 and let N be a (T ∪ T` -Hypergraph)-on
such that φN = ξ. As in the proof of Lemma 7.2, for every m ∈ N and
every U ⊆

(
[m]
`

)
, let HU ∈ Km[T` -Hypergraph] be the hypergraph given by

V (HU)
def
= [m] and RE(HU)

def
= {α ∈ ([m])` | im(α) ∈ U}. If we are further

given K ∈ Km[T ], let KU ∈ Km[T ∪ T` -Hypergraph] be the alignment of K and

HU , that is, we have RP (KU)
def
= RP (K) (P ∈ L) and RE(KU)

def
= RE(HU).

Finally, we let K<
U ∈ Km[T ∪ T` -Hypergraph ∪ TLinOrder] be the model obtained

from KU by equipping it with the natural order of [m]. Note that while
we do need labels in K to properly define the models KU and K<

U , in the
computations below they are treated as unlabeled models [KU ], [K<

U ], i.e.,
labels are discarded.

To show that ξ is the independent coupling of φ and ψ`,1/2, we need to

show that for every m ∈ N, every K ∈ Km[T ] and every U ⊆
(

[m]
`

)
, we have

ξ(〈KU〉) = φ(〈K〉) · ψ`,1/2(〈HU〉) =
φ(〈K〉)

2(m` )
. (31)
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The assertion is trivial if m < `, so suppose m ≥ `. Fix U ⊆
(

[m]
`

)
and for

every v ∈ [m], define

Vv
def
=


[
v − 1

m
,
v

m

)
, if v < m;[

m− 1

m
, 1

]
, if v = m.

For n ∈ N and y ∈ En, let αy : [n] → [m] be the unique function such that
y{j} ∈ Vαy(j) for every j ∈ [n]. Finally, define the set

WU
def
=

{
(x, y) ∈ E` × E`

∣∣∣∣ |im(αy)| = ` ∧
(
x[`] ≤

1

2
≡ im(αy) ∈ U

)}
;

clearly, WU is S`-invariant. This means that we can define the (T∪T` -Hypergraph∪
TLinOrder)-on HU over [0, 1]2 by

HU
P

def
= NP × Ek(P ) (P ∈ L), HU

≺
def
= E2 ×N<, HU

E
def
= WU .

Obviously, if (x, y) ∈ Tind(K
(`)
m ,WU), then each y{j} must belong to a

different Vv. Indeed, if there exist j1, j2 ∈ [m] with y{j1}, y{j2} ∈ Vv but
j1 6= j2, since m ≥ ` ≥ 2, there exists β ∈ ([m])` with j1, j2 ∈ im(β) and thus
(x, y) /∈ (β∗)−1(WU), a contradiction.

Our claim and the definition of WU then imply

Tind(K(`)
m ,WU) =

(x, y) ∈ Em × Em

∣∣∣∣∣∣ |im(αy)| = m ∧
∧

β∈([m])`

(β∗(x) ∈ NE ≡ im(αβ∗(y)) ∈ U)

 .

Thus, denoting by J` : T` -Hypergraph  T ∪T` -Hypergraph∪TLinOrder the structure-
erasing interpretation, we get

φJ`(HU )(K
(`)
m ) =

m!

mm
ψ`,1/2(HU) =

m!

mm · 2(m` )
. (32)

Let now J : T  T ∪ T` -Hypergraph ∪ TLinOrder be another structure-erasing
interpretation; we have

Tind(K<

([m]
` )
,HU) = Tind(K, J(HU)) ∩ Tind(K(`)

m , J`(HU)) ∩ {(x, y) ∈ Em × Em | y{1} < · · · < y{m}}

= {(x, y) ∈ Em × Em | x ∈ Tind(KU ,N ) ∧ ∀v ∈ [m], y{v} ∈ Vv}.

62



Since φN = ξ, we get

ξ(〈KU〉) = mm · φHU (〈K<

([m]
` )
〉) =

mm · φ(〈K〉) · φJ`(HU )(K
(`)
m )

m!
=
φ(〈K〉)

2(m` )
,

where the second equality follows since φHU is a coupling of φJ`(HU ) ∈
Hom+(A[T` -Hypergraph],R) and φ ⊗ ψlin (and the latter satisfies UInduce[`]),
and the third equality follows from (32). Hence (31) holds.

Let us now show the case ` = 1. In this case, since T1 -Hypergraph
∼=

T2 -Coloring, we will work with the latter theory. Let ξ be a coupling of φ and
ψ1/2 ∈ Hom+(A[T2 -Coloring],R) and let N be a (T ∪ T2 -Coloring)-on such that
φN = ξ.

For every m ∈ N, every K ∈ Km[T ] and every j ∈ {0, . . . ,m}, let
Kj ∈ Km[T ∪ T2 -Coloring] be the model obtained from K by coloring the
first j vertices with color 1 and all others with color 2, that is, we have

RP (Kj)
def
= RP (K) (P ∈ L), Rχ1(Kj)

def
= [j] and Rχ2(Kj)

def
= {j + 1, . . . ,m}.

Again, we let K<
j ∈ Km[T ∪ T2 -Coloring ∪ TLinOrder] be the model obtained

from Kj by equipping it with the natural order of [m], and, again, in the
computations below we view K,Kj, K

<
j as unlabeled models.

Due to exchangeability, in order to show that ξ is the independent coupling
of φ and ψ1/2, it is sufficient to show that for every m ∈ N, every K ∈ Km[T ]
and every j ∈ {0, . . . ,m}, we have

ξ(〈Kj〉) =
φ(〈K〉)

2m
. (33)

For every t ∈ (0, 1), let

Ut
def
= {(x, y) ∈ E1 × E1 | x ∈ Nχ1 ≡ y < t}

(χ1 corresponds to the first color) and note that λ(Ut) = 1/2. Define the
(T ∪ TLinOrder ∪ T2 -Coloring)-on Ht over [0, 1]2 by

Ht
P

def
= NP × Ek(P ) (P ∈ L), Ht

≺
def
= E2 ×N<,

Ht
χ1

def
= Ut, Ht

χ2

def
= (E1 × E1) \ Ut.

Since φHt is a coupling of ψ1/2 and φ ⊗ ψlin and the latter satisfies
UInduce[1], we get

φHt(〈K<
m〉) =

φ(〈K〉)
m! · 2m

. (34)
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On the other hand, from the definition of Ht, we have

φHt(〈K<
m〉) =

m∑
j=0

tj(1− t)m−j

j!(m− t)!
ξ(〈Kj〉)

=
m∑
k=0

(
k∑
j=0

1

j!(m− j)!

(
m− j
k − j

)
(−1)k−jξ(〈Kj〉)

)
tk.

Since this identity is true for any t, putting it together with (34) and comparing
coefficients of the polynomials in t, we conclude that

k∑
i=0

1

i!(m− i)!

(
m− i
k − i

)
(−1)k−iξ(〈Ki〉) =


φ(〈K〉)
m! · 2m

, if k = 0;

0, if k ∈ [m].
(35)

We can finally prove (33) by induction in j ∈ {0, . . . ,m}. For j = 0, the
assertion follows from (35) for k = 0. Suppose then that j ≥ 1 and by using
the inductive hypothesis, note that (35) for k = j gives

ξ(〈Kj〉) = −j!(m− j)!
j−1∑
i=0

1

i!(m− i)!

(
m− i
j − i

)
(−1)j−i

φ(〈K〉)
2m

= −
j−1∑
i=0

(
j

i

)
(−1)j−i

φ(〈K〉)
2m

=
φ(〈K〉)

2m
.

Thus (33) holds.

8 Separations

In this section we prove all separation theorems.
Recall from Section 2.3 that for x ∈ En, σx ∈ Sn denotes the unique

permutation such that x{σ−1
x (1)} < · · · < x{σ−1

x (n)} when the coordinates
(x{i} | i ∈ [n]) are distinct, and is defined arbitrarily otherwise.

Proof of Theorem 3.6. First note that the quasirandom (` + 1)-tournamon
ψ`+1 can be represented by the T(`+1) -Tournament-on

N def
=

{
x ∈ E`+1

∣∣∣∣ x[`+1] <
1

2
≡ sgn(σx) = 1

}
. (36)
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Let K be the exchangeable array corresponding to N with respect to θ picked
in EN+ . By Theorem 3.10, to show that ψ`+1 ∈ UCouple[`] it is sufficient
to prove that ψ`+1 is weakly `-independent, that is for every m ∈ N, the
random variable K|[m] is independent from (θA | A ∈ r(m, `)). Indeed, K|[m]

is completely determined by σι∗
[m]

(θ) and (θA | A ∈
(

[m]
`+1

)
), and any changes in

the values of the signs sgn(σι∗A(θ)) can be offset by flipping the corresponding
variables θA (cf. (36)) so that the distribution of K|[m] does not change from
fixing σι∗

[m]
(θ).

Suppose now toward a contradiction that ψ`+1 ∈ Independence[`], that
is ψ`+1 = φH for some T(`+1) -Tournament-on H of the form H = E`+1,` × G for
some G ⊆ [0, 1]. Note that for any σ ∈ S`+1, we have H · σ = H. But this is
a contradiction as the axioms of Tk -Tournament imply that λ((H · σ) ∩H) = 0
whenever sgn(σ) = −1.

Proof of Theorem 3.7. Since ψlin is represented by the TLinOrder-on N def
= {x ∈

E2 | x{1} < x{2}}, we know rk(ψlin) = 1, thus by Proposition 4.1, we have
ψlin /∈ UCouple[1].

Since ψlin is n-categorical for every n ∈ N, it is symmetrically `-local for
trivial reasons (namely, all events K|Vi ∼= Mi have probability 1), for any
integer `. Hence ψlin ∈ UInduce[`] by Theorem 3.11.

To prove Theorems 3.8 and 3.9, the alternating tournament defined below
will play a key role.

Definition 8.1. Let k ≥ 1. For α : [k]� [k + 1], denote by σα the unique

extension of α to an element of Sk+1, and let sgn(α)
def
= sgn(σα). This

definition behaves well with respect to the actions of Sk and Sk+1: for every
η ∈ Sk we have sgn(α ◦ η) = sgn(α) sgn(η), and for every σ ∈ Sk+1 we have
sgn(σ ◦ α) = sgn(σ) sgn(α).

The alternating k-tournament is the model A
(k)
k+1 ∈ Kk+1[Tk -Tournament] of

Tk -Tournament of size k + 1 given by

V (A
(k)
k+1)

def
= [k + 1]; RE(A

(k)
k+1)

def
= {α ∈ ([k + 1])k | sgn(α) = 1}.

For example, A
(2)
3 is the oriented cycle ~C3.

Proof of Theorem 3.8. For this proof, let us denote the predicate symbols

of T(`+2) -Hypergraph and T(`+1) -Tournament by E and P , respectively. Let ψ
def
=
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ψ`+1 ∈ Hom+(A[T(`+1) -Tournament],R) be the quasirandom (`+ 1)-tournamon
and let I : T(`+2) -Hypergraph  T(`+1) -Tournament be given by

I(E)(x1, . . . , x`+2)
def
=

∨
1≤i1<···<i`≤`+2

(P (xi1 , . . . , xi` , xj1) ≡ P (xi1 , . . . , xi` , xj2)),

where j1, j2 ∈ [`+2] are such that {i1, . . . , i`, j1, j2} = [`+2]. By Theorems 3.3

and 3.6, we know that φ
def
= ψI ∈ Hom+(A[T(`+2) -Hypergraph],R) satisfies

UCouple[`].
To show that φ /∈ Independence[`], we will make use of the theory

T (isomorphic to T(`+1) -Tournament) that is obtained from T(`+2) -Hypergraph ∪
T(`+1) -Tournament by adding the axiom

∀~x,E(x1, . . . , x`+2) ≡ I(E)(x1, . . . , x`+2) (37)

and the commutative diagram

T(`+2) -Hypergraph T(`+1) -Tournament

T(`+2) -Hypergraph ∪ T(`+1) -Tournament T

I

S J

A

where S is the structure-erasing interpretation, A is the axiom-adding inter-
pretation and J is the isomorphism mentioned above that acts identically on
P (the inverse J−1 acts identically on P and acts as I on E). Let ξ = ψJ

−1

so that ψ = ξJ and φ = ξA◦S.
Suppose toward a contradiction that φ ∈ Independence[`] and let N be

an `-independent T(`+2) -Hypergraph-on over Ω such that φN = φ = ψI . By
Proposition 4.3, there exists a T -on N ′ over Ω × Ω such that φN ′ = ξ and
S(A(N ′))E = N ′E = NE × E`+2 a.e. Note that rk(φ) ≤ rk(ψ) ≤ ` + 1, so
by possibly changing zero-measure sets using Proposition 4.2, we may also
suppose that rk(N ′) ≤ `+ 1. By applying a measure-isomorphism between
Ω × Ω and [0, 1], we conclude that there exists a T -on H (over [0, 1]) such
that φH = ξ, rk(H) ≤ `+ 1 and the peon HE is `-independent.

Since HE has rank at most `+ 1 and is `-independent, we can write it as

HE = E`+2,` × G × [0, 1]{`+2} for some measurable G ⊆ [0, 1](
[`+2]
`+1 ). Using the

symmetry axiom (4) of T(`+2) -Hypergraph and making a zero-measure change in
G, we may assume that it is S`+2-invariant.
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For every t ∈ [`+ 2], define the sets

V `+1
t

def
=

{
A ∈

(
[`+ 2]

t

) ∣∣∣∣ `+ 1 ∈ A ∧ `+ 2 /∈ A
}

;

V `+2
t

def
=

{
A ∈

(
[`+ 2]

t

) ∣∣∣∣ `+ 1 /∈ A ∧ `+ 2 ∈ A
}

;

V `+1,`+2
t

def
=

{
A ∈

(
[`+ 2]

t

) ∣∣∣∣ `+ 1, `+ 2 ∈ A
}
.

Define also the sets

W `+1
t

def
= [0, 1]V

`+1
t ; W `+2

t
def
= [0, 1]V

`+2
t ; W `+1,`+2

t
def
= [0, 1]V

`+1,`+2
t ;

Y `+1 def
=
∏̀
t=1

W `+1
t ; Y `+2 def

=
∏̀
t=1

W `+2
t ; Z

def
=

`+2∏
t=1

W `+1,`+2
t .

Note that

E`+1 = E` × Y `+1 ×W `+1
`+1 ;

E`+2 = E` × Y `+1 ×W `+1
`+1 × Y

`+2 ×W `+2
`+1 × Z.

Let ι : [`] ∪ {` + 2} → [` + 1] be the function that maps ` + 2 to ` + 1
and fixes all other points and note that ι induces maps ι∗ : Y `+1 → Y `+2 and

ι∗`+1 : W `+1
`+1 → W `+2

`+1 (given by ι∗(y)A
def
= yι(A) and ι∗`+1(w)A

def
= wι(A)).

For every x ∈ E` and every w ∈ W `+1
`+1 , define the sections

Hα
P (x,w)

def
= {y ∈ Y `+1 | (x, y, w) ∈ HP};

Hβ
P (x,w)

def
= {y ∈ Y `+1 | (x, y, w) /∈ HP};

and for every x ∈ E`, define

Hα
P (x)

def
= {w ∈ W `+1

`+1 | λ(Hα
P (x,w)) > 0};

Hβ
P (x)

def
= {w ∈ W `+1

`+1 | λ(Hβ
P (x,w)) > 0}.

It is clear that

Hα
P (x) ∪Hβ

P (x) = W `+1
`+1 (38)
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for every x ∈ E`.
Note that the axiom (37) of T and an application of Fubini’s Theorem

imply that for a.e. x ∈ E`, a.e. w, ŵ ∈ W `+1
`+1 , a.e. y ∈ Hα

P (x,w), a.e. ŷ ∈
Hα
P (x, ŵ) and a.e. z ∈ Z, we have

(x, y, w, ι∗(ŷ), ι∗`+1(ŵ), z) ∈ HE. (39)

Since the definition of I(P ) is invariant under negating P , the same assertion
also holds with β in place of α.

Recalling thatHE = E`+2,`×G×[0, 1]{`+2}, (39) implies that for a.e. x ∈ E`,
a.e. w, ŵ ∈ Hα

P (x) and a.e. z ∈ W `+1,`+2
`+1 , we have

(w, ι∗`+1(ŵ), z) ∈ G. (40)

Again, the analogous statement with β in place of α also holds.
From (38) and (40), it follows that there exists x0 ∈ E` such that the

following hold for Wα def
= Hα

P (x0) and W β def
= Hβ

P (x0).

i. We have Wα ∪W β = W `+1
`+1 .

ii. For a.e. w, ŵ ∈ Wα and a.e. z ∈ W `+1,`+2
`+1 , we have (w, ι∗`+1(ŵ), z) ∈ G.

iii. For a.e. w, ŵ ∈ W β and a.e. z ∈ W `+1,`+2
`+1 , we have (w, ι∗`+1(ŵ), z) ∈ G.

Since |V `+1
`+1 | = 1, let us for simplicity identify W `+1

`+1 with [0, 1] and let

h
def
= 1Wα be the indicator function of Wα ⊆ [0, 1]. For every A ∈

(
[`+2]
`+1

)
, let

πA : [0, 1](
[`+2]
`+1 ) → [0, 1] be the projection on the A-th coordinate and note

that the properties above imply that for a.e. u ∈ [0, 1](
[`+2]
`+1 ), if h(π[`+1](u)) =

h(π[`]∪{`+2}), then u ∈ G. Since G is S`+2-invariant, this in turn implies

that for a.e. u ∈ [0, 1](
[`+2]
`+1 ), if there exist j1, j2 ∈ [` + 2] distinct such that

h(π[`+2]\{j1}(u)) = h(π[`+2]\{j2}), then u ∈ G. But since at least two of the
values h(π[`+1](u)), h(π[`+2]\{`+1}(u)) and h(π[`+2]\{`}(u)) must be equal, it
follows that λ(G) = 1. So we must have

φ(ρ`+2) = λ(HE) = λ(G) = 1,

which implies φ(K
(`+2)

`+2 ) = 0.
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However, note that for the alternating (`+ 1)-tournament A
(`+1)
`+2 , we have

I(A
(`+1)
`+2 ) ∼= K

(`+2)

`+2 , hence

φ(K
(`+2)

`+2 ) ≥ ψ(A
(`+1)
`+2 ) =

(`+ 2)!

2`+2|Aut(A
(`+1)
`+2 )|

=
1

2`+1
,

a contradiction.

The following is needed for the proof of Theorem 3.9.

Lemma 8.2. If M ∈Mk+2[Tk -Tournament] is a k-tournament on k+ 2 vertices,
then M has at most two (unlabeled) copies of the alternating k-tournament

A
(k)
k+1.

Proof. Suppose toward a contradiction that M ∈Mk+2[Tk -Tournament] contains

three copies of A
(k)
k+1 and without loss of generality, let us suppose that

these three copies are induced by V1
def
= [k + 1], V2

def
= [k] ∪ {k + 2} and

V3
def
= [k − 1] ∪ {k + 1, k + 2}. Let α12, α13, α23 ∈ ([k + 2])k be given by

α12(v)
def
= v; α13(v)

def
=

{
v, if v < k;

k + 1 if v = k;
α23(v)

def
=

{
v, if v < k;

k + 2 if v = k;

and note that im(αij) = Vi ∩ Vj.
But then M |V1 ∼= A

(k)
k+1, M |V2 ∼= A

(k)
k+1 and M |V3 ∼= A

(k)
k+1 imply respectively

that

α12 ∈ RE(M) ≡ α13 /∈ RE(M),

α12 ∈ RE(M) ≡ α23 /∈ RE(M),

α13 ∈ RE(M) ≡ α23 /∈ RE(M).

This is a contradiction as all three equivalences above cannot be true at the
same time.

Proof of Theorem 3.9. For this proof, let us again denote the predicate sym-
bols of T(`+2) -Hypergraph and T(`+1) -Tournament by E and P , respectively. For
p ∈ [0, 1], let N p be the T(`+1) -Tournament-on given by

N p
E

def
=
{
x ∈ E`+1

∣∣ x[`+1] < p ≡ sgn(σx) = 1
}
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(note that for p = 1/2 this is precisely the theon (36) representing the
quasirandom (`+ 1)-tournamon).

Let I : T(`+2) -Hypergraph  T(`+1) -Tournament be the interpretation that de-

clares (` + 2)-edges to be isomorphic copies of A
(`+1)
`+2 , and let φp

def
= φIN p ∈

Hom+(A[T(`+2) -Hypergraph],R). We will show that φp satisfies UInduce[`] for
every p ∈ [0, 1], but does not satisfy UCouple[1] unless p ∈ {0, 1/2, 1}.

To show the former, recall that the quasirandom (` + 1)-hypergraphon
ψ`+1,p ∈ Hom+(A[T(`+1) -Hypergraph],R) satisfies Independence[`] (cf. Lemma 7.4)
and hence UCouple[`] (by Theorem 3.2). Note also that φN p = (ψ`+1,p⊗ψlin)I

′

and I ′ : T(`+1) -Tournament  T(`+1) -Hypergraph ∪ TLinOrder is given by7

I ′(P )(x1, . . . , x`+1)
def
=

( ∧
1≤i<j≤`+1

xi 6= xj

)

∧

E(x1, . . . , x`+1) ≡
∨

σ∈S`+1

sgn(σ)=1

∧
1≤i<j≤`+1

xσ(i) ≺ xσ(j)

 .

By Theorem 3.10(i) =⇒ (vii), we know that ψ`+1,p ⊗ ψlin ∈ UInduce[`] and
by Theorem 3.3, we get that φp = (ψ`+1,p ⊗ ψlin)I

′◦I satisfies UInduce[`].

Let us now show that for every p ∈ (0, 1) \ {1/2}, φp does not satisfy
UCouple[1]. Since ψlin has rank 1, it is enough to show that φp is not uniquely
coupleable with ψlin. Consider the (T(`+1) -Tournament ∪TLinOrder)-on N p,< given
by

N p,<
P

def
= N p

P ; N p,<
≺

def
= {x ∈ E2 | x{1} < x{2}}

and note that φN p,< is a coupling of φN p and ψlin, hence ξ
def
= φ

I∪idTLinOrder

N p,<
is a coupling of φp and ψlin. We will show that ξ 6= φp ⊗ ψlin by a direct
computation exhibiting an (` + 2)-hypergraph H and two different orders
on it such that ξ(H1) 6= ξ(H2) for the corresponding models of the theory
T(`+2) -Hypergraph ∪ TLinOrder. That will suffice since, clearly, (φp ⊗ ψlin)(H1) =
(φp ⊗ ψlin)(H2).

Let H ∈ K`+3[T(`+2) -Hypergraph] be given by

V (H)
def
= [`+ 3]; E(H)

def
= {[k + 1], [k] ∪ {k + 2}};

7This is a generalization of the “arc-orientation” interpretation used implicitly in the
implications P10 =⇒ P11 =⇒ P1(s) of [CG91].
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and let H1, H2 ∈ K`+3[T(`+2) -Hypergraph ∪ TLinOrder] be obtained from H by
equipping it with the orders ≺1 and ≺2, respectively, where ≺1 is the natural
order of [`+ 3] and ≺2 is obtained from ≺1 by swapping the order position of
`+ 1 and `+ 3, that is, we have

1 ≺2 2 ≺2 · · · ≺2 ` ≺2 `+ 3 ≺2 `+ 2 ≺2 `+ 1.

Let θ be picked at random in EN+ according to λ and let K be the
exchangeable array corresponding to N p,< with respect to θ (so that (I ∪
idTLinOrder

)(K) corresponds to (I ∪ idTLinOrder
)(N p,<)). Let σ

def
= σι∗

[`+3]
(θ). Then

we have

ξ(〈H1〉) = P[I(J(K|[`+3])) = H ∧ σ = id`+3];

ξ(〈H2〉) = P[I(J(K|[`+3])) = H ∧ σ = τ ];

where J : T(`+1) -Tournament  T(`+1) -Tournament∪TLinOrder is the structure-erasing
interpretation and τ is the transposition that swaps `+ 1 and `+ 3. Then by
Lemma 8.2, I(J(K|[`+3])) = H is equivalent to

J(K|[`+2]) ∼= J(K|[`+1]∪{`+3}) ∼= A
(`+1)
`+2 . (41)

Since Aut(A
(`+1)
`+2 ) is the alternating group on [`+ 2], on any fixed set of

`+ 2 vertices, there are exactly two models M1 and M2 that are isomorphic
to A

(`+1)
`+2 and they satisfy RP (M1) ∩ RP (M2) = ∅. This means that on

the event (41), out of the a priori four presentations of A
(`+1)
`+2 induced on

[`+ 2] and [`+ 1] ∪ {`+ 3}, only two are actually possible. Since ` is odd, a
straightforward calculation gives

ξ(〈H1〉) = p(`+2)(1− p)`+1 + p`+1(1− p)`+2 = p`+1(1− p)`+1;

ξ(〈H2〉) = p`(1− p)`+3 + p`+3(1− p)` = p`(1− p)`(3p2 − 3p+ 1).

Thus we get

ξ(〈H2〉)− ξ(〈H1〉) = p`(1− p)`(4p2 − 4p+ 1)

= p`(1− p)` (2p− 1)2 ,

which is non-zero as long as p ∈ (0, 1) \ {1/2}.
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Proof of Theorem 3.15. For p ∈ (0, 1), let N be the Tk -Hypergraph-on given by

N def
=

{
x ∈ Ek

∣∣∣∣ (min{x{v} | v ∈ [k]} < 1/2 ∧ x[k] < p)

∨
(

min{x{v} | v ∈ [k]} ≥ 1/2 ∧
∑
v∈[k]

x[k]\{v} mod 1 < p

)}
.

Let us show that φ
def
= φN satisfies Dev[k − 1]; recall that Dev[k − 1] =

Disc[Ak−1], where Ak−1
def
= {A ∈

(
[k]
k−1

)
| {1} ⊆ A} =

(
[k]
k−1

)
\ {[k] \ {1}} (see

Definition 2.8) and for ψ ∈ Hom+(A[TLAk−1
],R), let ξ be a coupling of φ and

ψ. By Proposition 4.3, there exists a (T ∪ TLAk−1
)-on H over [0, 1]2 such that

φH = ξ and HE = N × Ek.
Let (θ1,θ2) be picked in EN+([0, 1]2) according to λ and let K be the

exchangeable array corresponding toH with respect to (θ1,θ2). Our objective
is to show that the events (1, 2, . . . , k) ∈ RE(K) and ∀A ∈ Ak−1, ιA ∈ RPA(K)
are independent.

Since the event ιA ∈ RPA(K) is completely determined by ((θ1B,θ
2
B) | B ⊆

A), it is sufficient to show that the event (1, . . . , k) ∈ RE(K) is independent
from ((θ1B,θ

2
B) | B ∈ r(k, k − 1) ∧B 6= [k] \ {1}). But the event (1, . . . , k) ∈

RE(K) is equivalent to (θ1B)B∈r(k) ∈ N , and it is easy to see that the
conditional probability of (1, . . . , k) ∈ RE(K) given ((θ1B,θ

2
B) | B ∈ r(k, k −

1) ∧B 6= [k] \ {1}) is p a.e. Hence φ satisfies Dev[k − 1].

Let us now show that φ does not satisfy UInduce[1]. To do so, for each
i ∈ [2], we consider the (Tk -Hypergraph ∪T2 -Coloring)-on Hi (see Remark 1) given
by

HE = N ;

Hχi = {x ∈ E1 | x{1} < 1/2};
Hχ3−i = {x ∈ E1 | x{1} ≥ 1/2}.

Then by a straightforward calculation, for every H ∈ M[Tk -Hypergraph ∪
T2 -Coloring] with Rχ1(H) = V (H), we have

φH1(H) =
ψk,p(I(H))

2|H|
; φH2(H) =

φN ′(I(H))

2|H|
;

where I : Tk -Hypergraph  Tk -Hypergraph ∪ T2 -Coloring is the structure-erasing
interpretation, ψk,p is the quasirandom k-hypergraphon (see Definition 2.11)
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and N ′ is the Tk -Hypergraph-on given by

N ′ =

x ∈ Ek
∣∣∣∣∣∣
∑
v∈[k]

x[k]\{v} mod 1 < p

 .

Since φN ′ 6= ψk,p (since rk(ψk,p) = k > k − 1 ≥ rk(ψN ′)), it follows that
φH1(H) 6= φH2(H) for some H ∈M[Tk -Hypergraph ∪ T2 -Coloring] with Rχ1(H) =
V (H), hence φ does not satisfy UInduce[1].

Proof of Theorem 3.16. For p ∈ (0, 1), let N be the Tk -Hypergraph-on given by

N def
=

{
x ∈ Ek

∣∣∣∣max

{
xA

∣∣∣∣ A ∈ ( [k]

`+ 1

)}
< p

}
.

It is clear that φ
def
= φN satisfies Independence[`]. Consider now the TL{[`+1]}-

on H given by

HE
def
= N ; HP[`+1]

def
= {x ∈ E`+1 | x[`+1] ≥ p}

and note that if K is the exchangeable array corresponding to H, then

P[(1, . . . , k) ∈ RE(K) ∧ (1, . . . , `+ 1) ∈ RP[`+1]
(K)] = 0

6= p(
k
`+1) · (1− p) = φ(ρk) · P[(1, . . . , `+ 1) ∈ RP[`+1]

(K)],

so φ does not satisfy Disc[{[`+ 1]}].

Proof of Theorem 3.5. Follows from Theorems 3.14 (UInduce[` + 1] =⇒
CliqueDisc[` + 1]) and 3.16 (Independence[`] ; Disc[{[` + 1]}]), and the
fact that CliqueDisc[`+1] =⇒ Disc[{[`+1]}] (see [Tow17, AHCH+18]).

9 Top level quasirandomness

In this section we prove Theorems 3.12 and 3.13, which completely character-
ize the properties Independence[k−1] and UCouple[k−1], respectively when
all arities are at most k. These can be seen as analogues of full quasirandom-
ness for arbitrary universal theories (just as Dev[k] = CliqueDisc[k − 1] =
Disc[

(
[k]
k−1

)
] gives full quasirandomness in Tk -Hypergraph).
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Proof of Theorem 3.12. By Lemma 7.4, ψk,p ∈ Hom+(A[Tc,k],R) satisfies
Independence[k − 1], so the backward direction follows from Theorem 3.3.

For the forward direction, first we claim that it is enough to show the
case when T = TL. (This is not completely immediate as I : T  Tc,k is
required to satisfy Tc,k ` ∀~x, I(F )(~x) for every axiom ∀~x, F (~x) of T .) Let
A : TL  T be the axiom-adding interpretation and suppose φA (which
satisfies UCouple[k − 1] by Theorem 3.3) can be written as φA = ψJk,p for
some c ≥ 2, some p ∈ Πc and some J : TL  Tc,k, then we define I : T  Tc,k
to act as J and we have to show that it is indeed an interpretation, i.e.,
that Tc,k ` ∀~x, I(F )(~x) for every axiom ∀~x, F (~x) of T (ψIk,p = φ will then
follow trivially). Equivalently, we have to show that if M ∈ M[Tc,k], then
J(M) ∈ M[T ]. But since all pi are positive, we have ψk,p(M) > 0, so
φA(J(M)) > 0, hence trivially J(M) ∈M[T ].

Let us now prove the case T = TL. Let N be a (k− 1)-independent TL-on
such that φN = φ. Note that if P ∈ L is such that k(P ) ≤ k − 1, then NP
must be either ∅ or Ek(P ), so we can write L = L′ ∪ L0 ∪ L1, where

L′ def
= {P ∈ L | k(P ) = k};

L0
def
= {P ∈ L | k(P ) ≤ k − 1 ∧NP = ∅};

L1
def
= {P ∈ L | k(P ) ≤ k − 1 ∧NP = Ek(P )}.

Recall from Definition 6.8 that Kk[Th(φ)] = {K ∈ Kk[TL] | φ(K) > 0}
and enumerate its elements as K1, . . . , Kc. Note that since N is (k − 1)-
independent, it follows that every peon NP with P ∈ L′ is Sk-invariant, hence
we must have Aut(Ki) = Sk for every i ∈ [c]. Suppose first that c ≥ 2 and
define p ∈ Πc by pi = φ(Ki) > 0 and let I : TL  Tc,k be given by

I(P )(x1, . . . , xk(P ))
def
= x1 6= x1 (P ∈ L0);

I(P )(x1, . . . , xk(P ))
def
=

∧
1≤i<j≤k(P )

xi 6= xj (P ∈ L1);

I(P )(x1, . . . , xk)
def
=

∨
i∈[c]

idk∈RP (Ki)

Ei(x1, . . . , xk). (P ∈ L′). (42)

Since N is (k − 1)-independent, it follows that each Tind(Ki,N ) is (k − 1)-
independent and has measure pi, which implies that the Tc,k-on H defined by
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HEi
def
= Tind(Ki,N ) (i ∈ [c]) satisfies φH = ψk,p and since clearly I(H) = N ,

it follows that ψIk,p = φ.
If c = 1, then we can define I by replacing (42) with

I(P )(x1, . . . , xk)
def
=

∧
1≤i<j≤k(P )

xi 6= xj (P ∈ L′, idk ∈ RP (K1));

I(P )(x1, . . . , xk)
def
= x1 6= x1 (P ∈ L′, idk /∈ RP (K1))

instead and we trivially get φ = ψIk,p for any p ∈ Πc′ with c′ ≥ 2 as we must
have Tind(K1,N ) = Ek a.e.

Before we show Theorem 3.13, let us first see that the (Θ, p)-quasirandom
homomorphisms ψΘ,p ∈ Hom+(A[TΘ],R) from Definition 2.9 are well-defined

(i.e., their definition as ψΘ,p
def
= φNZ is independent of the choice of Z) and

satisfy UCouple[k − 1].

Proposition 9.1. With the notation and conditions of Definition 2.9, we
have

φNZ (〈M〉) =
∏
P∈L

p
|RP (M)|/k!
P (43)

for every M ∈M[TΘ]. Furthermore, ψΘ,p
def
= φNZ satisfies UCouple[k − 1].

Proof. First, let us show that N Z is indeed a TΘ-on.
Note first that TΘ trivially proves that

¬P (x, y, . . . , t) (P ∈ L, the tuple (x, y, . . . , t) contains repeated variables)
(44)

and if we add (44) to the axioms of TΘ, then it becomes substitutionally
closed (see [CR20, Definition 3.5, Remark 5]), then by [CR20, Theorem 3.7],
to show that N Z is a TΘ-on, it is enough to show that N Z satisfies the axioms
of TΘ and (44) a.e. It is trivial that N Z satisfies (44) a.e.

Note that the fact that Z is a partition implies that there exists a unique
Px ∈ L such that x[k] ∈ ZPx , thus there exists a unique Qx ∈ L such that
x ∈ N Z

Qx
, namely Qx = σ−1

x · Px (where σx is as in Definition 2.9). This
implies that N Z satisfies axioms (8) and (10) a.e.
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Note now that if τ ∈ Sk, then we have σx·τ = σx ◦ τ , hence

x · τ ∈ N Z
P ≡ x[k] ∈ Zσx·τ ·P ≡ x[k] ∈ Zσx·(τ ·P ) ≡ x ∈ N Z

τ ·P ,

so N Z also satisfies axiom (9) a.e., hence N Z is a TΘ-on.

Let K be the exchangeable array corresponding to N Z with respect to
θ picked in EN+ according to λ. Since for m ∈ N and K ∈ Km[TΘ], we have
φNZ (〈K〉) = P[K|[m] = K], if we show that for every measurable U ⊆ Em,k−1

with λ(U) > 0, we have

P[K|[m] = K | E] =
∏
P∈L

p
|RP (K)|/k!
P , (45)

where E is the event (θB | B ∈ r(m, k − 1)) ∈ U , then both (43) and
ψΘ,p ∈ UCouple[k − 1] will follow (the former follows by taking U = Em,k−1

and the latter implies weak (k − 1)-independence of N Z , which is equivalent
to φNZ ∈ UCouple[k − 1] by Theorem 3.10).

If m < k, (45) trivially holds, so suppose m ≥ k and note that the axioms
of TΘ imply that for each α : [k]� [m], there exists a unique Pα ∈ L such
that α ∈ RPα(K) and we must further have Pα = τ · Pα◦τ for every τ ∈ Sk.
Note that for any choice of (αA)

A∈([m]
k ) with αA : [k]� [m] and im(αA) = A,

we have

P[K|[m] = K | E] = P [∀α ∈ ([m])k, α ∈ RPα(K) | E]

= P
[
∀A ∈

(
[m]

k

)
, αA ∈ RPαA

(K)

∣∣∣∣ E] .
Now, the event αA ∈ RPαA

(K) depends only on the relative order of (θ{i} | i ∈
A) and on the variable θA and, since p is Θ-invariant, we have λ(Zσ·Pα) = pPα
for every σ ∈ Sk and every α : [k]� [m]. This means that if ≤ is an ordering
of A and E≤ is the event that says that the relative order of (θ{i} | i ∈ A) is
≤, then P[α ∈ RPα(K) | E ∧ E≤] = pPα and thus

P[K|[m] = K | E] =
∏

A∈([m]
k )

pPαA .

Since this holds for any choice of (αA)
A∈([m]

k ) with im(αA) = A, by considering

all possible k!(
m
k) such choices we get

P[K|[m] = K | E]k!(
m
k)

=
∏
P∈L

p
k!(

m
k)−1·|RP (K)|

P ,
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from which (45) follows.

Definition 9.2. Given a T -on N over Ω = (X,A, µ) and K ∈ KV [T ], let
WK
N : EV,|V |−1(Ω)→ [0, 1] be defined by

WK
N (x)

def
= µ({y ∈ X | (x, y) ∈ Tind(K,N )}).

Note that WK
N is essentially a (|V |−1)-flattening of the peon Tind(K,N ) ⊆

EV (Ω) (see Definition 6.4).
The next two simple lemmas are fundamental in the proof of Theorem 3.13.

Lemma 9.3. Let k ∈ N+ and suppose that k(P ) ≤ k for all P ∈ L. Let T
be a theory over L and N be a T -on over Ω = (X,A, µ). Then for every
m ∈ N and every K ∈ Km[T ], we have

φN (〈K〉) =

∫
Xr(m,k−1)

∏
A∈([m]

k )

W
K|A
N (πA(x)) dµ(x),

where πA : Em,k−1(Ω)→ EA,k−1(Ω) is the projection on the coordinates indexed
by r(A, k − 1).

Proof. Follows by considering the exchangeable array corresponding to N
with respect to θ picked in EN+(Ω) according to µ, noting that K|[m] = K is

equivalent to ∀A ∈
(

[m]
k

)
,K|A = K|A (since k(P ) ≤ k for every P ∈ L) and

integrating out the top variables (θA | A ∈
(

[m]
k

)
).

Lemma 9.4. If a T -on N over Ω is such that φN satisfies UCouple[`] and
K ∈ KV [T ] with |V | ≤ `+ 1, then WK

N is a.e. constant.

Proof. Without loss of generality, we may suppose that V = [m]. Write
Ω = (X,A, µ). Then it is sufficient to show that for every measurable
U ∈ Em,`(Ω), we have

∫
U
WK
N dµ = µ(U)φN (〈K〉). But for the exchangeable

array K corresponding to N with respect to θ picked in EN+(Ω) according to
µ, it follows that∫

U

WK
N dµ = P[K|[m] = K ∧ (θA | A ∈ r(m, k − 1)) ∈ U ]

= P[K|[m] = K] · P[(θA | A ∈ r(m, k − 1)) ∈ U ] = µ(U)φN (〈K〉),

where the second equality follows since N is weakly `-independent by Theo-
rem 3.10.

77



Proof of Theorem 3.13. The backward direction follows from Proposition 9.1
and Theorem 3.3.

For the forward direction, we will show that in fact we can take p = (pP )P∈L
satisfying pP > 0 for every P ∈ L. Note that when pP > 0 for every P ∈ L,
we have ψΘ,p(M) > 0 for every M ∈ M[TΘ], so by an argument analogous
to that of the proof of Theorem 3.12, it is enough to consider the case when
T = TL.

Suppose then that T = TL and let N be a T -on such that φN = φ.
Note that if P ∈ L is such that k(P ) ≤ k − 1, then rk(NP ) ≤ k − 1, so
by Theorem 3.3 and Proposition 4.1, it follows that rk(NP ) = 0, that is,

λ(NP ) ∈ {0, 1}. This means that we can write L = L̂ ∪ L0 ∪ L1, where

L̂ def
= {P ∈ L | k(P ) = k};

Li
def
= {P ∈ L | k(P ) ≤ k − 1 ∧ λ(NP ) = i} (i ∈ {0, 1}).

Consider the (left) action of Sk on Kk[Th(φ)] given by letting σ · K ∈
Kk[Th(φ)] (σ ∈ Sk, K ∈ Kk[Th(φ)]) be the model obtained from K by
permuting its vertices by σ, that is, we have

RP (σ ·K)
def
= {σ ◦ α | α ∈ RP (K)} (P ∈ L̂);

RP (σ ·K)
def
= ∅ (P ∈ L0);

RP (σ ·K)
def
= ([k])k(P ) (P ∈ L1).

Note that this definition ensures that for a.e. x ∈ Ek and every σ ∈ Sk, we
have

x · σ ∈ Tind(K,N ) ≡ x ∈ Tind(σ ·K,N ). (46)

It is also clear that for a.e. x ∈ Ek, there exists exactly one K ∈ Kk[Th(φ)]
such that x ∈ Tind(K,N ).

Let then L′ be a language containing one predicate symbol PK of arity
k for each K ∈ Kk[Th(φ)] and let Θ: Sk × L′ → L′ be the induced action

σ · PK
def
= Pσ·K (σ ∈ Sk, K ∈ Kk[Th(φ)]). Define then H by

HPK
def
= Tind(K,N )

and note that (46) and the remark below it ensure that H is a TΘ-on.
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Define I : T  TΘ by

I(P )(x1, . . . , xk(P ))
def
=



∨
K∈Kk[Th(φ)]
idk∈RP (K)

PK(x1, . . . , xk(P )), if P ∈ L̂;

x1 6= x1, if P ∈ L0;∧
1≤i<j≤k(P )

xi 6= xj, if P ∈ L1.

and note that we trivially have I(H)P = NP a.e. for every P ∈ L, hence
φIH = φ.

For every K ∈ Kk[Th(φ)], let pPK
def
= λ(HPK ) = φ(〈K〉) > 0 and note that

the definition of Θ implies that p is Θ-invariant and
∑

K∈Kk[Th(φ)] pPK = 1.
To conclude the proof, we will show that φH = ψΘ,p. To do so, for every K ∈
Kk[Th(φ)], let KK ∈ Kk[TΘ] be the unique model such that idk ∈ RPK (KK)
and note that the axioms of TΘ imply that WKK

H is a.e. equal to the (k − 1)-
flattening W k−1

HPK
of the peon HPK , which in turn is a.e. equal to WK

N . But

then from Lemma 9.4, it follows that WKK
H = φ(〈K〉) = pPK a.e. Since the

TΘ-on N Z of Definition 2.9 and Proposition 9.1 also clearly satisfies WKK
NZ =

W k−1
NZPK

= pPK a.e., from Lemma 9.3, it follows that φH = φNZ = ψΘ,p.

10 Conclusion and open problems

In this paper we have attempted to build a general theory of quasirandomness
that is uniformly applicable to arbitrary combinatorial structures and is
invariant under their “natural transformations”. While our basic definitions
deliberately avoided mentioning specific densities, it turned out, in the vein
of the previous research in the area, that our quasirandom properties can be
characterized in several equivalent ways, including such densities. We have
shown how to arrange these properties into a hierarchy and, with one or two
notable exceptions, have been able to prove that this hierarchy is proper.
Finally, we have compared our quasirandom properties to what has been
studied before for hypergraphs (with the focus on specific densities) and have
found that these two frameworks are essentially incomparable.

One topic that we touched tangentially in the proof of Theorem 3.10,
more specifically with Example 1 and Lemma 7.6, is the closedness of our
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properties with respect to both the density topology and L1-topology (Defi-
nition 7.5). The aforementioned example and lemma show that in general
unique coupleability with a particular collection of limit objects is closed
in L1-topology but not necessarily closed in the density topology. On the
other hand, alternative syntactic descriptions of UCouple[`] and UInduce[`]
(as `-locality and symmetric `-locality, respectively) imply that these classes
are closed even in the density topology. So in a sense we have a satisfactory
overall picture for the classes based on the “extrinsic” notion of coupleability.

Remarkably, we do not know the answer for the class Independence[`],
even if it has a very clean and natural “intrinsic” definition. This is the first
question we would like to ask: is Independence[`] closed in the density, or
at least L1-topology? One sensible approach to this question might consist
in developing an alternative, and perhaps more concrete, characterization of
this class that might be interesting in its own right.

If φ1 and φ2 are uniquely coupleable with all theons of rank ≤ `, then
the same is true for φ1 ⊗ φ2 (Theorem 3.4 (ii)). We do not know if the same
remains true after replacing this class of tests with individual tests, and when
we needed this in one of our proofs, we had to take a considerable detour
(see item 3 in our program at the beginning of Section 7). Thus comes our
second open question: assume that φ1 and ψ, as well as φ2 and ψ are uniquely
coupleable. Does it imply that φ1 ⊗ φ2 is also uniquely coupleable with ψ?

Under the additional assumption that φ1, φ2 are themselves uniquely
coupleable, the question takes a particularly nice and symmetric form: assume
that φ1, φ2 and φ3(= ψ) are pairwise uniquely coupleable. Does it imply
that φ1, φ2, φ3 are (mutually) uniquely coupleable? While the analogy with
independence for random variables is now visible, it is not immediately clear
how useful it might turn out here.

Another interesting question is whether unique coupleability establishes
a Galois correspondence between UCouple[`] and limit objects of rank at
most `. In other words, is it true that if φ is uniquely coupleable with every
ψ ∈ UCouple[`], then rk(φ) ≤ `?

As we mentioned before, the results of Theorems 3.1, 3.2, 3.5, 3.6 and 3.7
almost complete the Hasse diagram of implications between the families
Independence, UCouple and UInduce. The only missing implication/separations
are the ones between UCouple[`] and Independence[`′] when `′ < `, and this
is our fourth question: does UCouple[`] imply Independence[`− 1]? Let us
remark that with some change in geometric representation, the somewhat
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subtle theons we introduced in Section 2.3 all suggest that this implication
may actually hold.

Recall that Theorem 3.10(i)≡(vii) says that φ ∈ UCouple[`] is equivalent
to φ⊗ψlin ∈ UInduce[`]. Let us now draw attention to three interesting open
problems that can be extracted from this equivalence.

The first is whether a “converse” of this is true in the spirit of Theo-
rems 3.12 and 3.13: can every φ ∈ UInduce[`] be written as φ = (φ̂⊗ ψlin)I

for some φ̂ ∈ UCouple[`] and some open interpretation I : T  T ′ ∪ TLinOrder?
The second problem is an analogue of Theorems 3.12 and 3.13 themselves

in the context of unique inducibility. We conjecture that if all arities are at
most k, then φ ∈ UInduce[k − 1] should be equivalent to φ = (φΘ,p ⊗ ψlin)I

for some action Θ: Sk × L′ → L′ on a language L′, some open interpretation
I : T  TΘ ∪ TLinOrder and some Θ-invariant p ∈ [0, 1]L

′
(of course, this would

follow from a positive answer to the previous problem).

The third question is more open-ended. In the three scenarios discussed
in Section 3.1 (permutations, words and Latin squares), the quasirandom
object is “straightforward” but does not satisfy even the weakest of our
properties UInduce[1]. Hence we might reasonably ask if the theory of
“natural” (understood as in the introduction) quasirandomness properties can
be extended beyond UInduce[1]. One possibility would be to consider the
closure of UInduce[`] under independent couplings and open interpretations.
Both the quasirandom permuton ψlin⊗ψlin and the quasirandom Latin square
ψlin ⊗ ψlin ⊗ ψlin belong to this class (for every `). This definition, however,
is of the same distinctly ad hoc nature we have been trying to avoid in this
paper. Are there any “reasonable” descriptions of this class, be them extrinsic
or intrinsic? The only thing we can prove (and even that is non-trivial) is
that this class is proper, i.e., there are theons that do not belong to it, for an
arbitrary `. If the conjectures from the previous two paragraphs are true, this
would also form another interesting hierarchy: starting from UCouple[`], we
can get progressively weaker families of natural quasirandomness properties
by taking independent coupling with the linear order ψlin.

Another possible approach would be to start with quasirandom permu-
tations that is by far the most widely studied class, and from their known
properties [Coo04, Coo05, KP13, CKN+20]. However, in comparison to their
(hyper)graph and tournament counterparts, the theory of permutation quasir-
andomness provides a much smaller variety of quasirandomness formulations
as candidates for natural generalizations, essentially boiling down to only
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three types: explicit density notions, discrepancy notions based on intervals
and spectral notions. Let us also note that there is still a whole host of
properties [DEG14, CD17] that random permutations satisfy and that have
not yet been fully explored in the quasirandom setting. In fact, some of these
properties are so fine-grained that it is not even clear if they can be encoded
by subpermutation densities.

The notions of rank and Independence have the following generalization:
for B ⊆ N+, let us say that a peon N over Ω = (X,A, µ) is B-compatible if
it only depends on coordinates that are indexed by sets A with |A| ∈ B, that

is, it can be written as N = G ×X
⋃
b∈[k(P )]\B ([k(P )]

b ) for some G ⊆ X
⋃
b∈B ([k(P )]

b ).
Let us say that an Euclidean structure is B-compatible if all its peons are
so and let us say that φ ∈ Hom+(A[T ],R) is B-compatible if it has a T -
on representation that is B-compatible. Then rank at most k amounts to
[k]-compatibility and `-independence amounts to (N+ \ [`])-compatibility.
We believe that with a careful inductive application of the theon uniqueness
theorems [CR20, Theorems 3.9 and 3.11, Proposition 7.7], one could generalize
the proof of weak independence to show that if φ1 and φ2 are B1-compatible
and B2-compatible, respectively and B1∩B2 = ∅, then φ1 and φ2 are uniquely
coupleable. However, we know that UCouple[`], i.e., unique coupleability with
all [`]-compatible limit objects, is strictly weaker than Independence[`], so it
is natural to ask if the weak independence analogue of (N+ \B)-compatibility
(i.e., asking the exchangeable array K to be independent from (θA | |A| ∈ B)
as a random variable) also yields a strictly weaker property than (N+ \B)-
compatibility when B is not of the form [k] for some k ∈ N. In particular, this
involves studying unique coupleability with all ψ ∈ Independence[`] as well.
Building on that, it is also natural to ask if there are examples of uniquely
coupleable φ1 and φ2 that do not fall in this B-compatibility setting or in its
weak independence analogue.
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[ES12] Gábor Elek and Balázs Szegedy. A measure-theoretic approach
to the theory of dense hypergraphs. Adv. Math., 231(3-4):1731–
1772, 2012.

[GHHS20] Frederik Garbe, Robert Hancock, Jan Hladký, and Maryam
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A The L1-topology

Lemma A.1. The L1-distance δ1 is a metric on Hom+(A[T ],R) and generates
a finer topology than the density topology.

Proof. Let us first check the triangle inequality. Let ξ be a coupling of φ1 and
φ2 and ζ be a coupling of φ2 and φ3 attaining the L1-distances in (30). Let
also Ji : T  T ∪ T be the structure-erasing interpretation corresponding to
coordinate i and Iij : T ∪T  T ∪T ∪T be the structure-erasing interpretation
corresponding to coordinates i and j. Since ξ is a coupling of φ1 and φ2 = ζJ1 ,
Proposition 5.2 gives us a coupling ξ̂ of φ1 and ζ such that ξ̂idT ∪J1 = ξ. Since
idT ∪J1 = I12, we get that ξ̂ is a coupling of φ1, φ2 and φ3 such that ξ̂I12 = ξ
and ξ̂I23 = ζ. But ξ̂I13 is a coupling of φ1 and φ3 and for each P ∈ L we have

ξ̂I13(dP ) ≤ ξ̂I12(dP ) + ξ̂I23(dP ),

hence by (30) we get δ1(φ1, φ3) ≤ δ1(φ1, φ2) + δ1(φ2, φ3).

Finally, note that by (29) we have

|φ1(〈M〉)− φ2(〈M〉)| ≤ δ1(φ1, φ2)
∑
P∈L

(|M |)k(P ),

for every M ∈ M[T ]. This implies both δ1(φ1, φ2) = 0 =⇒ φ1 = φ2 and
that the L1-topology is finer than the density topology.
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