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Abstract

The theory of quasirandomness has greatly expanded from its
inaugural graph theoretical setting to several different combinatorial
objects such as hypergraphs, tournaments, permutations, etc. However,
these quasirandomness variants have been done in an ad-hoc case-by-
case manner. In this paper, we propose three new hierarchies of
quasirandomness properties that can be naturally defined for arbitrary
combinatorial objects. Our properties are also “natural” in more
formal sense: they are preserved by local combinatorial constructions
(encoded by open interpretations). We show that our quasirandomness
properties have several different but equivalent characterizations that
are similar to hypergraph quasirandomness properties. We also prove
several implications and separations comparing them to each other
and to what has been known for hypergraphs.

The main notion explored by our statements and proofs is that of
unique coupleability: two limit objects are uniquely coupleable if there
is a unique limit object in the combined theory that is an alignment
(i.e., a coupling) of these two objects.

1 Introduction

The theory of graph quasirandomness introduced by Thomason [Tho87] and
Chung—Graham—Wilson [CGW89] studies deterministic graphs that look
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random. The main discovery of this theory is that several properties that
hold asymptotically almost surely for the sequence of Erdés—Rényi ran-
dom graphs (Gpp)neny are equivalent when rephrased as properties of a
deterministic graph sequence (G, )nen. Since then, the theory of quasiran-
domness has expanded not only within graph theory [CG92, SS97, SS03,
Sha08, Yus10, Janll, CFS18] but also towards studying quasirandomness for
other combinatorial objects such as tournaments [CG91, KS13, CR17], per-
mutations [Coo04, Coo05, KP13, CKN*20] and hypergraphs [CG90, Chu90,
KRS02, KNRS10, DR11, LM15b, LM17, Tow17, AHCH*18].

The theory of quasirandomness was one of the motivations and driving
forces behind the theory of dense limits of combinatorial objects (we refer
the reader to [Lov12] for the case of graphs and to [Aus08, AC14, CR20] for
the general case). The starting point of the latter theory is that if (IV,,)nen is
a sequence of combinatorial objects such that for every fixed combinatorial
object M, the normalized number of (unlabeled induced) copies p(M, N,,)
of M in N,, converges to some limit ¢(M), then the sequence (N,)nen can
alternatively be represented as a limit object that captures all these limit
values. But as the theory of graph (and other) limits has been maturing, and
in particular after the uniqueness theorem was proved in [BCL10] (see [Lov12,
Theorem 13.10] for graphs and [CR20, Theorem 3.9] for the general case),
it has turned out that in a sense this theory transcends counting. Namely,
limit objects can be described, up to an appropriate notion of isomorphism
(or, as Lovasz dubbed it, cryptomorphism), using different languages and
quite different kinds of mathematics and statistics ([Lov12, Theorem 11.52]
and [CR20, Theorem 6.3]) and only one of those descriptions is based on
sampling statistics p(M, —) per se [Raz07]. Arguably, it is this versatility that
is largely responsible for the wide spread of graph limits and their connections
to many other areas.

The situation with quasirandomness remains somewhat different, and
we are aware only of a few attempts to study it intrinsically, that is, based
on principles other than counting. One of the equivalent properties in the
seminal paper [CGW89] (P;) was of spectral nature, namely it requested
the second largest eigenvalue of G,, to be o(|G,|). This spectral theme was
further continued for (linear) quasirandom hypergraphs in [LM15a, LM17].

Even though most other quasirandomness properties in the literature
are stated in terms of counting, it is still possible to extract from them
something intrinsic. For example, the property P, in [CGW89] (see also [SS97,



Theorem 2.4|) implies that quasirandom limits W are the only graphons with
the following unique inducibility property: if (G,)nen converges to W then
the sequence of induced graphs (G,,|y, )nen also converges to W as long as
|Un| > Q(]GL]). As another example, using graphon language [LS06], we can
extract a trivial intrinsic characterization of quasirandom limits in terms of
an independence property: a graphon W: [0,1]*> — [0, 1] is quasirandom if
and only if W a.e. does not depend on its variables, that is, it is a.e. constant.

In this paper we attempt to initiate a more systematic study of quasiran-
dom properties that can be reasonably identified as “intrinsic” (for reasons
that will become clear very shortly, we will also use in this context the word
“natural”), and let us first explain what we roughly mean by this. Our expla-
nation will be deliberately informal and open-ended; instead of trying to give
a rigorous definition, we present a set of tests that in our view have to be
passed and then describe some concrete properties we will be studying in this
paper that pass these tests.

First and foremost, we view this paper as a continuation of [Raz07,
CR20], which in particular implies that we require qualifying properties to
be formulated in an uniform way for arbitrary universal theories in a finite
relational language. For examples of what can be expressed in that language
see [CR20, Sct. 2.1 and Sct. 7].

The next two requirements are somewhat derivative of the first.

We require that the property should not refer to densities of concrete
models and their explicit values (thus, this is more about the formulation of
the property than the class of objects defined by it.) The reason is that any
such definition is necessarily somewhat arbitrary. For example, there is no
such thing as “edge densities” in the theories of tournaments and permutations
so their ad hoc analogues had to be found when defining quasirandom objects
in those contexts. Of the quasirandom graph properties mentioned above,
the description as a constant graphon definitely satisfies this criterion, and
so does the inducibility property (the tweak of Py in [CGW89]). Spectral
properties also pass the test but unfortunately they fail (given our current
state of knowledge) the previous universality test.

The next requirement is that we want the property to be preserved
under open interpretations, and this is where the word “natural” (like in
“natural transformations” — open interpretations do form a category [CR20,
Sct. 2.2]) comes in. In plain words, everything that can be syntactically defined
in a quasirandom object must display proportionally strong quasirandom



properties. Again, in an implicit form this requirement was exploited in the
previous literature both in positive and negative manner. For example, the
proofs of the implications Py = P;; = Pi(s) in the seminal paper on
quasirandom tournaments [CG91] can be viewed as divided into two parts.
First one proves that all “couplings” of a quasirandom graph with a linear
ordering are the same and hence completely determined by the random
coupling. Then the tournament obtained from the resulting quasirandom
ordered graph via the “arc-orientation” interpretation must be quasirandom.
This example is paradigmatic for many parts of our paper. As for “negative”
use, let us note that most separations in the hierarchy of quasirandom
hypergraphs [AHCH" 18, LM15b, Tow17] can be viewed as coming from the
fact that these properties are not preserved under open interpretations between
the theories of hypergraphs of possibly different arity. We will elaborate on
this in Section 8 (see Theorem 3.15).

Our final requirement is more “traditional”, and it is well-rooted in the
previous literature. Namely, we require that the property should be satisfied
asymptotically almost surely for some “natural” random model of some
“natural” theory 7. Examples of “natural” random models include, of course,
the Erdoés—Rényi model and its generalization to hypergraphs, the random
tournament, the random permutation, etc.

This list of requirements may appear to be rather restrictive, so let us
describe quasirandom properties we are studying; they are essentially far-
reaching generalizations of what we already discussed above. Several more
remarks are in place before we begin.

1. We have deliberately decided against attempting to state our properties
in the language of finite combinatorial objects and their asymptotic
behavior — it is probably possible but the result might be rather ugly
and disappointing. Instead, we use the language of graphons [LS06],
hypergraphons [ES12] and theons [CR20] for the geometric view of
our objects and that of flag algebras [Raz07] for a concise algebraic
description. We remark that we are not the first authors to make
this election, and the advantages of using the continuous setting are
illustrated by the fact that such proofs are often more elegant and less
technical than their finite world counterparts [Janll, KP13, Tow17].
This view is more instructive, too: for example, by looking back through
the lenses of graphons, we can extract an elegant graphon proof of



quasirandomness of property P,(4) of [CGW89] based on the Lebesgue
Density Theorem from a paper as early as [DF81, Theorem 3.10].

However, for the benefit of more combinatorially-oriented reader we try
to inject as much of “finite intuition” as possible in appropriate places.

2. Our properties are not equivalent with those previously studied in
the literature even for hypergraphs (see Figure 2). Hence the reader
interested only in this case can safely assume that our base theory is
T -Hypergraph fOr some k > 3, and the objects are just hypergraphons. But
let us mention that more complicated objects like colorings, orderings,
couplings, etc. will pop up in the statements and the proofs anyway.

3. Finally, the description below is loose and sweeps under the rug some
important technicalities. Proper definitions are deferred to Section 2.2.

Independence[l| If we want to realize the quasirandom (that is, constant)
graphon of density p as a 2-hypergraphon G C [0, 1]?, one way of doing
it is by

G = {(zpywenran) |2pe < v} (1)
This 2-hypergraphon has one peculiar property: it does not depend on
first-order coordinates {1y, z{2y, and this property is perfectly general-
izable. Namely, we call a combinatorial object ¢ ¢-independent if it has
a representation similar to (1) that does not depend on the coordinates
x4 with |A| < ¢. This is the strongest in the hierarchy of our properties,
and it relatively easily implies all the others, with the same value of
the parameter ¢. Let us also remark that if the object is given in an
implicit form, say as a positive homomorphism ¢ € Hom™ (A[T], R)
from the flag algebra, then Independencel/] only talks about the ez-
istence of the required geometric realization or, equivalently, about
the possibility of straightening up any geometric realization! using spe-
cific families of measure-preserving functions [Lov12, Ch. 7.3], [ES12,
Sct. 4.1], [CR20, Sct. 3]. As an example of a non-straight representation,
the 2-hypergraphon

g = {(xpy e ra) | (@py +2e + o) mod 1 <p} (2)

'In the case of a T-on A, we require that this transformation be uniform over all P-ons
Np forming N.



represents the same limit as the one in (1) but does depend on first-order
coordinates.

UCouple[/] (Unique (-coupleability) Roughly speaking (the exact defini-
tion in the language of open interpretations will be given in Section 2.2),
two combinatorial objects ¢ and 1 are uniquely coupleable if any two
alignments of these objects on the same ground set (a coupling) give the
same object in the combined theory. In that case, this unique coupling
can be described by the random alignment, called independent coupling,
and this allows us to compute the combined object (represented as a
flag-algebraic homomorphism) by a very simple formula. For example,
quasirandom graphs of density p € [0, 1] are uniquely coupleable with
any 2-coloring of the vertices as well as with the linear ordering. They
are not uniquely coupleable with themselves, except for the trivial case
p € {0,1}. Now, to every combinatorial object ¢ we associate its rank
dually to the notion of Independence: rk(¢) < ¢ if and only if ¢ has a
representation as a T-on N in which all P-ons Np depend only on the
coordinates x4 with |A| < . We call an object ¢ uniquely (-coupleable
if it is uniquely coupleable with all objects ¢ such that rk(y) < £.

UInduce[(] (Unique /(-inducibility) One equivalent way to view the in-
duced subgraph G|y is this: we first color the vertices into two colors,
say, green (corresponding to V') and red. Then instead of removing red
vertices, we remove all edges adjacent to at least one red vertex. In
this form, it has a perfect generalization in higher dimensions. Namely,
we start as in the previous paragraph and consider couplings of a com-
binatorial object ¢ with an ¢-hypergraphon ¢ (note that rk(y) < /).
The unique coupleability requires that for any two such couplings &;
and &, we have & (M) = &(M) for any model M of the combined
theory. Unique inducibility by v relaxes this property by requiring that
&1(M) = & (M) holds only for those M that are based on a clique in the
hypergraphon . The object ¢ is uniquely ¢-inducible if it is uniquely
inducible by any ¢-hypergraphon .

From the loose formulation of the properties above, one can already see
that the first two “naturality” requirements are satisfied: the formulations
are made for arbitrary theories and do not refer to densities of concrete
models and their explicit values. As for the third “naturality” requirement
(Theorem 3.3), while the fact that Independence[/] is preserved under open
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interpretations follows easily from the general theory, for UCouple[¢] and
UInduce|/], this will follow from an amalgamation property (Theorem 5.1)

that roughly says that couplings can be lifted through open interpretations
(Proposition 5.2).

As we mentioned before, the quasirandom k-hypergraph satisfies Independence|k—

1].  The situation for asymmetric combinatorial objects is more diverse.

For example, the quasirandom tournament satisfies UCouple[l] but not
Independence[l] and this example can be generalized to higher values of

¢. One interesting example for unique inducibility is the linear order as it
satisfies UInduce[l] for every ¢ without being a trivial object.

All our properties are anti-monotone in ¢ in the sense that for any of
the above, we have the implications P[{] = P[¢ — 1] (see Theorem 3.1)
and as for relations between the properties (Theorem 3.2), we show that
Independencel[/] implies UCouple[/] and that UCouple[/] implies? UInduce|(
(see Figure 1).

In terms of separations, we show that no upward implication holds, that
is, none of the studied quasirandomness properties with parameter ¢ can
imply the same, or for that matter any other, property with parameter ¢ 4 1
(Theorem 3.5). As for separations between different families of properties,
we show that UCouple[/] does not imply Independence[l| (Theorem 3.6) and
UInducel[/] does not imply even UCouple[l] (Theorem 3.7). We have not been
able to extend the latter result to UCouple vs. Independence, that is to show
that UCouple[/] does not imply Independence[l’] for a single pair ¢’ < ¢; in
fact these are the only relations involving the three families of properties
that we leave open. All these separations are relatively easy when we are
working with arbitrary theories, but we show that they still hold even if we
restrict ourselves to the theory of k-hypergraphs, for £ > ¢+ 2 (Theorems 3.8
and 3.9).

Next, we provide the following alternate characterizations (summarized in
Theorems 3.10 and 3.11) of these classes.

Weak /(-independence Every combinatorial object ¢ can be represented,
in a canonical way, by an infinite countable random model K defined
from a collection of independent random variables (64) 4 indexed by
finite non-empty subsets of N, (see e.g. [CR20, proof of Theorem 3.4]).
We say that ¢ is weakly ¢-independent if K is independent from (64 |

2This implication is obvious from the definition.
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Independence[4] ﬂ :
ﬂ I UCouplel4] ﬂ
Independence|[3] ﬂ UInducel[4]

ﬂ T UCouplel3] ﬂ

_—

Independence|2] ﬂ UInducel[3]
ﬂ UCouple|2] ﬂ

Independencel[l] ﬂ UInduce[2]
UCouplell] ﬂ

B UInducel[l]

Figure 1: Implications between quasirandomness properties. This is almost a
Hasse diagram: only the relations between UCouple[¢| and Independencel|(’]
for ¢/ < ¢ are left open.



|A| < ¢) as a random variable (full Independencel|(] requires this to
happen “pointwise”). This weak version of independence turns out to
be equivalent to UCouple[l] (Theorem 3.10(iv)).

¢-Locality One of the defining properties of the countable random model K is
locality: the marginals (K |y, | i € I) are mutually independent whenever
the collection of finite sets (V});es is pairwise disjoint. The notion of
(-locality strengthens this property to require mutual independence of
(Ky, | i € I) whenever the collection of finite sets (V;);c; have pairwise
intersections of size at most ¢. It is clear that weak f-independence
implies f-locality, but we prove that the converse also holds, hence
(-locality is also equivalent to UCouple[l] (Theorem 3.10(vi)).

Symmetric /-locality The notion of symmetric £-locality relaxes the notion
of ¢-locality by requiring only mutual independence of the events (K|y; =
M; | i € I) for all choices of (V});e; with pairwise intersections of size
at most ¢ and all choices of models M;, i.e., we only care about the
submodels K|y, up to isomorphism. We show that symmetric ¢-locality
is equivalent to UInduce[/] (Theorem 3.11(iii)).

The right way to view the definitions of unique coupleability and unique
inducibility is that each ¢ of rank < ¢ generates a test for the respective prop-
erty that ¢ has to pass. It is natural to ask for a smaller and more explicit set
of universal tests that guarantees each property. We show (Theorem 3.10(ii))
that ¢ € UCouplel[/] is equivalent to ¢ being uniquely coupleable with a non-
degenerate quasirandom ¢’-hypergraphon )y , in every dimension ¢ < /.
We further prove (Theorem 3.10(iii)) that it is also equivalent to ¢ being
uniquely coupleable with their independent coupling 1, ,, ® ... ® 1y,,; for
the reasons explained right after the statement of the theorem, it does not
immediately follow from the previous item (ii). In the particular case ¢ = 1,
this means that the fact that ¢ is uniquely coupleable with a single non-trivial
vertex-coloring implies it must also be uniquely coupleable with any rank 1
limit object, such as linear orders, permutations, etc.

Our findings for unique inducibility are by far less conclusive but at least
we can show that it is sufficient to consider only hypergraphons ¢ with any
fixed non-trivial edge density p € (0,1) (Theorem 3.11(ii)).

Of all choices of parameters, arguably the most interesting one is when ¢ is
exactly one less than the maximum arity k of a predicate of the language. In



the theory of k-hypergraphs the three classes with ¢ = k£ — 1 become the same
and are satisfied only by the full quasirandom hypergraph, that is, the almost
sure limit of the generalization of the Erdés-Rényi model. If we consider
general theories of arity at most k, it is not hard to see (Theorem 3.12)
that (k — 1)-independent objects are (essentially) quasirandom colored k-
hypergraphs. The property UCouplelk — 1] in arity at most k& corresponds to
independent couplings of quasirandom colored k-hypergraphs with general-
izations of quasirandom tournaments (Theorem 3.13). The case of unique
inducibility is (again) considerably more complicated: UInduce[l] in arity 2
corresponds to (essentially) independent couplings of quasirandom colored
graphs with an aligned coupling of several biased quasirandom tournaments;
this latter aligned coupling is so that all biases are in the same direction. But
since this latter proof is very technical and does not seem to easily generalize
to arbitrary arities k, we do not include it in the paper.

Finally, let us compare our properties to the known hypergraph quasir-
andomness properties (Figure 2). In [Tow17], Towsner defined k-hypergraph
quasirandomness properties Disc|A| for every antichain A of non-empty

subsets of [k] &of {1,...,k} and showed that Disc[([lz])] and Disc[A,] are

equivalent to CliqueDisc[{] and Dev[{] of [LM15b], respectively, where A, oo
{A € (k[fll) | [k — €] € A}. Tt is immediate from definitions that UInducel/]
implies CliqueDisc[¢] (Theorem 3.14). In terms of separations between our
properties and the ones from the literature, we show the strongest sepa-
ration possible. The strongest Disc[A]| property that is not equivalent to
full quasirandomness is Dev|[k — 1] and this does not imply even UInduce|l]
(Theorem 3.15). In the other direction, the weakest Disc[.A| property that
is not implied by CliqueDisc|[/] is Disc[{[¢ + 1]}] and this is not implied by
Independence[(] (Theorem 3.16).

The paper is organized as follows. In Section 2 we give necessary prelim-
inaries. In Section 3 we formally state our main results. In Section 4, we
prove some basic facts that will be used throughout the text. In Section 5, we
show that our properties are natural, that is, that they are preserved under
open interpretations. In Section 6 we prove the alternative formulations of
UInduce, and in Section 7 we prove the alternative formulations of UCouple.
The proofs are done in this slightly reversed order because they are simpler
for the unique inducibility; besides, some auxiliary statements we need for
that part are later re-used for the unique coupleability. In Section 8, we
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Independence[k — 1] <= UInduce[k — 1] <= CliqueDisc[k — 1] <= Dev][k|

Dev[k — 1]

Independencelk — 2] Disc[{[k — 1]}]
o UInducelk — 2]
CliqueDisc[k — 2]
Independencelk — 3] o Disc[{[k — 2]}]
UInducelk — 3]
CliqueDisc[k — 3]
—
Disc[{[k — 3]}]
\
\
\
Independence|2]
UInduce[2]
CliqueDisc|2]
\ .
Independence][l] Disc[{[2]}]
UInducel[l]
\
CliqueDisc[l]
Discl[{[1]}]

Figure 2: Hasse diagram of quasirandomness hypergraph properties in arity
k. The top four equivalent properties represent full quasirandomness.
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show separations between different classes of properties. In Section 9, we
completely classify the properties Independence|k — 1] and UCouple[k — 1]
when all arities are at most k. The paper is concluded with a few remarks
and open problems in Section 10.

2 Preliminaries and notation

Throughout the text, we will use the notation N dof {0,1,...} for the non-

negative integers and N, % N \ {0} for the positive integers. We also let

[n] & {1,...,n} and (n),, dZEfn(n— 1)---(n—m-+1). The usage of the arrow
— for a function will always presume the function to be injective. For a
set V, we let (V), be the set of all injective functions «a: [¢] = V and for
such an «, we may use the notation «; for a(i) when convenient. We let

v & {A C V} be the set of all the subsets of V', let (‘2) &f {ACV||Al={}
and let (V) &of {ACV ||A >¢}. For VC Ny and A € (}), we let

>0
ta: [f] — V be the function enumerating the set A in the increasing order

(soim(e4) = A). We let (V') be the set of all finite non-empty subsets of V'

and r(V,¢) of {Aer(V)||Al </} be the set of all non-empty subsets of V/

of size at most £. We will be frequently abusing notation by identifying [n]
with n, e.g., we will use r(n, f) as a shorthand for r([n], /). Random variables
will always be typed in math bold face. We denote by Sy the group of
bijections V' »— V so that 5, is the group of permutations on n elements.

2.1 Model theory and limit theory

We will be working in the framework of [CR20], in which combinatorial objects
are encoded as models of a canonical theory. We will also be using the same
notation as in [CR20] with some small additions.

For a finite relational language £, we let T be the pure canonical theory
on L, that is, the theory whose axioms are

Vf, \/ Ti = Xy —>_\P(l’1,...,$k(p)). (3)
1<i<j<k(P)

for every P € L. For a canonical theory T" and a set V', let Ky [T] be the set
of (labeled) models of 7" with vertex set V. We use the symbol = to indicate
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that two models are isomorphic. For n € N, we let M,,[T] LK, 7)) =
be the set of n-element (unlabeled) models up to isomorphism; we also

let M[T] & Unen, Ma[T]. For n = [V| and K € Ky[T], we denote by
(K] € M,[T] the isomorphism type of K.

Other important examples of canonical theories include the theory of
k-hypergraphs T}, _typergraph, Whose language contains a single predicate E of

arity k(FE) &' and whose axioms are (3) for P = E and

VZ, (E(x1,...,25) = E(Tot)s- s To@))) (o € Sk); (4)

the theory of (simple) graphs TGraph 7 5 Hypergraph; the theory of (strict)
linear orders Tt inorder, Whose language contains a single binary predicate <

with the axioms

Va,—(z < z);
Vf, (1’1 7é To — (iL’l < ToV Iy < fﬂl)),
VT, (11 < 23 Ny < 3 — 1 < T3);

and the theory of c-colorings T¢.coloring, Whose language contains ¢ unary
predicates x1, ..., X. and that has axioms

Vo, o (2) Voxg(e) (1<i<j<o)

Vi, \/ Xi(T).

1€]c]

Note that T5_coloring and T’ _fypergraph are isomorphic in the category INT
(see [CR20, Sct. 2.2]).

Given an atomless complete® probability space Q = (X, A, ), a set V

and ¢ € N, we let Ey(Q) L X0 equipping it with the completion of the

product measure of |r(V, £)| copies of p, which by abuse of notation we also
denote by p (cf. [CR20, Definition 7.3]). Likewise, £y (Q2) &' X ™). Given an

injective function a: Vi — V5, we define the projection a*: Ey, ¢(2) — Ev, 4(2)

3 In [CR20, Sct. 7] we carefully considered incomplete spaces as well and drew finer
distinctions between various assumptions on them, cf. the discussion in [Lov12, page 218|.
It was needed to differentiate between weak theons (satisfying the axioms a.e.) and strong
ones (satisfying them everywhere off-diagonal), as well as for removal lemmas. As we prefer
to avoid dwelling into these issues in this paper, we make the simplifying assumption of
completeness once and for all.
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by a*(x)4 def Tq(a) (this is consistent with the notation for the projection
a*: &y, () — &y, (Q) defined analogously in [CR20, Definition 2.19], which
we will also use). The spaces used in this paper most often are ([0, 1]", £, \'),
where L' is the o-algebra of Lebesgue measurable subsets of [0, 1]" and \*
is the (t-dimensional) Lebesgue measure; these will be denoted simply by
[0,1]*. When Q = [0,1], we will omit © from the notation (e.g., a P-on

without reference to any space {2 is assumed to be a measurable subset of

Ewp) dof Erp)([0,1])). For spaces €2 and €', we let Q x Q' be the completion

of the product space. Finally, we will often abuse notation by identifying the
spaces Ey (2 x ') and Ey () x Ey (') via the correspondence Ey (2 x ') 5

x> (y,2) € Ev(Q) x Ey (V) given by ya & (x4)1 and z4 o (x4)2 for every
A e r(V). An analogous identification will be done for products of finitely
many spaces.

We also adopt the same conventions as in [CR20]: unless we explicitly say
otherwise, all our languages are assumed to be finite first-order relational lan-
guages, all our theories are assumed to be canonical (in particular, also univer-
sal and we will typically omit universal quantifiers from their axioms) and all
our structures are assumed to be canonical (i.e., models of Ty, or equivalently,
structures K such that Rp(K) o {a e V(K)*P) | K E P(ay,...,aip)} is
contained in (V(K))yp) for every P € L).

Recall that a sequence of finite (unlabeled) models (IV,,)nen is convergent if
|N,| < |[Npy1| and for every fixed finite model M, the limit lim,, ., p(M, Ny,)
exists, where p(M, N) denotes the normalized number of unlabeled induced
copies of M in N. We will be using three cryptomorphic ways of representing
convergent sequences: flag-algebraic homomorphisms [Raz07], theons [CR20,
Scts. 3 and 7] and exchangeable arrays [CR20, Definition 5.7]. In this language,
a hypergraphon of [ES12] is, up to zero-measure change, a T} _pypergraph-OlL
and there is a (not one-to-one) correspondence between graphons W of [LS06]
and Tgrapn-ons N that preserves densities given by

W {33 € & | T2y < W(I{l},l‘{g})}
Wy < N,

where

def
Wi(zay, vy) = Mzpey | (@), 7y, 70,2)) €MD), (5)
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Furthermore, for M € M[T] we let

of |Aut(M)]
a2 AUD] 6
(any S (6)
denote! the element of the flag algebra A[T] encoding the labeled (induced)
density of M.

The main theorem of dense limit theory says that positive homomorphisms,
theons and local exchangeable arrays all encode convergent sequences.

Theorem 2.1 ([LS06, Raz07], [CR20, Theorem 6.3] see also [CR20, Sct. 7]).
Fix an atomless complete probability space €2 and consider the following
objects for a theory T.

i. A convergent sequence (N, ),en of models of T'.
ii. A positive homomorphism ¢ € Hom™ (A[T],R).
iii. A T-on N over ).
iv. A local exchangeable array K supported on models of T'.

The objects above are cryptomorphic in the sense that given an instance
of one of them, one can “explicitly” construct instances of the others that
satisfy the following for every M € M|[T]:

Tim p(M, Ny,) = ¢(M) = on(M) = P[K|jar) = M].

One of the (easy) directions of the cryptomorphism above will be of
particular importance to us, namely, how to construct a local exchangeable
array K from a given T-on N over Q = (X, A, u). Intuitively, the only thing
we have to do is to independently sample countably many points from our
theon. Formally, let 8 = (64) acr(v,) be picked in &y, (Q2) according to [the
product measure| p, that is, each 84 picked in X according to p independently
of all other coordinates. The exchangeable array K corresponding to N with
respect to @ is defined by

def

V(K) €N, Rp(K) € {a € (No)yp) | a*(0) eNp}  (7)

4Note that if we think of M as a flag algebra type, then this notation is compatible
with [Raz07, Definition 8]. But in this paper, like in [CR20], we try to avoid flag algebras
in non-trivial types.
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and we have ¢ (M) = P[K|jny = M] for every M € MIT] (see [CR20,
proof of Theorem 3.4]).

Once we capture combinatorial objects as models of canonical theories,
local combinatorial constructions are then captured by open interpretations
(see [CR20, Sct. 2.2]) in the sense that if /: T3 ~» Ty is an open interpre-

tation and K is a model of T5, there is a naturally defined model I(K)

of Ty given by V(I(K)) & V(K) and Rp(I(K)) & {a € (V(K))wp) |

K E I(P)(ai,...,akp))}. The simplest but most important type of open
interpretations are the structure-erasing interpretations, which are open in-
terpretations of the form I: Ty ~» T7 U Ts, where T7 U T5 is the disjoint
union of the theories 77 and 75. They act identically on the language of 77,
and the corresponding combinatorial construction corresponds to erasing all
information of T,. Convergent sequences behave very well with respect to
open interpretations, namely, if (N, ),en is a convergent sequence of models of
Ty, then (I(Ny))nen is a convergent sequence of models of 7;. This behavior
is translated to operations on the limit objects of Theorem 2.1. Namely, if
¢ € Hom™ (A[T3],R), the Th-on N and the array K correspond to a conver-

gent sequence (N, )nen of models of Ty under Theorem 2.1, then ¢! def pom!

(where 7! is 7(UD in [Raz07, Definition 4 and Theorem 2.6] when U(z) is

x = x; see also [CR20, Theorem 2.14]), I(N) given by I(N)p défT(](P),N)

(see [CR20, Definition 3.5]) and I(K) are limit objects corresponding to
(I(Ny))nen for Theorem 2.1 (see [CR20, Remark 6]).

Finally, let us denote the identity interpretation of a theory T" by idp: T ~~
T and for interpretations I: T} ~~ T3 and J: Ty ~» Ty, we denote by I U
J: Ty UTy ~ Ty U Ty the amalgamation interpretation that acts as I on T}
and acts as J on Ts.

2.2 Quasirandomness properties

In this section we formalize all notions of quasirandomness presented in the
introduction.

Definition 2.2 (rank and independence). The rank of a peon N' C &.()
over ) = (X, A, ), denoted rk(N), is the minimum r € N such that N

can be written as N = H x X([ﬂ) for some H C & (). The rank of an
Euclidean structure N is the maximum rank rk(N) of its peons.
Dually, for £ € N, a peon N C &£,(Q) is called ¢-independent if it can be
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written as N = & () x H for some H C X (%) and an Euclidean structure
is called /-independent if all of its peons are ¢-independent.

For ¢ € N, an Euclidean structure N on £ over Q is weakly (-independent
if the exchangeable array K corresponding to N with respect to 6 picked in
En, () according to p (see (7)) is independent from (64 | A € (N4, () as a
random variable.

Given ¢ € Hom™ (A[T],R), the rank of ¢, denoted rk(¢), is the minimum
rank of a T-on N such that ¢ = ¢. Dually, we say ¢ € Hom™ (A[T],R) is
(-independent (resp., weakly (-independent) if there exists an (-independent
(resp., weakly (-independent) T-on N such that ¢ = ¢. We will refer to
the former property as Independence[l] but we do not introduce any special
notation for weak independence as it will be shown to be equivalent to another
property below.

Definition 2.3 (couplings). Given canonical theories T71,...,T; and ¢; €
Hom™ (A[T;],R) (i € [t]), a coupling of ¢1, ..., d; is a positive homomorphism
§¢€ HomﬂA[UieM T;],R) such that &' = ¢; for every i € [t], where I;: T; ~
U el Tj; is the structure-erasing interpretation.

The most important coupling is the independent coupling defined below.
In the finite world, the independent coupling of limits of sequences (N!),en
with V(N{) = V(N?) corresponds to the almost sure limit of the random
sequence (N, )nen where IN,, is obtained by first randomly permuting the
vertices of each N uniformly and independently and coupling the result.

Definition 2.4 (independent coupling, semantic version). For i € [t], let N
be a Tj-on over €;. The independent coupling of N*t, ... , Nt is the (.., T})-

on N' @ - @ N* over [[,.) Qi defined by

1€[t]

W' @ @N)p S x e [] ()| mila) €N,
Jelt]
whenever P is in the language of T; and where 7; denotes the natural projection
on the i-th coordinate.
Definition 2.5 (independent coupling, syntactic version). For i € [t], let ¢; €
Hom™ (A[T;],R). The independent coupling p1®- - -®¢; € Hom™* (A[. iy T3], R)
of ¢1,...,¢; is defined by

(61 @+ @) (M) = [[ ei({L(M))),

1E(t]

i€t]
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for every M € MU,y Ti], where I;: T; ~ ;¢ T} is the structure-erasing
interpretation.

These two definitions are obviously consistent: if N is a Tj-on over €;

such that ¢ = ¢; (7 € [t]), then (¢1 ® -+ ® @) = darg..@nt. In particular,
this implies that ¢; ® - -+ ® ¢ € Hom™ (A[J,.;y T3], R) (which can be also

verified by a direct computation).

i€t

Definition 2.6 (unique coupleability and inducibility). We say that ¢4, . .., ¢,
are uniquely coupleable if the independent coupling is their only coupling.
For ¢ € N, we say that ¢ € Hom™*(A[T],R) is uniquely (-coupleable if for
every theory T" and every ¢ € Hom™ (A[T"], R) with tk(z)) < ¢, ¢ and ¢ are
uniquely coupleable. We will be using the abbreviation UCouple[(] for this
property.

Given ¢ € N, ¢ € Hom™" (A[T],R) and ¥ € Hom™ (A[T}_nypergraph], R), we
say that ¢ is uniquely inducible by 1 if for any coupling & of ¢ and ¢ and for
every M € MI[T U T} nypergraph] such that (M) is a complete (-hypergraph,
we have E(M) = (¢ ® ?ﬁ) (M)7 where [: T@—Hypergraph ~ TU CzjZ—Hypergmph is the
structure-erasing interpretation. We say that ¢ is uniquely (-inducible if it
is uniquely inducible by every ¢ € Hom™ (A[T}_mypergrapn), R), and we will be
using the abbreviation UInducel[¢]. For completeness, we declare every ¢ to
satisfy UInduce[0].

Remark 1. Since T’ mypergraph = T2-Coloring, for £ = 1 we prefer to work
with the following equivalent formulation of UInduce[l] that can be deduced
from this isomorphism. ¢ € Hom™ (A[T],R) is uniquely inducible by ¢ €
Hom™ (A[T% _coloring], R) if for any coupling £ of ¢ and ¢ and for every M €
MIT U T _coloring] such that R, (M) =V (M), we have {(M) = (¢ @ ¥)(M).
Then ¢ is uniquely 1-inducible if it is uniquely inducible by every ¢ €
H0m+ (A[TZ —Coloring] ) R) .

Also, as we will see below (Theorem 3.1), UInduce[(] implies UInduce[l]
for any ¢ < ¢. Hence, we could have equivalently required in this definition
unique inducibility by every ¢ € Hom™ (A[T) _mypergraph], R) with £/ < £.

These three properties are central to our paper. If P is any of them, we
will say interchangeably that ¢ satisfies P[¢] or that ¢ € P[(].

Definition 2.7 (locality). Let A/ be a T-on over Q2 = (X, A, ) and let K
be the exchangeable array corresponding to N with respect to 6 picked in
En, () according to p (see (7)).

We say that N is (-local if for every collection (V;);c; of finite subsets of
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N, with pairwise intersections of size at most ¢, the marginals (K|y, | i € I)
are mutually independent.

We say that N is symmetrically (-local if for every collection (V;);e; of
finite subsets of N, with pairwise intersections of size at most ¢, the random
variables ([K|v;] | ¢ € I) (recall that [K] is the isomorphism type of K) are
mutually independent.

We say that ¢ € Hom™ (A[T],R) is {-local (vesp., symmetrically {-local)
if there exists an f(-local (resp., symmetrically ¢-local) T-on N such that
b= on

Note that both the notions of 0-locality and symmetric O-locality coincide
with the notion of locality for K (see [CR20, Definition 5.12]). Besides, it is
very easy to give an explicit purely syntactic description of both locality and
symmetric locality in the style of Definition 2.5; this in particular implies that
for an ¢-local (resp., symmetrically ¢-local) ¢ € Hom™ (A[T],R), every T-on
N with ¢ = ¢ must necessarily be (-local (resp., symmetrically (-local).

Finally, let us state the properties CliqueDisc[f] and Disc[A] in the limit
language.

Definition 2.8. Let K\ ¢ M [T} Hypergraph] be the complete ¢-uniform hy-
pergraph on n vertices and let p; def Kt(t). Let ¢ € Hom™ (A[T} mypergraph)s R)
and ¢ € [k].

We say that ¢ satisfies CliqueDisc[¢] ([LM15b]) if for every v € Hom™ (A[T} mypergraph), R)

and every coupling & of ¢ and 1, we have

(KDY = o) (KD,

where K ,Ek’e) € Mp[Th-typergraph U Ty-Hypergrapn] is the model obtained by
aligning p, and K ,Eg) (i.e., the model of size k that is a complete hypergraph
in both theories).

Given an antichain A C r(k), let £4 be the language containing one predi-

cate symbol Py of arity k(Pj) aof |A| for every A € A. We say that ¢ satisfies
Disc|A] ([Towl7, AHCH*18]) if for every ¢ € Hom™ (A[T,],R) and every
coupling & of ¢ and 1, if K is the exchangeable array in Ky, [Tk -typergraph UT 4]
associated with &, then we have
P[(1,...,k) € Re(K)AVA € Ay € Rp,(K)]
= ¢(px) - P[VA € A, 14 € Rp,(K)],

that is, the events (1,2,...,k) € Rg(K) and VA € A,y € Rp,(K) are
independent.
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In [Tow17], the definition of Disc|A] further requires symmetry of the
predicate symbols Py4, but it was shown in [AHCH" 18] that this condition
can be dropped.

2.3 Useful theories and objects

In this final preliminary subsection, we define some theories and limit objects
that are necessary to formally state some of our main results.

We will denote by ¢y, the (unique) element of Hom™ (A[TLinorder), R). As
for the rest, we start with a very general definition (that nonetheless will be
used in full generality in Theorem 3.13) and then derive all others as special
cases.

For ¢ > 2, let I, © {p = (p)e, € (0,1)° | > i . pi = 1} be the interior
of the standard (¢ — 1)-dimensional simplex. Also, given z € &,, let 0, € S,
be the unique permutation such that Tty < 00 < Tppsiin) when the
coordinates (zg;y | 7 € [n]) are distinct, and define it arbitrarily otherwise.

Definition 2.9 (Si-action theories). Let £ € Ny, let £ be a language con-

taining only predicate symbols of arity exactly k, let ©: Sy x L — L be a

(left) action of Sy, on £ and write o - P = oo ©(o, P). The canonical theory Tg

is defined as the theory over £ with axioms

1<i<j<k Pel

P(ma( . (k)) ( )(:L‘l, - ,l'k) (P € ,C,O' € Sk), (9)
P(xl, o wp) VP (xy, . Ty) (P,P e L,P#P). (10

Given a O-invariant p = (pp)per € [0,1]¢ with > ., pp = 1, the (O, p)-
quasirandom homomorphism is the homomorphism g, € Hom™ (A[Te],R)
corresponding to picking at random for each k-set A, independently of other k-
sets, an orbit O C L of the action © with probability » ., pp then uniformly
at random choosing an Si-equivariant assignment of the k-tuples with image
A to the elements of O. A Tg-on N'Z representing e, is given by®

NEY (e e |ap € Zoppy (PEL) (11)

SWe will check that all axioms of Tg are satisfied and provide an alternate syntactic
description as part of Proposition 9.1.
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where Z = (Zp)per is a measurable partition of [0,1] with AM(Zp) = pp
(Pel).

Let us now note a few special cases that will play an active role in our
paper.

Definition 2.10 (c-colored k-hypergraphs). Let £ = {Ey,..., E.} and as-
sume that the action © is trivial. In that case we will denote the theory Tg by
T.r and call it the theory of c-colored k-hypergraphs. The (O, p)-quasirandom
homomorphism will be called quasirandom c-colored k-hypergraphon with
densities p and denoted by v .

Definition 2.11 (quasirandom k-hypergraphons). Let us further specify ¢ = 2
in the previous definition. Since F» is the negation of F; and hence can be
safely removed, the theory Ty is isomorphic to T} mypergrapn- For p € (0,1),
the (©, (p,1 — p))-quasirandom homomorphism is called the quasirandom
k-hypergraphon of density p; it will also be denoted by 1y, ,.

Definition 2.12 (Colorings). Letting instead k£ = 1 in Definition 2.9, and
keeping the action O trivial, we see that Tg is naturally isomorphic to the
theory 7. _coloring- The quasirandom object will be called c-coloring with
densities p, p € Il., and denoted by ¢, € Hom™ (A[T._coloring); R). For ¢ =2
and p € (0,1), ¥g,1-p will be often abbreviated to 1, (which, in view of
Remark 1, is also the same as 91, € Hom™ (AT} _mypergraph), R)).

Definition 2.13 (k-tournaments). Let now £ = {E}, E»} and k > 2, but this
time the action © is not trivial but instead given by the sign homomorphism
sgn: S — S3. Then the only O-invariant p is p; = ps = 1/2 and, as in
the case of hypergraphons, we can exclude Es from the theory. We call it
the theory of k-tournaments and denote by Tk _Tournament; intuitively, this
theory corresponds to choosing one of the two possible orientations for every
k-set. The quasirandom object g (1/2,1/2) Will then be called the quasirandom
k-tournamon and denoted by vy; thus, v, € Hom™ (A[Tk-Tournament, R), and
19 is the ordinary quasirandom tournamon.

3 Main results

In this section we present the main results. We remark that some of these
results follow trivially from definitions and we will point these out as we go
along.
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Theorem 3.1. The properties Independence, UCouple and UInduce are
anti-monotone in the sense that P[{] = P[{ —1].

For Independence and UCouple, this theorem trivially follows from defi-
nitions. Even though it is possible to give an ad hoc proof that UInduce is
also anti-monotone, this follows trivially from its equivalence with symmetric
locality (Theorem 3.11 below) and the fact that symmetric locality is trivially
anti-monotone.

Theorem 3.2. For any { € N, Independence[!] —> UCouplell] —
UInducel/().
The second implication follows trivially from the definitions.

The next theorem concerns preservation of properties under open inter-
pretations.

Theorem 3.3 (Naturality). Let I: Ty ~ T, be an open interpretation and
let £ € N. The following hold for any ¢ € Hom™ (A[T3], R).

i. If ¢ is uniquely coupleable with some 1 € Hom™ (A[T"],R), then ¢' is
uniquely coupleable with 1.

ii. If ¢ € Independencell|, then ¢! € Independencel/].
iii. If ¢ € UCouplell], then ¢’ € UCouplell].
iv. If ¢ € UInducel(], then ¢! € UInducel/].

Item (ii) follows trivially from the definition of I(N') applied to an (-
independent Th-on A such that ¢ = ¢p. Note also that item (iii) follows
trivially from item (i). Furthermore, applying this theorem to the axiom-
adding interpretation I: T, ~» T, where L is the language of T', we see that
all our main notions do not depend on non-logical axioms. Nonetheless, using
theories and theons (as opposed to arbitrary Euclidean structures) helps to
better orient ourselves and put many of the results in the “right” focus.

The next theorem says that both Independence and UCouple are pre-
served under independent couplings.

Theorem 3.4. Let ¢; € Hom™ (A[T1],R) and ¢, € Hom™'(A[Ty],R). The
following hold for ¢ € N.

i. If ¢1,¢2 € Independencell], then ¢; ® ¢, € Independence[l).
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ii. If ¢1, ¢ € UCouple|l], then ¢ ® ¢y € UCouplell].

Remarkably, this is not true for UInduce, and a good example is provided
by the quasirandom permuton (see the end of this section).

The next five theorems concern separations between properties, either
allowing general theories or restricted to the theory of hypergraphs.

Theorem 3.5. Independencell| does not imply UInduce[l + 1], not even
when restricted to the theory of k-hypergraphs as long as k > /.
In fact, this theorem is a consequence of Theorems 3.14 and 3.16 below.
The following two theorems are included since the separating objects are

quite natural and explicit and the proofs are simpler. But in a sense they will
be superseded by Theorems 3.8 and 3.9.

Theorem 3.6. For every ¢ € N, | the quasirandom (¢ + 1)-tournamon 4,
satisfies UCouple[l] but does not satisfy Independencel(].

Theorem 3.7. The linear order 1y, € Hom™ (A[TLinorder], R) satisfies UInducel/]
for every ¢ € N but does not satisfy UCouplell].

Theorem 3.8. For ¢ > 1, there exists ¢ € Hom+(A[T(g+2) “Hypergraph s R)
satisfying UCouple[l] but not satisfying Independencell].
Theorem 3.9. For / > 1 odd, there exists ¢ € Hom*(A[T(“Q)_Hypergraph], R)
satisfying UInducel[l] but not satisfying UCouple[l].

The next theorem lists several properties that are equivalent to UCouple[/].

These include both alternative formulations and complete sets of tests for
unique coupleability.

Theorem 3.10 (Characterization of UCouple). Let ¢ € N,. The following
are equivalent for ¢ € Hom™ (A[T],R).

i. ¢ € UCouplel/].

ii. For every (' € [{], there exists p € (0,1) such that ¢ is uniquely
coupleable with the quasirandom ('-hypergraphon 1y .

iii. There exist py,...,pe € (0,1) such that ¢ is uniquely coupleable with
the independent coupling {n,, ® --- ® 1, of the quasirandom ¢'-
hypergraphons 1y p,, for ' € [(].

iv. ¢ is weakly (-independent.
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v. Every T-on N with ¢ = ¢ is weakly (-independent.
vi. ¢ is {-local.
vil. ¢ ® vy, satisfies UInduce|l].

Note that since ¢-hypergraphons have rank at most ¢, a posteriori, we
can also strengthen items (ii) and (iii) by replacing existential quantifiers
on p,pi,...,pe with universal ones. Also, since the linear order has rank
1, a posteriori, we can strengthen item (vii) to say that every coupling
of ¢ with the linear order satisfies UInduce[(]. In the actual proof of the
implication (ii) = (i) (that, arguably, is our technically most difficult result),
we go in the opposite direction and painstakingly “bootstrap” the premise
in (ii) to the unique coupleability with increasingly larger families of objects.

Let us also point out that, given Theorem 3.4(ii), one might expect that,
in general, if each one of ¢q,...,1; is uniquely coupleable with a given ¢,
then the same should hold for their independent coupling 1 ® - - - ® 1; this
would immediately give (ii) = (iii) in Theorem 3.10. However, this question
has turned out surprisingly difficult in full generality (see Section 10 for a
discussion).

The next, more modest, theorem provides properties equivalent to UInduce[(].

Theorem 3.11 (Characterization of UInduce). The following are equivalent
for £ € Ny and ¢ € Hom™ (A[T], R).
i. ¢ € UInducel[(].

ii. There exists p € (0,1) such that ¢ is uniquely inducible by every
(URS H0m+(A[T€—Hypergraph]7R) with 1(pe) = p.

iii. ¢ is symmetrically ¢-local.

The next two theorems completely classify Independence[k — 1] and
UCouple|k — 1] when all arities are at most k. These can be thought of as
analogues of full quasirandomness for these families of properties.

Theorem 3.12. Let k € N and suppose that k(P) < k for all P € L. Let T
be a theory over £ and ¢ € Hom™ (A[T],R). Then ¢ € Independence|k —1] if
and only if there exist ¢ € Ny, p € II, and an open interpretation I: T ~ T}
such that ¢ = 1y .
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Theorem 3.13. Let k € N, and suppose that k(P) < k for all P € L. Let T
be a theory over L and ¢ € Hom™* (A[T],R). Then ¢ € UCouplelk — 1] if and
only if there exists a language L whose predicate symbols have arity exactly
k, an action ©: Sy x L' — L', a O-invariant p = (pp)pes € [0,1]% with
Y per PP =1 and an open interpretation I: T' ~» Tg such that ¢ = @béw

3.1 Comparison to ad hoc theories

Hypergraphs. The theory of hypergraphons has been most inspirational
to our work as it also pertains to quasirandomness of “different strength”,
arranged in hierarchies like ours. In fact, the last three theorems compare our
notions with the hierarchies based on various discrepancy properties from the
literature.

As we remarked in the introduction, the results of [Tow17] imply that
Dev[k — 1] = Disc[Aj_1] is the strongest discrepancy property below full
quasirandomness and Disc[{[¢ + 1]}] is the weakest discrepancy property
above CliqueDisc[f]. This together with Theorems 3.1, 3.2 and 3.9 and
the three theorems below justify the Hasse diagram of Figure 2 between the
families Independence and UInduce and the discrepancy properties in the
literature.

The following theorem trivially follows from definitions.

Theorem 3.14. For every k > { > 1 and every ¢ € Hom™ (A[T}_mypergraph], R),
if ¢ € UInducell], then ¢ € CliqueDisc|().

Theorem 3.15. For every k € N, there exists ¢ € Hom™ (A[T}_nypergraph], R)
satistying Dev[k — 1] but not satisfying UInduce[l].

Theorem 3.16. For every k > { > 1, there exists ¢ € Hom™ (A[T _mypergraph), R)
satisfying Independence[l] but not satisfying Disc[{[¢ + 1]}].

Table 1 contains pointers to where each of the theorems (or their parts)
are proved.

Permutations. In our language, the quasirandom permuton [Coo04,
KP13] is simply 1, ® ¥nn (see [CR20, Example 6]). It does not satisfy even
the weakest of our properties UInduce[l]. This can be easily verified by a
direct computation, but a more instructive way would be to apply Theorem 3.7
and Theorem 3.10(i)=(vii). Since, on the other hand, ¢, € UInduce[l], we
see that the analogue of Theorem 3.4 is not true for unique inducibility.
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Theorem Proof location
3.1 Section 6
3.2 Section 4
3.3 Section 5
3.4 Section 4
3.5 Section 8
3.6 Section 8
3.7 Section 8
3.8 Section &
3.9 Section 8
3.10 (i)=(ii)=(iii) Lemma 7.8
(i)=(iv)=(v) Lemma 4.4
(iv) = (vi) Lemma 4.7
(vi) = (vii) Lemma 7.9
(vil) = (ii) Lemma 7.10
311 (i)=(ii) Lemma 6.1
(ii) = (i)  Lemma 6.3
(i) = (iii)  Lemma 6.13
3.12 Section 9
3.13 Section 9
3.14 Trivial (see Definitions 2.6 and 2.8)
3.15 Section 8
3.16 Section 8

Table 1: Proof locations for theorems of Section 3.
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These observations suggest an interesting research direction; we will return
to it in Section 10.

Words. In our language, quasirandom words defined in [HKPS20] are
simply i, ® ¥, (p € (0,1), ¥, € Hom™ (A[T%_coloring), R)). This is clearly
generalizable to v, € Hom™ (A[T. coloring], R) (p € Il.), corresponding to
quasirandom word sequences over the alphabet [c] with given letter frequencies
(p1,---,Ppe). In this way, one can immediately recover existence and uniqueness
of the limits of arbitrary (not necessarily quasirandom) convergent sequences
from the general theory in [CR20].

In terms of comparisons, since 1, € UInduce[l], the same is true for the
quasirandom “wordeons” ¥y, ® V.

Latin squares. This is a very interesting example since it is the first
time we have encountered an ad hoc theory of limit objects that is provably
different from what might be extracted from our framework.

Recall (see e.g. [DK74]) that there are two major forms of representing a
Latin square: as a multiplication table of a quasigroup and as an orthogonal
array. As it turns out, they lead to different theories.

The limit theory of Latin squares based on the tabular representation was
developed in [GHHS20], and the corresponding theory of quasirandomness
was continued in [CKLM20]. In the language of theons, this theory can
be handled only after a fashion, in the same vein as limits of functions on
finite vector spaces [CR20, Sct. 7.5], that is by introducing countably many
auxiliary predicate symbols. In this way one immediately gets existence and
uniqueness, but other than that the result will be somewhat ugly and not
particularly instructive.

The orthogonal array representation opens up another possibility. Recall
that in this representation a Latin square is simply an n?-subset of [n] x [n]x [n]
such that its projection onto every two coordinates is bijective. Uniformly
sampling from this set, we will get a model of T1,0rder U TLinOrder U TLinOrder-
Hence a “Borromean” (as in “Borromean rings”) view of limits of Latin squares
would be simply an element of Hom™ (A[TLinorder U TLinorder U TLinOrder); R)
such that all three permutons obtained from it by erasing one of the orders
are quasirandom.

One obvious example is the quasirandom limit of Latin squares ¢y, ®
Viin ® Yyn. But there are others. Indeed, in complete analogy with permu-
tons, limits of Latin squares (in our sense) can be uniquely identified with
probability distributions on [0, 1]* such that all three 2-dimensional marginals
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are uniform. Under this identification, ¢y, ® ¥, ® Yy, corresponds to the
uniform probability measure on [0, 1]* and a non-quasirandom example is
provided, say, by the uniform probability measure supported on the skewed
quasi-random graphon (2) with p = 1/2.

Finally, since the quasirandom permuton does not satisfy UInduce[l], it
follows that no limit of Latin squares satisfies UInduce[1] as well.

4 Basic properties and the first equivalence

In this section we present some initial properties about the notions we have
defined and prove the easiest equivalence in Theorem 3.10 between items (i),
(iv) and (v). The first proposition says that only trivial objects can have
unique coupleability parameter greater or equal to its rank; this stems from
the fact that non-trivial objects are not uniquely coupleable with themselves.

Proposition 4.1. Let ¢ € Hom* (A[T],R) and r & rk(¢).
i. 7 =0 if and only if ¢ € (),cy UCouple[/].
ii. If > 0 then ¢ ¢ UCouple|r].

Proof. Note that r = 0 if and only if all peons Np are trivial (that is, Np = ()
or Np = &py a.e.), which in turn is equivalent to having ¢((K)) € {0, 1} for
every finite set V' and every K € KCy[T]. This implies that there is a unique
K € Ky[T] with ¢((K)) = 1 and this K must further have full automorphism
group Aut(K) = Sy.

Let now ¢ € Hom™ (A[T"],R) for some theory 7", and assume that ¢ is
a coupling of ¢ and 9. Fix a (T'UT")-on N such that & = ¢p. Then for
every K € Ky [TUT'] with V finite we have Ti,q(K,N) = Tina(I(K), I(N))N
Tna(I'(K),I'(N)), where I: T ~» TUT" and I': T" ~» TUT" are the structure-
erasing interpretations.

If r =0, we get £((K)) = o((I(K)))Y((I'(K))) (since ¢ is 0-1 valued) so
the forward direction of item (i) follows.

The backward direction of item (i) clearly follows from item (ii), so let us
prove the latter by contradiction. Suppose that ¢ € UCouple[r] and fix a T-on

N such that ¢ = ¢y and tk(N) = r. Consider the (T'UT)-on H < N UN
in which both copies of each predicate symbol P get mapped to Np, i.e., H is
the coupling of N with itself. Since rk(H) = rk(N) = r and ¢ € UCouple[r],
we must have ¢y = ¢ ® ¢.
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Fix a finite set V and K € Ky [T] and let Ky € Ky [T UT]| be given by

setting Rp(K>) & Rp(K) for both copies of each predicate symbol P. Then

we have

S((K)) = tina(K, N) = tina (K2, H) = (¢ ® ) ((K2)) = ¢((K))?,
so we must have ¢((K)) € {0,1}. Hence r = 0, and item (ii) follows. O

The next two propositions will make use of the theon uniqueness theo-
rems [CR20, Theorems 3.9 and 3.11, Proposition 7.7]. Recall from [CR20, Def-
inition 3.8 and Sct. 7] that for a sequence of symmetric (i.e., Sg-invariant) func-
tions f = (fg)k_, with f;: E4(Q) — Q' the sequence of functions f: (fd)’j:l
with fy: E4(2) — E4(€Y) is defined by

fa(@)a & fla(i(x) (A € r(d)).

As we have seen in the introduction, a positive homomorphism ¢ €
Independence[(] can have geometric realizations far from being /-independent
(cf. (1) and (2)). The next proposition says that for rank the situation is
precisely the opposite.

Proposition 4.2. For every peon N C &(f2) there exists another peon
H C &(Q) such that rk(H) = rk(¢n) and H = N a.e. Moreover, if N is
(-independent for some ¢ < k, then H can be taken to also be (-independent.

Proof. Let u be the measure of 2 and X be its underlying space, let r o

rk(¢yr) and define the function W: & ,.(Q) — [0, 1] by

W(z) 2 u({y € XC) | (2,9) e M), (12)

defining it arbitrarily when this set is not measurable. Fubini’s Theorem
ensures that this function is measurable so we define

H W (1) x x5,
Clearly rk(H) < r. Hence, to prove that H = N a.e., it is sufficient to show
that W is 0-1 valued a.e.
Since rk(¢n) = r, we know that there exists a peon G over some space ' =
(X', A, 1) such that ¢g = ¢ and rk(G) = r. By theon uniqueness [CR20,
Proposition 7.7], there exist sequences f = (f4)%_,, 9 = (ga)%_, of symmetric
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measure preserving on h.o.a. (higher order arguments) functions (f;: & —
and gq: €5 — ') such that

~

fk(z) e N=gr(2) €g (13)

for almost every z € &;. From the structure of the function ﬁ, we can
decompose it as

~

fi(z,y) = (Fi(x), Fa(z,y)),

for every (z,y) € &, x |0, 1]@1), where Fy: &, — &:.(2) and Fy: & —
X (&) are given by

Fi(2)a ® fia (i), Fy(z,9)a € fia (e, y)).

We perform a similar decomposition of gj in terms of functions Gy: &, —
[k]
Err() and Gyt & — (X)),
Since the functions f; are measure preserving on h.o.a., it follows that F is

. - [k]
measure preserving and for every x € &, the restriction Fy(z, —): [0, 1] ) -
[K]Y . : . . o
X&) is measure preserving. Hence Fubini’s Theorem applied to (13) implies

W(Fi(z)) = My € [0, 1)) | (Gi(2), G, y)) € G})

for almost every x € &;,. But since rk(G) = r, the measure above can
only be 0 or 1 (as Ga(z,y) contains only coordinates with |A| > r). Since
F} is measure preserving, this implies that W (z) € {0,1} for almost every
2 € &,+(Q) and thus H =N a.e.

We have already shown that rk(#H) < r and since H = N p-a.e. implies
o1 = ¢, the other inequality must also hold.

The last statement is obvious from the construction. ]

As we have seen in Section 2.1, given an open interpretation I: 77 ~-
Ty and a Ty-on H, the Tj-on I(H) represents the limit object constructed
from ¢y via I, i.e., we have ¢rqy) = ¢L,. However, given a Tj-on N and
¢ € Hom™ (A[T3], R) such that ¢! = ¢u, it is not true that there exists a
Ty-on H such that both I(H) = N a.e. and ¢y = ¢ (see [CR20, Example 45]).
The next proposition says in essence that this example is the worst that can
happen: at the cost of adding an extra dummy variable, we can find an H

such that I(H)p = Np X Eypy a.e. and ¢y = ¢.
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Proposition 4.3. Let I: Ty ~ Ty, let ¢ € Hom™ (A[T3],R), and let N be a
Ty-on over ) such that ¢! = ¢-. Then there exists a Tr-on H over € x ) such
that ¢ = ¢ and I(H)p = Np x Eyp)(Q) a.e., for every predicate symbol P
in the language of T.

Furthermore, if Ty, = T} UT" for some T" and I is the structure-erasing

interpretation, then H can be taken to satisfy 1(H)p def Hp = Np x Eyp) ()

everywhere for every predicate symbol P in the language of Tj.

Proof. For i € [2], let L; be the language of T; and let k; &f maxper, k(P).
Let G be a Ty-on over § such that ¢g = ¢. Since ¢y = ¢’ = ¢, by theon
uniqueness [CR20, Proposition 7.7], there exists a sequence h = (hd)]jlzl of
symmetric measure preserving on h.o.a. functions (hg: E4(2) x E4(Q2) — Q)
such that

hpy (2, %) € 1(G)p = 2 € Np, (14)

for every P € £, and almost every (z,7) € Eyp)(2) X Expy(£2). Extend the
family h by defining hg: E4(Q) x E4(2) — Q for ky < d < max{k;, ko} as
hg(z,T) def r[q, and note that hy is symmetric and measure preserving on

h.o.a.
Define then the T5-on H over €2 x Q) by

def 7
Ho = hyg(9a) (15)
for every ) € L5. By (the easy direction of) theon uniqueness [CR20,
Proposition 7.7], it follows that ¢4 = ¢g = ¢. On the other hand, the
definition of H ensures that

(2,7) € I(H)p = hip)(2,7) € I(G)p
for every P € L£; and every (z,%) € Eyp)(Q) X Ekp)(€2), which together
with (14) implies I(H)p = Np X Exp)(Q) ace.

For the case when Ty = T7; UT” for some 1" and I is the structure-erasing

interpretation, we define H instead by using (15) only for @ € L5\ £, and use

Hp < Np x Erp)(2) for every P € L, (as required). By (14) this is only a

zero-measure change from the previous definition so we still have ¢y = ¢. [
Propositions 4.2 and 4.3 allow us to show the equivalence in Theorem 3.10

between items (i), (iv) and (v).
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Lemma 4.4 (Theorem 3.10(i)=(iv)=(v)). The following are equivalent for
¢ € Hom™ (A[T],R) and ¢ € N.

i. ¢ € UCouple[(].

ii. ¢ is weakly (-independent.

iii. Every T-on N with ¢ = ¢, is weakly (-independent.
Proof. (iii) = (ii) is trivial.

(i) = (i).

Let A/ be a T-on over some space 2 = (X, A, 11) such that the exchangeable
array K corresponding to A with respect to 8 picked in &y, (2) according
to u is independent from (64 | A € (N, £)). Let v € Hom™ (A[T"],R) for
some theory 7" be such that rk(y)) < £ and let ¢ € Hom™ (A[T UT’],R) be
any coupling of ¢ and 1. We have to prove that £ = ¢ ® 1.

Let also I: T ~» T UT" and I': T' ~ T U T’ be the structure-erasing

interpretations. By Proposition 4.3, there exists a (7'UT")-on H over £ x 2
such that & = ¢y and

Hp = Np X 5k(p)(Q) (16)

for every P in the language of T. By possibly changing zero-measure sets
of the peons corresponding to 7" using Proposition 4.2, we may also assume
rk(I'(M)) = k() < L.

Let us pick i in &y, () according to p and independently from 6; we
view (6,m) as a &y, (2 x Q)-valued random variable distributed according
to u ® pu. Let L be the exchangeable array corresponding to H with respect
to (6,n). Note that (16) implies that I(L) = K, which in turn implies
that I(L) is independent from ((684 | A € r(Ny,¢)),n). On the other
hand, since rk(I'(H)) < ¢, it follows that I’(L) is completely determined by
((04,ma) | A € r(N4,0)), so I(L) is independent from I'(L). This means
that for m € N and K € K,,[T U T"], we have

§((K)) = PLm) = K] = P (L) |pm) = LK) AT(L)|m) = 1'(K)]
= PL(L)[pm) = 1(K)] - P[I'(L)| ) = I'(K)] = (( (K))) - o ({I'(K))),

s0 & = ¢ ® 1), hence item (i) follows.

Let us prove (i) = (iii). Let 2 = (X, A, u) be an atomless complete
probability space and N be a T-on over Q with ¢ = ¢,. We have to prove

32



that the exchangeable array K corresponding to N with respect to 6 picked
in &y, (Q) according to 1 is independent from (64 | A € (N, ¢)). For that, it
is sufficient to show that for any m € N, any K € K,,,[T'] and any measurable
set B C &,,(), the events K|, = K and (84 | A € 7(m,{)) € B are
independent.

Let @ be a new m-ary predicate symbol and consider the (T"U Tygy)-

on H over () given by Hp LN p for every P in the language of T and

Ho % B x X5 Let also I: T~ T'UTygy and I': Tjgy ~ T U Tygy be
the structure-erasing interpretations so that ¢4 is a coupling of ¢ and ¢%.
Since tk(¢k,) < rk(Hg) < ¢ and ¢ € UCouple[(], we have ¢y = ¢ ® ¢l
Finally, let S be the set of all L € K,,[T" U Tyg] such that I(L) = K and

(1,2,...,m) € Rg(L). Then we have

PIK ) = K A (04| A€r(m,0) € B =3 éu((L))

Les
= ((K)) Y o3 ({I'(L)) = P[K|w = K] - P[(6a | A € r(m, 1)) € B],
LeS
which completes the proof. O]

The alternative characterization of UCouple via weak independence gives
easy proofs of Theorems 3.2 and 3.4.

Proof of Theorem 3.2. Independence[(|] = UCouple[/].

Let A be an f-independent T-on, and let K be the exchangeable array
corresponding to A/. Then each Rp(K) depends only on the coordinates
04 with |A| > ¢ (see (7)) and hence is independent from (04 | A € r(A,1)).
Therefore, N is weakly ¢-independent and Independence[(] = UCouplel[/]
follows from Lemma 4.4.

The implication UCouple[l] = UInduce|/] follows trivially from the
definitions. []

Proof of Theorem 3.4. For item (i), if N1 and N'? are (-independent theons
then N'' @ N2 is also ¢-independent, from which the statement follows.

For item (ii), pick arbitrarily theons N'' and AN? such that ¢; = ¢pr. Let
(6%, 6?) be uniformly distributed in &y, x &y, , and let K be the exchangeable
array corresponding to ! ® N2 with respect to (8',6?). Note that for i € [2]
and for the structure-erasing interpretation I;: T; ~» T7 UT5, the exchangeable
array corresponding to N with respect 8° is I;( K).
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By Lemma 4.4, it is sufficient to show that if [;(K) is independent from
(0% | A er(Ng, /) fori € [2], then K is independent from ((6%,0%) | A €
r(Ni, ¢)). This immediately follows from the following easily verifiable general
fact:

Claim 4.5. Let X7, X2, Y1, Y2 be mutually independent random variables,
and let f1(X1,Y1), f2(Xa,Ys) be functions such that f;(X;,Y;) is independent
from X; (i = 1,2). Then (f1(X1,Y1), f2(X2,Y2)) is independent from
(X1, X2).

In our context, we set X; = (0% | |A| < (), Y; = (0% | |A| > ¢) and let f;
compute the array I;(K) from (X;,Y;) (thus (f1(X1, Y1), f2(Xs, Ys)) computes
the array K from (X, X, Y1, Ys)). ]

The next lemma says that unique coupleability satisfies a “chain rule”
analogous to the chain rule for mutual independence of random variables.

Lemma 4.6. Let ¢; € Hom™ (A[T;],R) for i € [t] and suppose that for every
i € [t —1], ¢iy1 is uniquely coupleable with ¢ @ - -+ ® ¢;. Then ¢y, ..., ¢, are
uniquely coupleable.

Proof. The proof is by induction in ¢. The result for t = 1 is trivial. For
t > 2 let &£ € Hom™(A[U'_, T;],R) be a coupling of ¢y,...,¢; and let
I: Uf;i T; ~~ U§:1 T; be the structure-erasing interpretation. Since &7 is a
coupling of ¢1,..., @1, by inductive hypothesis we must have ¢/ = ¢; ®
<o+ ® @1 so & is also a coupling of ¢; ® --- ® ¢,_1 and ¢y, hence we must
have £ = 91 ® -+ ® ¢y. O

We finish this section with the (almost trivial) implication (iv) = (vi) of
Theorem 3.10.

Lemma 4.7 (Theorem 3.10(iv) = (vi)). Let ¢ € N. If ¢ is weakly (-
independent, then ¢ is (-local.

Proof. Let K be the exchangeable array corresponding to some theon N
with respect to € picked in &y, (©2) according to p such that ¢ = ¢ and
suppose K is independent from (64 | A € (N, ¢)). Since for V' € r(N,) the
marginal K|y depends only on (64 | A € r(V)), the marginals (K|y, | i € I)
are mutually independent as long as the sets V; have pairwise intersections of
size at most £. This follows from the following general observation.
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Claim 4.8. Let X, Y1, ..., Y, be mutually independent random variables and
fi(X,Y;) be functions such that (f1(X,Y1),..., fo(X,Ys)) is independent
of X. Then f1(X,Y1),..., fn(X,Y,) are mutually independent.

In our situation, X = (04 | A € r(N,0)), Y; = (04| A€ r(V;))\r(N4,0))
and f; computes the marginal K|y, from (64 | A € r(V})).

This completes the proof that ¢ is ¢-local. n

5 Naturality

The objective of this section is to show Theorem 3.3, that is, to show that our
quasirandomness properties are preserved under open interpretations. For
this, we need to do a bit of abstract nonsense.

Recall from [CR20, Sct. 2.2] that the category INT has pushouts (otherwise
known as amalgamated sums, fibred coproducts, etc.). More concretely, for
open interpretations Iy: T ~» Ty and Iy: T ~» T3, a pushout of (I3, [5) is
given by the theory 7" obtained from 77 U T by adding the axioms

VT, (L(P)(7) = I2(P)(7)) (17)

for every P in the language of 7" and the open interpretations J;: T; ~» T’
(i € [2]) that act identically on the language of T} so that

T

s

TQ — T
Jo

is commutative and has the standard universality property.

The following theorem says that we can also amalgamate limit objects
along pushouts. Let us warn that unless the theory T is trivial (in which case
a “canonical” amalgamation is provided by the independent coupling), we
are not aware of any natural, functorial construction here.

Theorem 5.1. Let
T T

L

TQT)T/
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be a pushout of INT and let ¢; € Hom™ (A[T}],R) and ¢o € Hom™ (A[T3], R)
be such that ¢I' = ¢%. Then there exists 1 € Hom™ (A[T'],R) such that

Y = ¢y and P72 = ¢s.

Proof. First we claim that it is enough to show the case when T is obtained
from Ty U T3 by adding the axioms (17). Indeed, if ¢ is constructed for such
particular case, then we can get our desired element of Hom™ (A[T"],R) for a
general pushout 7" as 1! for the universal isomorphism I between the pushout
theories.

Let us prove then the particular case. Let £, £; and L, be the languages
of T, Ty and Ty, respectively. For i € [2], let N be a Tj-on (over [0, 1]) such
that ¢; = ¢nri. Since ¢p w1y = o = ¢£2 = ¢r,(n2), by Proposition 4.3, there
exists a Ty-on H' over [0, 1]* such that I;(H')p = L(N?)p x Exp) A-a.e. for
every P € L.

Define then the Euclidean structure H on £1 U £y over [0, 1] by

def H}Da it P eﬁl;
7-lP - 2 .
prgk(]?), if Pe L.

Let us show that #H is a (weak) T"-on. To show this, it is enough to show
(see [CR20, Definition 3.5, Remark 5, Theorem 3.7], by reaxiomatizing T', T, Ts
to be substitutionally closed, T" also becomes substitutionally closed) that

T([,(P),H) =T(I2(P),H) Ma.e. for every P € L. But this follows from

T(L(P),H) =T(L(P),H") = L(H")p;
T(I(P),H) = T(I1(P),N?) x Expy = (N?) x Exp).

Finally, since we trivially have Jy(H) = H' and Jo(H)p = N X Eyp) for
every P € L,, it follows that ¢ & ¢y satisfies Y/t = ¢ and 72 = ¢, O

The next proposition makes use of this amalgamation property to “lift”
couplings through interpretations.

Proposition 5.2 (Coupling lifting). Let I: T} ~ T, be an open inter-
pretation, let T be a canonical theory and let ¢ € Hom™(A[T],R) and
¢y € Hom™ (A[Ty],R). If ¢ is a coupling of ¢4 and ¢, then there exists a
coupling & of ¢o and ¢ such that £ = £Vidr
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Proof. This follows from Theorem 5.1 and the fact that

T1 %TQ

| |

TuT W TQ utT
is a pushout in INT, where the vertical arrows are the structure-erasing
interpretations. []

Equipped with this “lifting” construction, we can prove Theorem 3.3 about
naturality of our properties.

Proof of Theorem 3.3. For item (i), let I;: T; ~» T U T; be the structure-
erasing interpretation for i € [2] and note that if £ is a coupling of ¢! with 1,
then Proposition 5.2 gives us a coupling f of ¢ with 1 such that § = 51 Vidr
Since ¢ is uniquely coupleable with ¢) we must have § ¢ ® 1, from which
we get & = ¢V = ¢l @ ¢, hence ¢! and v are uniquely coupleable.

Item (ii) follows trivially from the fact that if N is an ¢-independent Ty-on
with ¢ = ¢y, then I(N) is an (-independent Tj-on with ¢y = ¢’

Item (iii) follows trivially from item (i).

For item (iv), we let ¢ € Hom™ (A[T}_mypergraph), R) and & be a coupling
of ¢! with ¢ and we make the same construction of the coupling E of ¢
and ¢ of item (i) using Proposition 5.2. For i € [2], let J;: T} gypergraph ~
T; U Ty wiypergraph b€ the structure-erasing interpretation and note that if

M € MIT1 U Ty igpergeapn] 18 such that Jy (M) = K.,

then we have

§(M) = g9 (M)
- g(Z {M' € M [T2 U Ty _tiypergraph) ‘ I(I,(M") =2 [,(M) A Jy(M') = KI(IQI}>
- (K\(ﬁ\) (Z {M'" e My [To) | I(M') = Il(M)}>

= (K1) - ¢! (1I(M))

= (@' @ 9)(M),
where the third equality follows from the fact that ¢ € UInduce[l]. Hence
¢! € UInducel()]. O
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6 Unique inducibility

In this section we prove Theorem 3.11. We start by showing the equivalence
between items (i) and (ii). Curiously, the case ¢ = 1 is the hardest one to
prove.

Lemma 6.1 (Theorem 3.11(i)=(ii)). Let ¢ € N, and ¢ € Hom™*(A[T],R).
Then ¢ € UInducel(] if and only if there exists p € (0,1) such that ¢ is
uniquely inducible by every i € Hom+(A[Tg_Hypergraph], R) with ¥(pe) = p.

Proof. The forward implication is obvious.

For p € (0,1), let us say that ¢ is uniquely p-inducible if it is uniquely
inducible by every ¢ € Hom™ (A[T} mypergraph ], R) With ¢(pg) = p. Then the
backward implication amounts to showing that unique p-inducibility implies
unique g-inducibility for every p,q € (0, 1) (the cases ¢ € {0, 1} are trivial).

Let I: T ~ T'UT) typergraph and J: Ty _typergraph ~* 1T U1} Hypergraph be the
structure-erasing interpretations. Let us assume that ¢ is uniquely p-inducible
and let us show that ¢ is uniquely inducible by any ¢ € Hom™ (A[T} sy pergraph), R)
with ¥(ps) = q. Let & be a coupling of ¢ and .

Our objective is to prove that for every m € N and every M € M,,[T U
T -Hypergrapn] With J(M) =2 K% we have

E(M) = o(I(M)y(K). (18)
For m < ¢ this is trivial (as @/J(Kf?) = 1), so suppose m > /.

Let I': Ty wiypergraph ~* To-Hypergraph U T2-Coloring b€ an open interpretation
(to be specified later); note that the diagram

Tf -Hypergraph T Tﬁ -Hypergraph
TU TE-Hypergraph TU TE-Hypergraph

TU E—Hypergraph U T2 -Coloring

[

Tf—Hypergraph U T2 -Coloring

(19)
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is commutative, where the unlabeled arrows are structure-erasing interpre-

tations. For ¢t € [0, 1] let ft = ¢ ® ¥y be the independent coupling of ¢ and

the 2-coloring 1); of densities (¢,1 —t) (see Definition 2.12); note that the fact

that (19) is commutative implies that §1dT Y is a coupling of ¢ and (Y @)
We start by showing (18) in the case p < ¢. In this case, we take

I'(E)(xy,. .., 20) € Blay, ..., ) /\X1 ),

that is, I’ keeps edges that are monochromatic in color 1. Let ¢ o (p/q)"*
and note that for n > ¢ we have

n/l
(&0 () = (i) = (i) (2)
q
which in particular implies that (¢ ® )" (p¢) = p. On the other hand, we
also have fldT ur (M) = £(M)t™, so unique p-inducibility of ¢ gives
EM)E™ = G (M) = ¢(I(M)) (v @ )" (KW) = o (I (M) (KW,
from which (18) follows.
We now show (18) in the case ¢ > 2 and ¢ < p. In this case, we let

I'(E)(x1,...,20) = | E(x1,...,x /\ xi(zi) | Vv /\ X2(:)

€[4 1€[{]

that is, I’ declares edges to be either old edges that are monochromatic in
color 1 or any ¢-set that is monochromatic in color 2. Let f(x ) falg+ (1—x)*
and note that f(0) = 1 and f(1) = ¢, so there exists ¢t € (0,1) such that
f(t) = p. Since £ > 2, for n > ¢, we have

(@) (KP) = oK) + (1= 1)",

which in particular implies that (¢ @ ¢)" (p¢) = f(t) = p. On the other hand,
we also have 97V (M) = ¢(M)t™ +¢(I(M))(1—t)™, so unique p-inducibility
of ¢ gives
EODE™ + G(I(M))(1 =)™ = G (M) = g(I(M) (¢ @ )" (KLD)
= G(L(M) (Y (B + (1 —1)™),
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from which (18) follows.

The case ¢ < p and ¢ = 1 is more complicated as the construction analogous
to the above does not work: cliques in arity 1 need not be monochromatic.

Let us prove first the sub-case ¢ = p?>. The idea, roughly speaking, is that
when ¢ = 1, unique p-inducibility says that any “subset of vertices” of relative
size p in ¢ induces ¢ and since a “subset of vertices” of relative size p? can
be seen as having relative size p in some “subset of vertices” that itself has
relative size p in the whole space, it must also induce ¢.

It is worth noting that this idea can be implemented almost literally in
the geometric language. But that would require working with theons that
have different ground sets in different coordinates so we prefer to present a
syntactic argument instead, similar to the one above.

We work with the theory 75 coloring instead of 11 mypergraph (€€ Remark 1).

Let £ be a coupling of ¢ and v def Y2 € Hom™ (AT 5 _Coloring)s R); We want to
show that for every M € MI[T U T _coloring] With Ry, (M) =V (M), we have

where m def M| and I: T ~ T U T5_Coloring 18 the structure-erasing interpre-
tation.
Let 11, Io: T coloring ~ T3-coloring D€ the interpretations given by

Let o def V2 p—p21—p) € Hom™ (A[T5 coloring), R) and note that Wl = 1, for

i€ 2]
Let J: T2—Coloring ~ TU T2—Coloring and J: T3—Coloring ~ TU TS—Coloring be
the structure-erasing interpretations. Our definitions ensure that the following
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diagram is commutative.
T2 -Coloring T

Tu TZ—Coloring TU T2 -Coloring

idTm AIQ

TuU T3 -Coloring

(20)

T3 -Coloring

For every n € N, let C,, € M,,[T5_coloring] be the unique model with all
vertices satisfying x. R R

Since wAI? = 1), by Proposition 5.2, there exists a coupling £ of ¢ and ¥
such that £'97Y%2 = ¢ We now make use of the operator 7(™xidr V) AT U
Ty _coloring] = AulT U T3 _Coloring] [Raz07, Definition 4], where u = Y {N €
M[T UT5 coloring] | Il(j(N)) = (4} and A, [T UT5 coloring] 18 the localization
by the multiplicative system {u,u?, ..., u", ...}. Intuitively, it corresponds
to applying the interpretation idr Uy, followed by throwing away vertices of
color 3. (All densities have to be re-normalized by a power of u, this is why
we need to localize.) Since

E(u) = E7°1(Cy) = 91 (Ch) = p > 0, (21)

we can apply [Raz07, Theorem 2.6] and form the element ¢ def g orr(Txz)idr Ulz)
Hom™ (A[T U T _coloring), R). We claim that ¢ = ¢.
To see this, note that for N € M[T], we have

/
gI(N) _ Z/]\V/S(N )’
§(u) M
where the sum is over all N’ € M n|[TUT5 _coloring) such that I ((idy Uly)(N')) =
N and J((idy UI)(N')) = C|n}. But since (20) is commutative, the condition
I((idr UL)(N')) = N is equivalent to I((idr Ul;)(N')) = N, which together
with (21) gives
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where N € Mn|[T U T5 coloring] s the unique model such that 1 (]/\\7 ) = N and
J(N) = O
Since f‘dTUIl)OJ( 1) = P ( 1) = p and gldrul)el — ¢l — 4 ynique
p-inducibility of ¢ implies that &7 U11(]\7) = plVlp(N) and thus ¢! = ¢.
Now we claim that ¢/ = 1,. Indeed, note that

SEN) | N € My[T U T3 Cotoring] A JA((idT UL)(N)) = J((idp UL)(N)) 2 ¢y}
§(u)

() =

_ (G _ (G
p p

=D

where 61 € Mi[T5 coloring] is the model whose unique vertex satisfies xi,
hence ¢/ = 1,
This means that ¢ is a coupling of ¢ and ¢, so for our fixed M €
M [T U T _coloring] With Ry, (M) = V(M), unique p-inducibility of ¢ gives
(M) = £ 2(M) = En e B - Efu)”
= (M) -p™ = ¢(I(M)) - p*",

as desired.

From the case ¢ = 1 and ¢ = p? < p, with a simple induction, we can
derive the case when ¢ =1 and ¢ = pzk < p for some k € N,.

Finally, for the case £ = 1 and arbitrary ¢ < p, we let k£ € N, be large
enough so that p* < ¢ and putting together the previous cases gives that
unique p-inducibility implies unique p2k-inducibility, which in turn implies
unique g-inducibility. O

The rest of this section is devoted to various relations between the unique
inducibility and the clique discrepancy for hypergraphons; we will also use
our findings to prove the last remaining equivalence (i)=(iii) in Theorem 3.11.

It was proved in [Towl7, AHCH'18] that for ¢ < k, CliqueDisc[/] is
equivalent to the non-induced labeled density of every ¢-linear hypergraph
H (i.e., hypergraphs whose edges have pairwise intersections of size at most
¢) being p*#). We restate below this result in the language of exchangeable
arrays.
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Theorem 6.2 ([Towl7, AHCH'18]). Let ¢ € [k—1], let ¢ € Hom™ (A[T _mypergraph), R)
and let K be the corresponding exchangeable array. Then ¢ € CliqueDiscl|/]

if and only if for every finite collection (V;);e; of finite subsets of N, of size k

each and with pairwise intersections of size at most { we have

v = o = [[PIK

el

PVie I, K

v, = prl.

Even though this theorem only makes sense in the theory of hypergraphs,
we can derive the implication (iii) = (i) of Theorem 3.11 for general theories
from it.

Lemma 6.3 (Theorem 3.11(iii) = (i)). If ¢ € Hom™ (A[T],R) is symmetri-
cally (-local, then ¢ € UInduce[(].

P?”OOf. Let I:T ~~TU TZ—Hypergraph and J: TE—Hypergraph ~ TU TE—Hypergraph
be the structure-erasing interpretations.

Our objective is to show that for every ¢ € Hom™ (A[T} mypergraph], R);
every coupling £ of ¢ and ¢, every m € N and every M € M,,[TUT} _ypergraph)
with J(M) = K, we have

E(M) = ¢(I(M))(E). (22)

Let us first consider the case m < /. In this case, note that for the ex-
changeable array K corresponding to ¢, by letting V; = V5, = [m], symmetric
(-locality of ¢ gives

O(I(M)) = P[K | =2 I(M)] = P[K |y = I(M)]* = ¢(I1(M))?,

so ¢(I(M)) € {0,1}, hence (22) follows.

Suppose now that m > ¢ and let I': T}, nypergraph ~> 1 be the open
interpretation that declares m-edges to be isomorphic copies of I(M), that
is, it is given by

I'(B)@1,- - 2m) €\ Dopen (M) (@o(1)s - - To(m).

O'GSm

Let us show that ¢! € Hom™ (A[T},, _Hypergraph], R) satisfies CliqueDiscl[/].
Let K be the exchangeable array corresponding to ¢ so that I'(K) is the
exchangeable array corresponding to ¢! . Then if (Vi)iep is a finite collection
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of finite subsets of N of size m each and with pairwise intersections of size
at most ¢, then

PVi € [t], I'(K)

vi = pm] = PIVi € [t], Ky, = M]
= [[PIK]v, = M] = ][ PII'(K)

i€lt] i€[t]

Vi gpm]y

where the second equality follows from the fact that ¢ is symmetrically ¢-local.
By Theorem 6.2, it follows that ¢! satisfies C1iqueDisc|[].
Note now that the diagram

Tm—Hypergraph — Tm—Hypergraph U TZ—Hypergraph A TK—Hypergraph

I’l I’UidTZ -Hypergraphl /

T I > TU E-Hypergraph

is commutative, where the unlabeled arrows are structure-erasing interpre-
. .. . I'uid . . ’

tations. This implies that & ~“%¢-Hyperzraph is a, coupling of ¢’ and 1, so we

get

§(M) = " M empersran (K™Y = o' (p, )b (KD = o(I(M))p(K D),

where the second equality follows from ¢!" € CliqueDiscl/]. O

Let us now prove an important fact about CliqueDisc[{] and /-flattenings

defined below.

Definition 6.4. For a peon N over Q2 = (X, A, u) and ¢ € N, the ¢-flattening
of N is the function W, : & ,(Q) — [0, 1] defined by

W) 2 ufy e XCD | (2,9) € N},

and defined arbitrarily when the set above is not measurable.

Note that the construction in (12) is precisely an ¢-flattening, and so is
the construction of a graphon in the ordinary sense from Tgpapn-on (cf. (1),
(2) and (5)).

Lemma 6.5. Let N be a T, _mypergraph-on over € = (X, A, ) such that ¢
satisfies CliqueDisc[l]. Then Wi, = ¢ (px) a.e.
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Proof. 1t is sufficient to prove that the two measures on X"*% given by

Y — [, Wi dpand v(Y) o On(pe)pu(Y) coincide, and for that we only have
to consider the basis of our o-algebra, i.e., sets of the form

Y = H V.

Aer (kL)

In other words, for every collection V4 C X (A € r(k,{)) of measurable sets
we have to prove that

[ Wk du = o) () (23)

Recall from [Tow17, AHCH" 18] that CliqueDisc[{] is equivalent to Disc[([lz])}
(see Definition 2.8) and for the language ;C([k]) containing one predicate symbol
£

P, of arity ¢ for each A € ([1;]), define the Tﬁ([?])
by

U T -Hypergraph-011 H over 2

He S Ngi Hp, € 05(Y) = {2 € £(Q) | VA € r(A), 2,214, € Vir}.

Let then K be the exchangeable array corresponding to H. Since ¢ satisfies
CliqueDisc[(] = Disc[([lg])], we get

/wav dp =P [(1, ..., k) € Rp(K)AVA € ([1;])7% € RPA(K)}

= on(px) - P [VA S C?) A € RPA(K)]
= on(pr) - p(Y),
as desired. -

To prove the final implication (i) = (iii) in Theorem 3.11, we will need a
small generalization of the easier direction of Theorem 6.2 for disjoint unions
of theories of hypergraphs.

Definition 6.6 (/Z—hypergraphs). Given k = (k1, ..., k) € N, welet T} Hypergraph def

Uie[t} T, -Hypergraph and in this theory, we denote the predicate symbol cor-
responding to the i-th hypergraph by FE;. Models of T% Hypergraph will be

called k-hypergraphs and for one such model M, we let E;(M) &of {im(a) |
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a € Rg, (M)} be its i-th edge set. We also denote by I;: Tj, Hypergraph ~>

T,;_Hypergraph the structure-erasing interpretation corresponding to the ¢-th

edge set.

Proposition 6.7. Let k = (k1. k), let £ < mingep ks, let iy, ..., 05 € []

and let (V});_, be such that V; € (I,j:r) and |V; N V| < ¢, whenever j # j'.
Let ¢ € Hom™ (A[T: |,R) be such that all ¢' (i € [t]) satisfy

k-Hypergraph!»
CliqueDiscl|l] and let K be the corresponding exchangeable array. Then

PVj € [s],V; € E;,(K)| = || PV, € E;, (K)].
Jj€ls]

Proof. Let N be a Ty _nypergraph-0n such that ¢ = ¢ and note that

P[vj € [s],V; € By (K)] =X | [ ()" (Nz,)
Jj€ls]

— \{x € &, | V) € [s],a}(x) € N, D),

where a; € (N4)y k;, is such that im(c;) = V}. Since the sets V; have pairwise
intersections of size at most £, in the set above, the Coordlnates T4 with
|A| > £ are only constrained by at most one of the o}, so Fubini’s Theorem
gives

PV € [s],V; € By, (K /{S HWN (e (x)) dA\(@),

Ve ]E[S

where V & UJE[S]
Since each ¢ satlsﬁes CliqueDisc[l], by Lemma 6.5, it follows that
Wy, = ¢"(pr,) a-e., so we get

PIVj € [s],V; € By, (K)] = [ 6" (pr.,) = [] PIV; € B, (K)),

JEs] JEls]
as desired. O

Proposition 6.7 (and Theorem 3.14) will be sufficient to handle the case
in the definition of symmetric /-locality when all sets have size at least ¢. For
smaller sets, we need the notion of categoricity of elements of Hom™ (A[T], R)

defined below.
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Definition 6.8. For ¢ € Hom™ (A[T],R), let Th(¢) be the theory obtained
from T by adding the axiom VZ, 7 Dgpen(M)(Z) for every M € M|T] such
that ¢(M) = 0, i.e., it is the theory whose models are precisely the ones that
have positive density in ¢.

Recall that in model theory a theory T is called ¢-categorical if it has ex-
actly one model of size £ up to isomorphism. We say that ¢ € Hom™ (A[T], R)
is (-categorical if Th(¢) is (-categorical.

Remark 2. Since }_ /v, #(M) = 1, it follows that ¢ is (-categorical if
and only if ¢(M) € {0,1} for every M € M,[T].

Lemma 6.9. Let I: T} ~ T be an open interpretation and let ¢ € Hom™ (A[T3], R)
be (-categorical. Then ¢! is (-categorical.

Proof. Since for M € M,[Ty], we have ¢! (M) = S {S(N) | N € M,[Ts] A
I(N) = M}, it follows that ¢/(M) > 0 if and only if M = I(N,) for the
unique model Ny € M,[Th(¢)]. O

Lemma 6.10. If ¢ € Hom™ (AT, k-Hypergraph|, R) Is {-categorical for { > k
then ¢(px) € {0, 1}, that is, the hypergraphon ¢ is either empty or complete.

Proof. Let M be the unique k-hypergraph on ¢ vertices such that ¢(M) = 1.
Then M € {Kék),Fék)} as gb(Kék)) = qﬁ(?ék)) = 0 would have contradicted
Ramsey’s Theorem. The lemma follows. O]

Lemma 6.11. If ¢ € Hom™ (A[T], R) is (-categorical and 0 < ¢’ < {, then ¢
is ¢'-categorical.

Proof. Let M € My|[T| and consider the open interpretation I : Ty mypergraph ~
T that declares m-edges to be isomorphic copies of M. By Lemma 6.9, it
follows that ¢! is f-categorical, and it follows from Lemma 6.10 that ¢! is
either the empty or the complete hypergraphon. Now, ¢ is ¢'-categorical by
Remark 2. O]

Lemma 6.12. If ¢ € Hom™'(A[T],R) satisfies UInduce[(], then ¢ is (-
categorical for every 0 < ¢/ < /.

Proof. By Lemma 6.11, it is enough to show the case ¢/ = (. Let I: T ~
TUTy s1ypergraph a0d J 1 Ty fypergraph ~* 1T'UT} Hypergraph D€ the structure-erasing
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interpretations. Let A be a T-on such that ¢, = ¢ and for M € M,[T], let
H be the T'U T} _frypergraph-01 given by

Hp N He | Tua(KN)

KG’C[ T]
K>=M

for every predicate symbol P in the language of T'. -
Let M € My[T U T} nypergraph] be such that I(M) = M and J(M) = p,.
Then

S(M) = 3 (M) = ¢(M)¢3,(pe) = ¢(M)?,

where the second equality follows since ¢ € UInduce[/]. Hence ¢(M) € {0,1}
for every M € M,[T], so ¢ is {-categorical by Remark 2. O

Remark 3. The converse to Lemma 6.12 is very far from being true. For
example, every graphon is 1-categorical, and, slightly less trivially, every
tournamon is 2-categorical. They are seldom uniquely 1-inducible.

We can finally prove the last implication of Theorem 3.11.

Lemma 6.13 (Theorem 3.11(i) = (iii)). If ¢ € Hom™ (A[T],R) satisfies
UInduce(l|, then ¢ is symmetrically (-local.

Proof. Let K be the exchangeable array corresponding to ¢. We need to show
that for every finite collection (V;);cpy of finite subsets of N with pairwise
intersections of size at most ¢ and every collection (M;);cpy of models of T,

we have
o JRELS

1€]t]

PVi € [t], K

By Lemma 6.12, we know that ¢ is ¢'-categorical for every 0 < ¢ < /|
which implies that if |[V| < ¢, then P[K |, = M| = ¢(M) € {0, 1}, i.e., the
event K|y = M is trivial. So we may assume that |V;| > ¢ for every i € [t].

Let k = (ky, ..., k) be given by ke |V| and consider the interpretation

I Ty gy pergraph ™ T that declares E;-edges to be isomorphic copies of M;. In

other words, [ is given by

def
I(E) (1, 2k) =\ Dopen(Mi)(@o(1), - - s Tothy)-

O’ESki
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By Theorem 3.3, we know that for every i € [t] we have ¢'°/i € UInduce[/]
and by Theorem 3.14, it follows that ¢!°/i € CliqueDisc[¢]. Then we have

PVi e [t], K|y, = M;) =P[Vi € [t],V; € E;(I(K))]
— [1 B € Er(k)) = [ PIK Iy, = M),
i€lt] i€lt]
where the second equality follows from Proposition 6.7. O

We finish this section with the (now trivial) proof of Theorem 3.1.

Proof of Theorem 3.1. The facts Independence[(|] = Independence[l—1]
and UCouple[l] = UCouple[l — 1] follow easily from definitions. The
fact that UInduce[/|] == UInduce[¢ — 1] follows since symmetric ¢(-locality
trivially implies symmetric (¢ —1)-locality and from Lemmas 6.3 and 6.13. [

7 Unique coupleability

In this section we prove Theorem 3.10. We start with the equivalence (1)=(ii)=(iii).
While implications (i) == (iii) and (iii) == (ii) are fairly straightforward,
the proof of the implication (ii) == (i) is more involved and naturally splits
into five rather independent parts:

1. Show that unique coupleability of ¢ with the quasirandom ¢’-hypergraphon
Yy, for some p € (0,1) implies the same statement for every p € (0,1).

2. Show that unique coupleability of ¢ with the quasirandom ¢'-hypergraphon
Yy for all p € (0, 1) implies that ¢ is unique coupleable with the quasir-
andom c-colored ¢-hypergraphon ) , for every ¢ > 2 and every ¢ € II..

3. Show that unique coupleability of ¢ with all quasirandom colored ¢'-
hypergraphons for ¢ € [¢] implies that ¢ is uniquely coupleable with
all independent couplings 91 ,, ® -+ ® 1y, of quasirandom colored
¢'-hypergraphons for ¢’ € [{].

4. Show that in an arbitrary theory 7", the set of elements that are uniquely
coupleable with ¢ € Hom™ (A[T], R) is closed in Hom™ (A[T"], R) in the
Ly -topology.
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5. Show that for any pure canonical theory T, the set of all elements
of the form (1, ® -+ ® 1y,)!, where I: Ty ~ Ui:l T.) is an open
interpretation, is dense in the set of 1 € Hom™ (A[T,],R) of rank at
most ¢ (again in the Li-topology) and apply Theorem 3.3.

Let us point out that items 1, 2 and 3 combined show a strengthened
version of implication (ii) = (iii) that allows for multiple colors and arbitrary
densities. Furthermore, most likely items 4 and 5 in this program can be
replaced with an ad hoc argument but we prefer this more structured approach.

We start with item 1.

Lemma 7.1. Let £ € N, and ¢ € Hom™ (A[T],R). If there exists p € (0, 1)
such that ¢ is uniquely coupleable with the quasirandom {-hypergraphon 1y,
then ¢ is uniquely coupleable with 1)y, for every ¢ € (0,1).

Proof. Let C, be the set of all couplings of ¢ with 1), ,. Our objective is to
show that |C,| = 1. Without loss of generality, let us suppose that p < ¢

(otherwise, we can use the complementation automorphism C': Tj_pypergraph ~=

Ti -Hypergraph given by C'(E)(Z) & Ni<icj<e ®i # 2 A=E(Z) and Theorem 3.3).

Intuitively, we are going to “dilute” vy, by a factor t = p/q so that it will turn
into v, ,. The simplest way to make this intuition precise is by introducing
yet another quasirandom hypergraphon 1y, on the same ground set and then
taking its intersection with 4.

Formally, we consider the commutative diagram

T@ -Hypergraph T TE -Hypergraph

Ty TE—Hypergraph TU E—Hypergraph

im /

TU Tf—Hypergraph U Té -Hypergraph

4

TK -Hypergraph U TK—Hypergraph

(24)
where I, J, J and the unlabeled arrows are the structure-erasing interpreta-
tions, with the unlabeled arrows keeping the second copy of T} nypergraph, and
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I' is given by
I'(E)(x1,...,20) = E(x1,...,20) NE'(21,...,20).

Here E corresponds to the first copy of T mypergraph and E’ corresponds to
the second one.
We now define the dilution map F': C; — C, by

F(&) & (€ @ ghy,) T,

where ¢t & p/q € (0,1). The fact that F() is indeed an element of C, follows
from

(€ @) 7)) = (p @ )" = ¢
((€ ® 1bgy) 9T UI’)J = (Yrq ® W,t)p = Yy p.

For M € M[T] and U C (V"), let My be the model of T'U Ty pypergraph
obtained from M by declaring the ¢-hypergraph edge set to be U, that is, we
have I(My) = M and E(J(My)) = U. Then we have

F(&)(My)) =71y~ (1 =)™ \e((Mw)).
we (')
UCw
By Mobius inversion, it follows that F is injective®, hence |C,| < |C,| =1 as
claimed. O

We now proceed to item 2 of our program.

Lemma 7.2. Let ¢ € Hom™* (A[T],R) and ¢ € N, and suppose that for every
p € (0,1), ¢ is uniquely coupleable with the quasirandom (-hypergraphon
Yep. Then for every ¢ > 2 and every q € 11, ¢ is uniquely coupleable with
the quasirandom c-colored {-hypergraphon 1 ,.

6The left-inverse is given by

[WAU|
FOUMp) =71 Y (1—) (M),
wc ()
UCw
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Proof. For i € [c], consider the following commutative diagram

J 1
T(—Hypergraph —— T'U TZ—Hypergraph +—— T

Ty ———— TUT,,

where I, I., J and J, are structure-erasing and I is given by

L(E) (1, 2) < Ei(ar,... . x0).
The set KC,,,[1:] of labeled models of size m can be naturally identified
with functions f: ([TZ]) — [c]: given m € N and f: ([TZ]) — [c], Cr € Kin[Te]
is given by

V(C) Eml;  Rp(Cp) € {ae (Im]) | fim(a)) =4} (i€ [d]).

Let F % 1. Given further K € Kn[T) and f: ([TZ]) — [¢], let K be the
alignment of K and Cfy, that is, Ky is the unique model in KC,,[T" U T, ]
such that I.(K;) = K and J.(K;) = Cy. Similarly, given U C ("), let
Ky € KT U T mypergraph] be the unique model such that [(Ky) = K and
Rp(Ky) ={a € (Im]), | im(a) € U}.

Let 1 < Yy, € Hom™ (A[T. /], R) and let £ be a coupling of ¢ and ¢). Our

goal is to show that
§((Ky)) = v((Cp))o((K)) (25)

for every m € N, every K € K,,[T] and every f: ([Z‘]) — [¢]. Note that to
improve readability, here and in the forthcoming calculations, K and K are
identified with their isomorphism classes [K], [K¢] in M,,.

If m < ¢, then (25) holds trivially and if ¢((K)) = 0, then both sides
of (25) are 0, so suppose m > £ and ¢((K)) > 0. Note that ldr Vo) — o li =
Vrq € Hom™ (A[T) mypergraph); R), hence €977 is a coupling of ¢ and vy,
so we must have 979 = ¢ @ v, ,.. Note also that for m € N, K € K,,,[T]
and U C ([TZ]), we have

T (Ke)) = ) (K. (26)
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Pick now f: ([TZ]) — [¢] at random according to the distribution

e €K
P =112 5wy

The identity (26) allows us to compute, for A € ([TZ]) and i € [c], that

) == Y WD) g & ()
e ()

B OUED Bs)
FA) =i AeU
= Z QlUl(l - C]i)(?)f‘Ul = i,
ve()
AeU

where the the second equality follows from (26) and the third equality follows
since €97V = ¢ @ 1hy,.. Since ¥((Cf)) = HAe([m]) qs(4), to complete the
4

proof of (25), it remains to show that the values (f(A) | A € ([TZ])) of f are
mutually independent.

For that purpose, it is in turn sufficient to prove that for every fixed
A € ([TZ]) and every fixed ig € [c], the event f(Ay) = iy is independent from
Flw, where W & (7Y \ {4},

To do so, we will generate the distribution of f in a very specific way. Let A/
be a T-on such that ¢ = ¢, and note that ¢4, = dp € Hom™ (A[T, nypergrapn), R)
for the (¢ — 1)-independent Ty _gypergraph-ont N’ given by

Np € {x € & | oy < i} (27)

Since £idT VL, — ¢ @ Prq, = dnen, by Proposition 4.3 applied to the
interpretation idy UI} , there exists a (T'U T,)-on H over [0,1]* such that
¢n =& and

Hp = Np x 5k(p)([0, 1]3) a.e (P S [,);
HEiO = (C:g X N;; X 5@([0, 1]2) a.e.,
where L is the language of T..

Let now (0*,02,03,6%) be picked at random in Ey, ([0, 1]*) according to
A and let K be the exchangeable array corresponding to H with respect to
(6,02 6%, 0*). Denote also F o F(Jo(K|m)); F = (F(Ay), Flw), and let
E be the event I.(K|j,) = K. Then the function f is equidistributed with

(28)
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the function F' conditioned by the event E. It remains to note that by (28),
the event F'(Ay) = io depends only on the coordinate 6% (warning: we do
not claim that the whole random variable F/(Ay) depends only on 6% ). On
the other hand, both E and F|y do not depend on it; more precisely, E
depends only on 8" and F|y depends on those 6% with j € [4], |B| < ¢ and
B # A. O

We now address item 3 of our program (cf. the second remark made after
the statement of Theorem 3.10).

Lemma 7.3. Let ¢ € Hom™ (A[T],R) and +¢; € Hom" (A[T}],R) for i € [t].
Let also ¢; < --- < {; and suppose that the following hold.

i. For every i € {1,...,t — 1}, we have rk(¢;) < {;.
ii. For every i € {2,...,t}, we have ¢; € Independence[l; 1].
iii. For everyi € {1,...,t}, ¢ and 9; are uniquely coupleable.
Then ¢, 1, ...,1; are uniquely coupleable.

Proof. The proof is by induction on ¢. For ¢t = 1, the result is trivial. For
t= 2, let Il TUE ~ TUT1UT2, Jz ﬂ ~ TUT1UT2 and J: T ~ TUT1UT2
be the structure-erasing interpretations. Let £, £; and L5 be the languages
of T, T} and Ty, respectively. Let also N be a T-on with ¢ = ¢ and H? be
an /1-independent Th-on with ¢g2 = 10. Fix a coupling & of ¢, 11,1,. Since
¢ and 1) are uniquely coupleable, we know that £2 = ¢ ® 15 = dngp2. By
Proposition 4.3, there exists a (T'U Ty U Ty)-on G over [0, 1]* such that ¢g = £
and

Gp = Np x Exp) ([0, 1%), it P e L
P\ umy x HE % Eumy ([0, 1), if P € Lo,

On the other hand, for the predicate symbols P in L;, by possibly changing
zero-measure sets of the corresponding P-ons Gp using Proposition 4.2, we
may suppose that rk(J1(G)) < rk(¢y) < ;.

Let us pick 8 & (6,62,6%,6%) at random in En, ([0,1]*) according to A
and let K be the exchangeable array corresponding to G with respect to
0. Then we know that J(K) depends only on 6%, J,(K) depends only on
((04,6%,0°,60%) | |A| < (1) and Jo(K) depends only on (6% | |A] > ¢1) (as
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H? is {1-independent), so Jo(K) is independent from (J(K), J;(K)). This
means that for every m € N and every K € K,,,[T' U T, U T3|, we have

E((K)) = P[K|jm) = K]
= PlJ(K)|pm) = J(K) A J1(K)|m) = J1(K) A Jo(K)|jm) = J2(K)]
= PlJ(K)|pm) = J(K) AN J1(K)|pm) = J1(K)] - P2 (K)|fm) = J2(K)]
= PIL(K) | = Li(K)] - PlJo(K) | = J2(K)]

= " ((IL(K))) - a({12(K)))
= o((J(K))) - 1 ((1(K))) - ¢2((J2(K))),

where the last equality follows since ¢ is uniquely coupleable with ¢, and ¢t
is a coupling of ¢ and ;. Therefore £ = ¢ ® V1 ® 5.

For the case t > 3, let I: TUJ/_,T; ~ T UJ_, T; be the structure-
erasing interpretation and note that for a coupling & of ¢, 91, ..., 1, it follows
that ¢! is a couphng of ¢, s, ..., 1. By inductive hypothesis, we must have
=9 w, where ¢ def ®Z , ¥i. In fact, since ¢, 1, ..., are uniquely
coupleable, it also follows that ¢ is uniquely coupleable with 12 (as any coupling
of ¢ with 12 can be seen as a coupling of ¢, 1y, ..., 1;). But by Theorem 3.4,
we know that zz € Independence[/;] and since £ can also be seen as a coupling
of ¢, 1, 12, we get £ = o ® ®§:1 1; from the previous case. n

Lemma 7.4. Let ¢ > 2, p € Il. and k € N. Then the quasirandom c-colored
k-hypergraphon 1y, satisfies Independencelk — 1] and rk(iy,,) = k.

Proof. Note that 1, can be represented by the T -on N*? given by

i—1 %
> pj<ap < ij} (i € [c]),
P j=1

hence 1y, € Independence[k — 1] and rk(¢y,) < k. Since ¢ > 2, it follows
that rk(¢,) > 0, so by Theorem 3.2 and Proposition 4.1, we must have
rk(¢y,) = k. [

Proceeding to item 4 in the program, we introduce the L;-topology on
theons that is a direct analogue of the L;-topology on graphons [Lov12,
Sct. 8.2.5 and Sct. 8.3].

def
Ng;p:e {SL’EE}C
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Definition 7.5. If T is a theory in a language £ and ¢1, ¢» € Hom™ (A[T], R),
then the Li-distance between ¢; and ¢, is defined as

51(1,62) € min D p(Np ANR), (29)

pPel

where the minimum is taken over T-ons N'! and N2 over the same space such
that ¢1 = a1 and Py = Ppre.

It is not immediately clear from this definition that the minimum in (29)
is actually attained, nor is it clear why ¢, is a metric.

The first issue is easy to address by giving an alternative purely algebraic
definition. Namely, for any P € £ introduce the element dp € AT UT] as

dp < > (K),

KG’Ck(p) [TuT)
idg(pyERP, (K)ARP, (K)

where P, and P, are the two copies of P in £ U L, and let

dr =Y dp.

pPel

This element measures the distance in a coupling of ¢, ¢2 so we have
01(1, P2) = ilgff(dT)a (30)

where £ runs over all couplings of ¢; and ¢,. Their set is determined in
Hom™ (A[T U T],R) by countably many linear equations and hence compact.
Therefore the minimum in (30) and (29) is actually achieved.

The second issue is trickier, and the proof is similar to the analogous proof
that d; is a metric in the case of graphons. Fortunately, we already did most
of the necessary (and notationally heavy) work in the proof of Proposition 4.3;
we defer the remaining part to Appendix A.

Let us finally remark why we need L;-topology at all instead of the
standard and much nicer density topology (i.e., the one induced by the
inclusion Hom™(A[T],R) C [0, 1] from the product topology). One
simple explanation is that the set of all 1y € Hom™ (A[T"], R) that are uniquely
coupleable with some ¢ € Hom™ (A[T],R) is not closed in the latter.
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Example 1. Let ¢, € Hom™ (A[TGrapn], R) be the quasirandom graphon of
density p € (0,1). If (Gn)nen (Gn € My[TGrapn]) is a sequence of graphs
converging to ¢,, then the associated step functions 1, converge to ¢, in
the density topology. Since rk(¢,) = 1 and ¢, € Independence[l], it follows
that ¢, and v, are uniquely coupleable, but ¢, = lim,,_,~ 1, is obviously not
uniquely coupleable with itself.

The example above illustrates another crucial difference between the
Lq-topology and density topology: rank is lower semi-continuous in the
former but not the latter. In fact, for pure canonical theories T, the set
{1 € Hom™ (A[T,],R) | rk(¢)) < r} is closed in Li-topology but dense in
Hom™ (A[T;],R) in density topology (if r > 1).

Lemma 7.6. Let ¢ € Hom™ (A[T],R) and T be an arbitrary theory. Then
the set of ¢ € Hom™ (A[T"], R) that are uniquely coupleable with ¢ is closed
in the Ly-topology.

Proof. Let (,)nen be a sequence in Hom™ (A[T”],R) converging to 1 in the
Ly-topology and suppose every 1, is uniquely coupleable with ¢. It is clear
from the definition that 0;(¢ ® ¥, d @ V) = 01(¢Y, @ V), so ¢ @ 1, also
converges to ¢ ® v in the Li-topology. For each n € N, let (,, be a coupling
of ¢ and 1, attaining the L;-distance in (30).

Let & be a coupling of ¢ and v; we have to show that £ = ¢ ® ¥. Let
I:T"UT ~TuUuT UT and J;: T' ~ T"UT’" be the structure-erasing
interpretations, where J; keeps the i-th copy of T7”. Since £ is a coupling of ¢
and Q,D ¢ by Proposmon 5.2, there exists a coupling &, of ¢ and (,, such
that £ldT Y1 = ¢ Note that fn can also be seen as a coupling of ¢, ¥ and 1,
as §n = (,.

Let now N™ be a (TUT"UT")-on such that En = ¢nn. By considering the
(TUT")-ons (idy UJy)(N™) and (idy UJs)(N™), since 1, is uniquely coupleable
with ¢, we conclude from (29) that

E6@Pn) < Y AATWN)p A J(IIN™)p) = Caldrr) = 01(4, n),

pPeL’

where £’ is the language of T". Since v, — ¥ and ¢ ® 1, = ¢ ® 1) in the
Ly-topology, it follows that £ = ¢ ® . n

We proceed to the last item 5 in our program, which is to provide a way
of approximating FEuclidean structures with interpretations of independent
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couplings ¥, ® --- ® 1y, of quasirandom colored hypergraphons in the
L+-topology.

Lemma 7.7. Let £ be a language, ¢ € Hom™ (A[T],R), r &f rk(¢) and € > 0.

Then there exist ¢ > 2, p € I and an open interpretation I: Ty ~ | J;_, Tex
such that 01(¢, (Qr_; Yrp)’) < e

Proof. Let N be a T-on such that ¢y = ¢ and rk(N) = r, that is, for

each P € L, there exists Hp C E(p), such that Np = Hp x [0, 1]<WP>]>. By
standard measure theory arguments, for each P € L, there exists a finite
family of pairwise disjoint closed cubes (CF)7 (Cf C Eyp),r) such that

setting H'p & UL, CF gives A(Hp A Hp) < ¢/|L].

Let X be the set of all coordinates of vertices of all cubes ij forall P € L.
The set X induces a partition of [0, 1] into intervals Ji, ..., J. of positive
length (we can ensure ¢ > 2 by including an extra point if necessary). Define

then p € Il. by letting p; & A(J;) > 0 and define the (J;_, Tvx)-on G by
Grr < {2 € & | 2y € J1} (i €[d, ke r]),

where for each k € [r], the symbols EY, ..., E¥ correspond to T, .

Let v dof ¢g and note that ¢ is a coupling of ¥y p,..., %, ,, so we must
have ¢ = Q),_, ¥, by Lemmas 7.3 and 7.4.

Note now that from the definition of X, each cube C’JP C &yp),r can be
written as a finite union of the form UueURj [acrory.n i We then

1Pu,A"
define I: Ty ~ U,_, Tvx by

mp
def
I(P)(x177xk(P)> = \/ \/ /\ EzkpuA(ILA(l)u"'7xLA(|A|)> (P S ‘C)

j=1ueUp; Acr(k(P),r)

Our definition ensures that

1(G)p = [Lj U H ‘]iP,u,A x [0, 1](%1:)])

j=lueUp; \ Aer(k(P),r)

_ U k( )])) _ /p % [0’ 1]([%1?]).
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This implies that
51(6,0) < 3" MNp A& (Hp x 0,1)(57))) = ST A He A M) <6,

PeL PeL
as desired. O

We now have all the ingredients to show the equivalence (i)=(ii)=(iii) of
Theorem 3.10.

Lemma 7.8 (Theorem 3.10(i)=(ii)=(iii)). Let ¢ € Hom™*(A[T],R) and ¢ €
N, . Then the following are equivalent.

i. ¢ € UCouple[/].

ii. For every ' € [{], there exists p € (0,1) such that ¢ is uniquely
coupleable with the quasirandom {'-hypergraphon 1y .

iii. There exist py, ..., pe € (0,1) such that ¢ is uniquely coupleable with the
independent coupling ¢, ®- - - @1y, of quasirandom ¢'-hypergraphons
¢g/7pe, for V' € [ﬁ]

Proof. Since ¢'-hypergraphons have rank at most ¢, by Proposition 4.2, we
have rk(¢1,, ® -+ ® ¥yyp,) < £, so the implication (i) = (iii) follows.

Implication (iii) == (ii) follows from Theorem 3.3 by considering the
structure-erasing interpretations Iy : Ty _typergraph ~ U§'=1 Ty Hypergraph-

For the non-trivial implication (ii) = (i), we want to show that ¢ is
uniquely coupleable with any 1 € Hom™ (A[T”],R) of rank at most £. We can
assume w.l.o.g. that 7" = T, for some language £. Using Lemma 7.7, for
each n € N, we can find ¢, > 2, p,, € Il,, and I,,: T ~~ Uz:l T, r such that
51(6, (@ Vg )™) < 1/m.

By Lemmas 7.1, 7.2, 7.3 and 7.4, we know that ¢ is uniquely coupleable
with @;_, ¥k, and by Theorem 3.3, it follows that ¢ is also uniquely
coupleable with (@)_; ¥k p, )™

Finally, since ((Q_; Ykp,. )" )nen converges to ¢ in the Li-topology, by
Lemma 7.6, it follows that ¢ is uniquely coupleable with 1. O

We now proceed to add items (vi) and (vii) to the list of equivalent
properties of Theorem 3.10 (recall that (i)=(iv)=(v) and (iv) = (vi) were
proved in Section 4).

59



Lemma 7.9 (Theorem 3.10(vi) = (vii)). If ¢ € Hom™ (A[T],R) is ¢-local,
then ¢ ® vy, satisfies UInduce|l].

Proof. By Lemma 6.3, it is enough to show that ¢ ® ¢y, is symmetrically
(-local. Let K be the exchangeable array corresponding to ¢ ® ¥y, and fix
a finite family of finite sets (V;)cyy (Vi € Ny) with pairwise intersections of

size at most £. We let K; L g lv, € Kv.[T U TLinorder) and let M; = dof [K;] €
My, [T U TLinorder] be the isomorphism type of K;. We have to prove that
My, ..., M,; are mutually independent, and for that purpose we are going to
apply Claim 4.8 again.

More specifically, let I: T ~» T U Tiinorder be the structure-erasing inter-
pretation and L; = I(K;) € Ky;[T] be the results of erasing linear order.
Likewise, let J: Trinorder ~> T'U TLinorder, and let <; = J(K;) be the corre-
sponding (random) linear order on V; so that K; = (L;, <;). In Claim 4.8, we
set X = (<q,...,<n), Y; = L;, and let fi(<y,...,<,, L;) be the function
first computing K; from L; and <; and then taking its isomorphism type
M; = [K;].

We know that the tuple (L, . .., L) is independent from X = (<q,...,<¢)
(as the coupling of ¢ and 1y, is independent) and that L4,..., L; are mu-
tually independent (as ¢ is ¢-local). This gives us the first assumption in
Claim 4.8: X,Y7,...,Y, are mutually independent (note that we do not
claim that <y,..., <,, are mutually independent, this is in general not true).
It remains to show that (Mjy,..., M,,) is independent from (<q,...,<,),
and it essentially follows from the observation that the function f;(X,Y;)
becomes invertible after fixing its first argument.

More specifically, we compute L; = ¢;(<;, M;), where g;(<;, M;) is ob-
tained by first aligning the internal order of V(M;) with the order <; on
Vi, and then discarding it. The crucial property is that L; = ¢;(<;, M;) if
and only if M; = f;((<4,...,<,),L;). Using this, fixing arbitrary models
M; € My, [T U Tiinorder] and a particular tuple of values (<y,..., <), we
have the calculation

BIVi € [f, M; = A | Vi € ], <s = <4
= P[VZ S [t] L; = ( Ml) | (NS [t] Sz = SZ]
— BV € [1, L: = (<o, M)
= P[Vl € [t], M; = MZ]
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This shows that (M, ..., M) is indeed independent from (<q,..., <y).
We are now in position to apply Claim 4.8 which completes the proof. O

Lemma 7.10 (Theorem 3.10(vii) = (ii)). If the independent coupling of
¢ € Hom™ (A[T],R) with )y, satisfies UInducel(|, then for every (' € [{],
¢ is uniquely coupleable with the quasirandom {'-hypergraphon 1y /5 €
Hom™ (A[Ty -Hypergraph] ,R).

Proof. Let L be the language of T' and note that since UInduce[(] implies
UInduce[('] (Theorem 3.1), it is sufficient to consider the case ¢/ = ¢. Let us
first assume ¢ > 2.

Note that v, can be represented by the Tii,0rder-on N'< given by

def
N = {re&| xry < :U{Q}},

and that 1/ can be represented as

def

NE = {[/U €& | Z[q] < 1/2}.

Let £ be a coupling of ¢ and )y ;/, and let N be a (T'U T} gypergraph )-O1
such that ¢ = £ As in the proof of Lemma 7.2, for every m € N and
every U C ([72}), let Hy € Kn[Tibypergraph] be the hypergraph given by

def def

V(Hy) = [m| and Rp(Hy) = {a € (Im])¢ | im(a) € U}. If we are further

given K € K,,[T, let Ky € K,,[T' U T tiypergraph) be the alignment of K and

Hy, that is, we have Rp(Ky) & Rp(K) (P € £) and Rp(Ky) & Rp(Hy).

Finally, we let K5 € Kp,[T' U Ti_typergraph Y TLinorder] be the model obtained
from Ky by equipping it with the natural order of [m]. Note that while
we do need labels in K to properly define the models Ky and K, in the
computations below they are treated as unlabeled models [Ky], [K5], i.e.,
labels are discarded.

To show that ¢ is the independent coupling of ¢ and 1)y /2, we need to

show that for every m € N, every K € K,,,[T] and every U C (["Z]), we have

E((KD)) = S((K)) - Yool (Hy)) = ¢;<éf)>>. (31)
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The assertion is trivial if m < ¢, so suppose m > ¢. Fix U C ([m]) and for

every v € [m], define
{v—l v) ,
,— |, ifv<m;
def m m

—1
{m—,l}, if v = m.
m

Forn € Nand y € &,, let a,: [n] — [m] be the unique function such that
Yy € Va, () for every j € [n]. Finally, define the set

def

Wy = {(x,y) c&E x&E

lim(ay, )| = € A (ZL‘[@] % = im(oy) € U) } ;

clearly, Wy, is Sy-invariant. This means that we can define the (TUT} gypergraphV
TLinoOrder)-on HY over [0, 1]* by

HE L Ne x &y (Pel), HILE XN, HIEW

Obviously, if (z,y) € Tma(KW, Wy), then each y(;; must belong to a
different V,. Indeed, if there exist ji,j2 € [m] with ygy,y(.; € Vi but
J1 # J2, since m > £ > 2, there exists 8 € ([m]), with j;, jo € im(8) and thus
(z,y) ¢ (B*)"'(Wy), a contradiction.

Our claim and the definition of Wy then imply

Tina(K© Wy) = { (2,9) € En X En | |im(ay)| = m A /\ (5" (x) € Ng = im(ag-(y)) € U)

BE([m])e

Thus, denoting by J;: Ty _nypergraph ~* 1'U T} Hypergraph U T LinOrder the structure-
erasing interpretation, we get

m)!

mm . 2(7) ‘ (32>

m)!
é gm0y (KY) = WW,W(HU) =

Let now J: T~ T'U T} _piypergraph U TLinorder b€ another structure-erasing
interpretation; we have

Tina(K ( % JHY) = Tua (K, J(HY)) N Taa(K, Je(HY) N {(,y) € En X En | ypay < -

={(z,y) € &n x En | © € Tina(Kuy, N) AVv € [m], ypy € Vol
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Since ¢ = &, we get

" m™ - G((K) - Sy (i) _ o((K))
E((K0)) =m™ - b (K ) = R
) m: 2([)
where the second equality follows since ¢yuv is a coupling of ¢j,puvy €
Hom™ (A[T}_nypergraph], R) and ¢ @ ¢y, (and the latter satisfies UInduce[(]),

and the third equality follows from (32). Hence (31) holds.

Let us now show the case £ = 1. In this case, since T mypergraph =
T5_Coloring, We will work with the latter theory. Let £ be a coupling of ¢ and
V172 € Hom™ (A[Ts_coloring), R) and let N be a (T'U Ts_coloring)-0on such that
on = €.

For every m € N, every K € K,,[T]| and every j € {0,...,m}, let
K; € KT U T coloring] be the model obtained from K by coloring the

first j vertices with color 1 and all others with color 2, that is, we have

Rp(K;) “ Rp(K) (P € L), Ry, (K;) < [j] and Ry, (K;) = {j +1,...,m}.

Again, we let K € KT U Ty coloring U TLinorder] be the model obtained
from K; by equipping it with the natural order of [m], and, again, in the
computations below we view K, K;, K J< as unlabeled models.

Due to exchangeability, in order to show that £ is the independent coupling
of ¢ and 9y 9, it is sufficient to show that for every m € N, every K € KC,,,[T]
and every j € {0,...,m}, we have

E((K;)) = : (33)

For every t € (0,1), let

U {(zy) & xE |z eN, =y <t}
(x1 corresponds to the first color) and note that A\(U;) = 1/2. Define the
(T ) TLinOrder U T2 -Coloring)'on Ht over [07 1]2 by
"o Np x iy (PEL), ", e, x NF,
H LU, He, (& x &)\ Us.

Since ¢+ is a coupling of 11/, and ¢ ® ¥y, and the latter satisfies
UInduce[l], we get
o((K
(1) = 28D (34)

oml-om’
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On the other hand, from the definition of H!, we have

o :Zt;,l‘tm]«f(m
=Z(Z >,(k__j)< (K >>) £

Since this identity is true for any ¢, putting it together with (34) and comparing
coefficients of the polynomials in ¢, we conclude that

K . o((K)) .
Z 1 m—1 i W d o om if k=0;
= dm —1)! <k N Z> V) 0, - if k € [m]. &

We can finally prove (33) by induction in j € {0,...,m}. For j =0, the
assertion follows from (35) for k = 0. Suppose then that j > 1 and by using
the inductive hypothesis, note that (35) for k = j gives

E((K;) = —j!(m —j)!Zm(m . )<—1>J“i¢(§f”

Jj—i
S (7)) _ el
Thus (33) holds. O

8 Separations

In this section we prove all separation theorems.

Recall from Section 2.3 that for x € &,, 0, € S, denotes the unique
permutation such that z;,-14), < --- < 2,1, when the coordinates
(g3 | @ € [n]) are distinct, and is defined arbitrarily otherwise.

Proof of Theorem 3.6. First note that the quasirandom (¢ 4 1)-tournamon

Y41 can be represented by the T(/41) Tournament-0n

e 1
N {x € Erq1 | T < 5= sgn(o,) = 1} . (36)
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Let K be the exchangeable array corresponding to A with respect to 8 picked
in &y, . By Theorem 3.10, to show that 1,;; € UCouple[/] it is sufficient
to prove that 1, is weakly (-independent, that is for every m € N, the
random variable K|, is independent from (64 | A € r(m,()). Indeed, K|y

[m]
041
the values of the signs sgn(o,+ (9)) can be offset by flipping the corresponding
variables @4 (cf. (36)) so that the distribution of K|}, does not change from

fixing Tz 1(0)-

is completely determined by O 1(0) and (04| A € ( )), and any changes in

Suppose now toward a contradiction that v,,; € Independencel|/], that
is Y11 = ¢y for some T{r41)-Tournament-on H of the form H = &, x G for
some G C [0,1]. Note that for any o € Sy;1, we have H - 0 = H. But this is
a contradiction as the axioms of T} _Tournament 1Mply that A(H -o) NH) =0
whenever sgn(o) = —1. O

Proof of Theorem 3.7. Since v, is represented by the T7inorder-on N def {z €
E | xpy < wyny}, we know rk(yy,) = 1, thus by Proposition 4.1, we have
tin & UCouple[l].

Since ¥y, is n-categorical for every n € N, it is symmetrically ¢-local for
trivial reasons (namely, all events K|y, = M; have probability 1), for any
integer ¢. Hence vy, € UInduce[(] by Theorem 3.11. ]

To prove Theorems 3.8 and 3.9, the alternating tournament defined below
will play a key role.

Definition 8.1. Let £ > 1. For a: [k] — [k + 1], denote by o, the unique

extension of a to an element of Siii, and let sgn(«) oo sgn(o,). This

definition behaves well with respect to the actions of Sy and Si41: for every
n € Sy we have sgn(a on) = sgn(a)sgn(n), and for every o € Sk we have
sgn(o o ) = sgn(o) sgn(w).

The alternating k-tournament is the model Agﬁl € Kr+1[Tk Tournament] of
T} -Tournament Of size k 4 1 given by

VAR) € k+1;  Re(AR) = {a e ([k+1]) | sgn(a) = 1}.

For example, A:(f) is the oriented cycle 63.

Proof of Theorem 3.8. For this proof, let us denote the predicate symbols

of Tir42)-Hypergraph and T(¢11) -Tournament Dy F and P, respectively. Let 1 dof
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Yot € Hom™ (A[T{r11) -Tournament), R) be the quasirandom (¢ 4 1)-tournamon
and let I: T(£+2) -Hypergraph ™~ T(H»l) -Tournament be given by

def
I(E) (21, ..., Teyn) = \V (P, i, my) = Plag, . x,,25,)),

1< <+ <ip<l+2

where j1, jo € [(+2] are such that {iy, ..., j1, jo} = [(+2]. By Theorems 3.3
and 3.6, we know that ¢ def (= Hom*(.A[T(Hg)_Hypergraph],]R) satisfies
UCouple[d].

To show that ¢ ¢ Independence|(], we will make use of the theory
T (isomorphic to T{¢41)-Tournament) that is obtained from T{s49) typergraph U

T¢41)-Tournament Dy adding the axiom
Vqu('rla"'7$f+2) EI(E)(‘xl?"'ax€+2) (37>

and the commutative diagram

T(E+2) -Hypergraph > T(Z—f—l) -Tournament

| £

T(€+2) -Hypergraph U T(EJrl) -Tournament ﬁ T

where S is the structure-erasing interpretation, A is the axiom-adding inter-
pretation and J is the isomorphism mentioned above that acts identically on
P (the inverse J~! acts identically on P and acts as I on FE). Let ¢ = P!
so that ¢ = ¢’ and ¢ = £4°5.

Suppose toward a contradiction that ¢ € Independence[/] and let N be
an (-independent T{y42) -Hypergraph-0n over €2 such that ¢ = ¢ = P!, By
Proposition 4.3, there exists a T-on N’ over Q x € such that ¢+ = £ and
S(AN")g = N = Ng x &2 a.e. Note that tk(¢) < rk(¢)) < £+ 1, so
by possibly changing zero-measure sets using Proposition 4.2, we may also
suppose that rk(N’) < £+ 1. By applying a measure-isomorphism between
Q2 x Q and [0, 1], we conclude that there exists a T-on H (over [0,1]) such
that ¢y = &, tk(H) < ¢+ 1 and the peon Hp is ¢-independent.

Since H g has rank at most £ + 1 and is ¢-independent, we can write it as
He = Epiar X G x [0,1]1*2} for some measurable G C [0, 1]([ﬁﬁ]) Using the
symmetry axiom (4) of T(¢12)-Hypergrapn and making a zero-measure change in
G, we may assume that it is Sy o-invariant.
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For every t € [¢ + 2|, define the sets
{Ae ([“25 £+1eAM+2¢A};
Vf”d:f{Ae ([“2]) £+1¢A/\£+2€A};

Ae (WJFQ]) £+1,€+2€A}.

Define also the sets

41 def Vit 42 def vite, 41,642 def vt
Wt - [07 1] ¢ ) Wt - [07 1] ¢ ) Wt - [07 ]-] ¢ )
¢ ¢ 042
41 def 0+1, ¢+2 def 042, def +1,0+2
vy S Iwit vy S vl z = [wi
t=1 t=1 t=1

Note that
5e+1 = 5[ X YZ_H X Wf_—:ll;
Erro =Ex YT X W Y2 x Wi x Z.

Let ¢: [0 U {¢+ 2} — [¢ + 1] be the function that maps ¢+ 2 to £ + 1

and fixes all other points and note that ¢ induces maps ¢*: Y*! — Y2 and
def

" . % def %
R ijll — Wﬁf (given by t*(y)a = Yy and 1,1 (w)a = wWya)).
For every x € & and every w € ij_“ll, define the sections
Hp(z,w) € {y € Y| (z,y,w) € Hp)s
def
Hi(z,w) = {y € Y | (z,y,w) ¢ Hp);
and for every x € &, define
H(2) E {w e W | A(HS(x,w)) > 0};
Hp(@) = {w e W | AH (@, w)) > 0},
It is clear that
Hip () U H () = Wi (39)
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for every = € &,.

Note that the axiom (37) of 7" and an application of Fubini’s Theorem
imply that for a.e. z € &, a.e. w,w € Wﬁf, a.e. y € He(z,w), ae. y €
HE(z, w) and a.e. z € Z, we have

(‘xay?wab*(@\)7l’z+l(ﬂ})vz) S /’L[E (39>

Since the definition of I(P) is invariant under negating P, the same assertion
also holds with g in place of a.
Recalling that Hp = 400 x G x [0, 1]1+2} (39) implies that for a.e. z € &,

a.e. w,w € Hy(z) and ae. z € ijll 12 we have
(w, 17,1(W),2) €G. (40)

Again, the analogous statement with £ in place of a also holds.
From (38) and (40), it follows that there exists xg € & such that the

following hold for We & 3 %(wo) and WF = &8 p(20).
i. We have WU W? = W/

L o (6% €+1 Z+2 * A
ii. For a.e. w,w € W* and a.e. z € W, [, we have (w,¢;,(®),2) €G.

iii. For a.e. w,w € W# and a.e. z € ijll 2 we have (w, (), 2) €G.
Since |V/5!| = 1, let us for simplicity identify W, with [0,1] and let

def

h = lwe be the indicator function of W* C [0, 1]. For every A € (ﬁﬁ]), let

4: [0, 1](f+1) — [0, 1] be the projection on the A-th coordinate and note
that the properties above imply that for a.e. u € [0, 1](f+1) if h(mpes1)(u)) =
h(mguges2y), then u € G. Since G is Spyo-invariant, this in turn implies
that for a.e. u € [0, 1](f+1 ), if there exist ji,jo € [¢ + 2] distinct such that
h(Tpeop gy () h(Teta)\ (o)), then u € G. But since at least two of the

) =
values h(mei1)(w)), h(mpgopqes1y(w)) and h(mpiop oy (w)) must be equal, it
follows that A(G) = 1. So we must have

O(per2) = A(He) = AG) =1,

(¢+2)

which implies (ﬁ(KHQ ) =0.
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However, note that for the alternating (¢ 4 1)-tournament Aﬁ;l), we have

(A%:QI ) = Féﬁ;z), hence

+2) 1

(e+1 T or+1
2642 Aut(AY)] 27

S(ELS)) > w(A)) =

a contradiction. O

The following is needed for the proof of Theorem 3.9.

Lemma 8.2. If M € My 2[Tk Tournament] is @ k-tournament on k + 2 vertices,
then M has at most two (unlabeled) copies of the alternating k-tournament

A(k)

k+1-

Proof. Suppose toward a contradiction that M € M 2[Tk Tournament) cOntains

three copies of A,(ﬁgl and without loss of generality, let us suppose that

these three copies are induced by V; & [k + 1], V3 1k (k] U {k + 2} and

v, & [k — 1 U{k+ 1,k + 2}. Let ais, i3, an3 € ([k + 2])x be given by

()d_ef ) ()d_ef v, lfU<l€, ()d_ef v, lf?}</€,
@) =0 AW =) o=k PV T Yka2 o=k

and note that im(a,;) = V; NVj.
But then M|y, = Akﬂ, My, = Agi)l and M|y, = A,(ﬁl imply respectively
that

Q19 € RE(M) = (3 §é RE(M),
a1 € Rg(M) = ags &€ Rp(M),
13 € RE<M) = (93 ¢ RE(M)

This is a contradiction as all three equivalences above cannot be true at the
same time. O

Proof of Theorem 3.9. For this proof, let us again denote the predicate sym-
bols of T(/49)-Hypergraph a0 T{r41) -Tournament By £ and P, respectively. For
p € [0,1], let N'? be the T(¢41)-Tournament-0n given by

N def{xeé’gﬂ‘x[@rl < p = sgn(o,) —1}
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(note that for p = 1/2 this is precisely the theon (36) representing the
quasirandom (¢ + 1)-tournamon).

Let I: T(442)-Hypergraph ~ T{¢+1)-Tournament D€ the interpretation that de-

clares (¢ + 2)-edges to be isomorphic copies of A%:;l), and let ¢, aof Phw €

Hom ™ (A[T (¢+2) -Hypergraph s R). We will show that ¢, satisfies UInduce[(] for
every p € [0, 1], but does not satisfy UCouple[l] unless p € {0,1/2,1}.

To show the former, recall that the quasirandom (¢ + 1)-hypergraphon
Yei1p € Hom™ (A[T441) -Hypergraph), R) satisfies Independence[(] (cf. Lemma 7.4)
and hence UCouple[(] (by Theorem 3.2). Note also that ¢ae = (Vyi1,, @)’
and I': T(o41)-Tournament ~> T(e+1)-Hypergraph U TLinOrder 1S given by’

I'(P)(z1,. .. 201) & ( /\ :1:27é%>

1<i<j<t+1

AN E(ry,...,241) = \/ /\ To(i) = To(j)

U€S£+1 1S’L<]S£+1

sgn(o)=1
By Theorem 3.10(i) = (vii), we know that 1, ® ¥y, € UInduce[(] and
by Theorem 3.3, we get that ¢, = (Y41, ® Pin)! ! satisfies UInducel].

Let us now show that for every p € (0,1) \ {1/2}, ¢, does not satisfy
UCouple[l]. Since ¢y, has rank 1, it is enough to show that ¢, is not uniquely
coupleable with /y;,. Consider the (T(¢+1)-Tournament U TLinOrder)-on NP given
by

def def
N1€7< = 1};; N£’< = {SIZ c 52 | Ty < x{g}}

. . def IUid7y .
and note that ¢aw< is a coupling of ¢r» and ¥y, hence € = ¢ N;,<TL‘“0““

is a coupling of ¢, and ¥y,. We will show that & # ¢, ® ¥, by a direct
computation exhibiting an (¢ + 2)-hypergraph H and two different orders
on it such that £(Hy) # £(Hy) for the corresponding models of the theory
T{¢+2)-Hypergraph U TLinorder- That will suffice since, clearly, (¢, ® ¥ )(H1) =
(¢p ® Yrin) (H2).

Let H € Koy3[T(0+2)-Hypergraph) b€ given by

V(H) < [0+ 3); E(H) € {[k+ 1], k] U {k +2}};

"This is a generalization of the “arc-orientation” interpretation used implicitly in the
implications Pjg = P;; = Pi(s) of [CG91].
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and let Hy, Hy € Ki3[T(042)-typergraph U TLinorder] be obtained from H by
equipping it with the orders <; and <5, respectively, where < is the natural
order of [¢ + 3] and <5 is obtained from <; by swapping the order position of
¢+ 1 and ¢ + 3, that is, we have

1 <902 <9 <ol <9l +3 <30 +2<30+1.

Let 6 be picked at random in &y, according to A and let K be the

exchangeable array corresponding to N'”< with respect to 0 (so that (I U

idg, .. )(K) corresponds to (I Uidg,., .. Y(NP<)). Let o & o,

[e+3]

9)- Then
we have

Iy
—
S~
=
~——
N—

PU(J(Klj+3)) = H N o = ides);
§((H2)) = PUI(J(K]|rs) = H Ao = 7];

where J: T(EJrl)-Tournament ~ T(EJrl)-TournamentUTLinOrder is the StrUCture'eraSing
interpretation and 7 is the transposition that swaps £ + 1 and ¢ + 3. Then by
Lemma 8.2, I(J(K|43)) = H is equivalent to

T(K|je29) = J(K |iijogessy) = ALY (41)

Since Aut(Ag:rzl)) is the alternating group on [¢ 4 2], on any fixed set of
¢ + 2 vertices, there are exactly two models M; and M, that are isomorphic
to Ag_g:;) and they satisfty Rp(M;) N Rp(Mz) = 0. This means that on
the event (41), out of the a priori four presentations of Aéﬁ;l) induced on
[0 + 2] and [¢ + 1] U {¢ + 3}, only two are actually possible. Since ¢ is odd, a
straightforward calculation gives

§(<H1>) _ p(Z—i—Q)(l - p>Z+1 +p€+1(1 - p)€+2 _ pZ—H(l . p)é-i—l;

E((Ha)) =p'(1 =) +pP (1= p) =p (1 —p)'(3p* = 3p+ 1),
Thus we get
E((Ha)) — E((H1)) = p'(1 —p)'(4p” —dp+ 1)
=p'(1—p)(2p—1)",
which is non-zero as long as p € (0,1) \ {1/2}. O
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Proof of Theorem 3.15. For p € (0,1), let N be the Ty _mypergraph-0n given by

Nd:ef{ilfegk

(min{:c{v} | NS [k]} < 1/2 Nz < p)

v <min{x{v} |velk]}>1/2A Z T\ {vy mod 1 < p) }

velk]

Let us show that ¢ & ¢ satisfies Dev[k — 1]; recall that Dev[k — 1] =

Disc[ A1), where Ay = {A e (M) [ {1} € A} = (F)\ {[K]\ {1}} (see
Definition 2.8) and for ¢ € Hom+(A[TLAk71], R), let £ be a coupling of ¢ and
. By Proposition 4.3, there exists a (T'U Ty, )-on H over [0,1]? such that
oy =& and Hp =N x &

Let (0*,6?%) be picked in &y, ([0, 1]?) according to A and let K be the
exchangeable array corresponding to H with respect to (8, 82). Our objective
is to show that the events (1,2,...,k) € Rg(K) and VA € Aj_1,14 € Rp,(K)
are independent.

Since the event 14 € Rp, (K) is completely determined by ((6%,6%) | B C
A), it is sufficient to show that the event (1,... k) € Rg(K) is independent
from ((0%,0%) | B € r(k,k—1)A B # [k]\ {1}). But the event (1,...,k) €
Rp(K) is equivalent to (0})pery € N, and it is easy to see that the
conditional probability of (1,...,k) € Rg(K) given ((0},0%) | B € r(k,k —
1) A B # [k]\ {1}) is p a.e. Hence ¢ satisfies Dev[k — 1].

Let us now show that ¢ does not satisfy UInduce[l]. To do so, for each
i € [2], we consider the (Tk _mypergraph U T2 -Coloring)-on H' (see Remark 1) given
by
HE = N;
Hy, ={rv €& |opy <1/2};
HXS—i = {:L‘ €& ’ T{1} = 1/2}'

Then by a straightforward calculation, for every H € M|[T}, typergraph U
T5 Coloring] With Ry, (H) = V(H), we have

Oy (H) = —¢k,p2(1;1(|H)); p2(H) = —ngléﬁH));

where I: T} typergraph ~ Tk -Hypergraph U T2-Coloring 18 the structure-erasing
interpretation, v, is the quasirandom k-hypergraphon (see Definition 2.11)
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and N7 is the Tk _nypergraph-01 given by

N = x €& Zl’{k]\{v} mod1<p

velk]

Since ¢ # Vi, (since tk(¢y,) = k > k — 1 > rk(yar)), it follows that
gbq_[l (H) 7é 9257-[2 (H) fOl" some H - M[Tk—Hypergraph U TQ_Coloring] Wlth RXl (H) =
V(H), hence ¢ does not satisfy UInducell]. O

Proof of Theorem 3.16. For p € (0,1), let N be the T _pypergraph-ont given by

max{xA A€ <£i]1>} <p}.

It is clear that ¢ & ¢n satisfies Independence[(]. Consider now the Te (i
on H given by

./\/'d—Ef{J?Egk

def def
Hy N M, = {x € &1 | gy > p}

and note that if K is the exchangeable array corresponding to H, then

P[(1,...,k) € Re(K)A(1,...,L+1) € Rp,  (K)] =0
# p(eil) ’ (1 - p) = ¢(pk) 'P[(L N A 1) € RP[ZH](K)]’
so ¢ does not satisfy Disc[{[¢ + 1]}]. O

Proof of Theorem 3.5. Follows from Theorems 3.14 (UInducell + 1] =—
CliqueDisc[l + 1]) and 3.16 (Independence[(] # Disc[{[¢ + 1]}]), and the
fact that CliqueDisc[¢+1] = Disc[{[¢(+1]}] (see [Towl7, AHCH"18]). [

9 Top level quasirandomness

In this section we prove Theorems 3.12 and 3.13, which completely character-
ize the properties Independence[k — 1] and UCouple[k — 1], respectively when
all arities are at most k. These can be seen as analogues of full quasirandom-
ness for arbitrary universal theories (just as Dev[k] = CliqueDisclk — 1] =

Di sc[(k[ﬁ}l)] gives full quasirandomness in T} pypergraph)-
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Proof of Theorem 3.12. By Lemma 7.4, v, € Hom" (A[T.x],R) satisfies
Independence[k — 1], so the backward direction follows from Theorem 3.3.

For the forward direction, first we claim that it is enough to show the
case when T' = T,. (This is not completely immediate as I: T~ T, is
required to satisfy T, = VZ, I(F)(Z) for every axiom VZ, F(Z) of T.) Let
A: T, ~ T be the axiom-adding interpretation and suppose ¢* (which
satisfies UCouple[k — 1] by Theorem 3.3) can be written as ¢ = wkj,p for
some ¢ > 2, some p € II. and some J: Ty ~» T, 1, then we define [: 1"~ T¢,
to act as J and we have to show that it is indeed an interpretation, i.e.,
that T, = VZ, I(F)(Z) for every axiom VZ, F(Z) of T (¢], = ¢ will then
follow trivially). Equivalently, we have to show that if M € M|[T..], then
J(M) € MIT]. But since all p; are positive, we have v ,(M) > 0, so
¢A(J(M)) > 0, hence trivially J(M) € M[T].

Let us now prove the case ' = T,. Let N be a (k — 1)-independent Tz-on
such that ¢ = ¢. Note that if P € £ is such that k(P) < k — 1, then Np
must be either () or Eypy, so we can write L = L U Ly U Ly, where

LY Per|kPp)

k};
Lo {Per|kP)<k
k

— 1/\NP = @},
—1ANp = gk(p)}.

<
LiE(PeLl|kP)<

Recall from Definition 6.8 that Ky[Th(¢)] = {K € Ky[Tz] | #(K) > 0}
and enumerate its elements as K7i,..., K.. Note that since N is (k — 1)-
independent, it follows that every peon Np with P € £’ is Si-invariant, hence
we must have Aut(K;) = Sy for every i € [¢]. Suppose first that ¢ > 2 and
define p € II. by p; = ¢(K;) > 0 and let I: T ~» T, ), be given by

I(P)(z1,...,zp)) = @1 # 71 (P € Ly);
I(P)(x1,...,2ZKp)) o /\ x; # (P e Ly);
1<i<j<k(P)
I(P)a1,....o) = \/  Eilwr,...,z0). (Per).  (42)
idkeilezgf](Ki)

Since N is (k — 1)-independent, it follows that each Tiq(K;, N) is (k — 1)-
independent and has measure p;, which implies that the T, ;-on H defined by
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Hp, aof Tina(Ki, N) (i € [c]) satisfies ¢gy = 1y, and since clearly I(H) = N,
it follows that i , = ¢.
If ¢ = 1, then we can define I by replacing (42) with

I(P)(z1,...,2) S N\ wi#z,  (Peclidy € Rp(Ky));

1<i<j<k(P)

I(P)(z1,...,xx) dof Ty # 14 (P e L)idy ¢ Rp(Ky))

instead and we trivially get ¢ = w,ip for any p € Il with ¢ > 2 as we must
have Tind(Kl,N) = gk a.c. ]

Before we show Theorem 3.13, let us first see that the (O, p)-quasirandom
homomorphisms g, € Hom™ (A[Te], R) from Definition 2.9 are well-defined
(i.e., their definition as g, &f ¢nz is independent of the choice of Z) and

satisfy UCouplelk — 1].

Proposition 9.1. With the notation and conditions of Definition 2.9, we
have

onz (M) = ] plpr Ve (43)

pPeL

for every M € M|[Tg]. Furthermore, ¢o, & bz satisfies UCouplelk — 1].
Proof. First, let us show that N'? is indeed a Tg-on.
Note first that Tg trivially proves that

—P(z,y,...,t) (P € L, the tuple (z,y,...,t) contains repeated variables)
(44)

and if we add (44) to the axioms of Tg, then it becomes substitutionally
closed (see [CR20, Definition 3.5, Remark 5]), then by [CR20, Theorem 3.7],
to show that N'Z is a Tg-on, it is enough to show that N'Z satisfies the axioms
of Te and (44) a.e. It is trivial that N7 satisfies (44) a.e.

Note that the fact that Z is a partition implies that there exists a unique
P, € L such that z; € Zp,, thus there exists a unique @, € £ such that
z € N§ , namely Q, = o,' - P, (where o, is as in Definition 2.9). This
implies that A/Z satisfies axioms (8) and (10) a.e.
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Note now that if 7 € S, then we have o,., = 0, o 7, hence

Z

l"TENgEx[k}EZ pE.Z‘[k}EZUx.(T.p)EZ'E P>

Ogor+
so N'Z also satisfies axiom (9) a.e., hence N7 is a Tg-on.

Let K be the exchangeable array corresponding to N with respect to
0 picked in &y, according to A. Since for m € N and K € I,,[To], we have
dnz((K)) = P[K]|p, = K], if we show that for every measurable U C &, 51
with A(U) > 0, we have

PIK | = K | E] = ] pp """, (45)
Pec
where E is the event (g | B € r(m,k — 1)) € U, then both (43) and
Yo, € UCouplelk — 1] will follow (the former follows by taking U = &, 51
and the latter implies weak (k — 1)-independence of N4, which is equivalent
to ¢z € UCouplelk — 1] by Theorem 3.10).
If m < k, (45) trivially holds, so suppose m > k and note that the axioms
of Tg imply that for each «: [k] — [m], there exists a unique P, € L such
that a € Rp, (K) and we must further have P, = 7 - P,,, for every 7 € S.

Note that for any choice of () (im) with a4: [k] = [m] and im(as) = A,
=P |:VA S ([m]>,OéA € RpaA(K)

: f
Now, the event as € Rp, , (K) depends only on the relative order of (6 | i €
A) and on the variable 84 and, since p is ©-invariant, we have A\(Z,.p,) = pp,
for every o € Sy and every a: [k] = [m]. This means that if < is an ordering
of A and E< is the event that says that the relative order of (¢ | i € A) is
<, then Pla € Rp, (K) | E N E<] = pp, and thus

PK|m=K|El = [] pr.,.
(1)

Ae
we have

PIK iy = K | ] = P[Ya € (Im]).a € Rp, (K) | E]

Since this holds for any choice of (a4) , e(tm) with im(as) = A, by considering
k
all possible k(%) such choices we get
7 7)1
P[K‘[m] - K ’ E]k!(k) _ p?(k) '|RP(K)‘7
Pec
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from which (45) follows. O

Definition 9.2. Given a T-on N over Q = (X, A, ) and K € Ky[T], let
Wi Evvi—1(2) — [0,1] be defined by

def
Wi (2) = p({y € X | (2,y) € Tha(K,N)}).
Note that Wi is essentially a (|V'| —1)-flattening of the peon Tinq (K, N) C
Ev () (see Definition 6.4).
The next two simple lemmas are fundamental in the proof of Theorem 3.13.

Lemma 9.3. Let k € N, and suppose that k(P) < k for all P € L. Let T
be a theory over L and N be a T-on over = (X, A, u). Then for every
m € N and every K € K,,,[T], we have

oxl(8) = |

Xr(m,k—1)

T Wi (ra@)) du(z),
Ac(ty))

where T4 Epk-1(Q) = Eak—1(Q) is the projection on the coordinates indexed
by r(A k —1).

Proof. Follows by considering the exchangeable array corresponding to N
with respect to 8 picked in &y, (€2) according to u, noting that K|, = K is
equivalent to VA € ([Zﬂ), K| = K|a (since k(P) < k for every P € L) and
integrating out the top variables (64 | A € ([’:})) O

Lemma 9.4. If a T-on N over ) is such that ¢ satisfies UCouple[l| and
K € Ky|T] with |V| < £+ 1, then W} is a.e. constant.

Proof. Without loss of generality, we may suppose that V' = [m]|. Write
Q = (X, A,u). Then it is sufficient to show that for every measurable
U € Eme(Q), we have [, W dp = p(U)éa((K)). But for the exchangeable
array K corresponding to A/ with respect to @ picked in &y, (2) according to
1, it follows that

/W}j At = P[K | = K A (04 | A€ r(m,k — 1)) € U]
=P[K|pm = K] -P[(04 | A€ r(m,k—1)) € Ul = p(U)on((K)),

where the second equality follows since N is weakly /-independent by Theo-
rem 3.10. O
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Proof of Theorem 3.13. The backward direction follows from Proposition 9.1
and Theorem 3.3.

For the forward direction, we will show that in fact we can take p = (pp)per
satisfying pp > 0 for every P € L. Note that when pp > 0 for every P € L,
we have g ,(M) > 0 for every M € M[Tg], so by an argument analogous
to that of the proof of Theorem 3.12, it is enough to consider the case when
T="T;,.

Suppose then that 7' = T, and let N’ be a T-on such that ¢ = ¢.
Note that if P € L is such that k(P) < k — 1, then rk(Np) < k — 1, so
by Theorem 3.3 and Proposition 4.1, it follows that rk(Np) = 0, that is,
A(Np) € {0,1}. This means that we can write £ = £ U Lo U L;, where

%
CIANNG) =i} (e {0,1}).

< def

L={PeL]|k(P)

def

L {Per|kP) <

k
k
Consider the (left) action of Sy on Kx[Th(¢)] given by letting o - K €

Ki[Th(¢)] (o € Sk, K € Ki[Th(¢)]) be the model obtained from K by
permuting its vertices by o, that is, we have

Rp(o-K) ¥ {ooa|ae Rp(K)} (P e L)
Rp(o-K) % (P € Lo);
Rp(o - K) = ([K])xe) (P € Ly).

Note that this definition ensures that for a.e. x € & and every o € S, we
have

-0 € Tha(K,N) =2 € Tha(o- K,N). (46)

It is also clear that for a.e. € &, there exists exactly one K € Kx[Th(¢)]
such that x € Tiq(K,N).
Let then £’ be a language containing one predicate symbol Py of arity

k for each K € Ky[Th(¢)] and let ©: S x L — L' be the induced action

o Pr ¥ P g (0 €8y, K €Ky[Th(¢)]). Define then H by

Hee © Toa(K,N)
and note that (46) and the remark below it ensure that H is a T-on.
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Define I: T ~~ Tg by

( \/ PK<LU1,...,$k(p)), lfPEE,
KeKy[Th(¢)]
def idyeRp(K)
[(P)(:Cla"'vxk(P)):<:L‘17éZL’1, it P e Ly;
/\ $i§£$j, 1fP€£1
| 1<i<j<k(P)

and note that we trivially have I(H)p = Np a.e. for every P € L, hence
O = ¢

For every K € K;[Th(¢)], let pp, &of AHp,) = ¢((K)) > 0 and note that
the definition of © implies that p is O-invariant and ) KekyTh(e) PP = L.
To conclude the proof, we will show that ¢y = e ,. To do so, for every K &
Kr[Th(9)], let Kk € K¢[To] be the unique model such that id; € Rp, (Kk)
and note that the axioms of Te imply that W} is a.e. equal to the (k — 1)-
flattening sz;; of the peon Hp,, which in turn is a.e. equal to Wj. But

then from Lemma 9.4, it follows that W5, = ¢({(K)) = pp, a.e. Since the
To-on NZ of Definition 2.9 and Proposition 9.1 also clearly satisfies Wﬁ? =
W/’ff;g; = pp, a.e., from Lemma 9.3, it follows that ¢y = dpz = Ve p. O

10 Conclusion and open problems

In this paper we have attempted to build a general theory of quasirandomness
that is uniformly applicable to arbitrary combinatorial structures and is
invariant under their “natural transformations”. While our basic definitions
deliberately avoided mentioning specific densities, it turned out, in the vein
of the previous research in the area, that our quasirandom properties can be
characterized in several equivalent ways, including such densities. We have
shown how to arrange these properties into a hierarchy and, with one or two
notable exceptions, have been able to prove that this hierarchy is proper.
Finally, we have compared our quasirandom properties to what has been
studied before for hypergraphs (with the focus on specific densities) and have
found that these two frameworks are essentially incomparable.

One topic that we touched tangentially in the proof of Theorem 3.10,
more specifically with Example 1 and Lemma 7.6, is the closedness of our
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properties with respect to both the density topology and Li-topology (Defi-
nition 7.5). The aforementioned example and lemma show that in general
unique coupleability with a particular collection of limit objects is closed
in Li-topology but not necessarily closed in the density topology. On the
other hand, alternative syntactic descriptions of UCouple[¢] and UInduce[/]
(as ¢-locality and symmetric ¢-locality, respectively) imply that these classes
are closed even in the density topology. So in a sense we have a satisfactory
overall picture for the classes based on the “extrinsic” notion of coupleability.

Remarkably, we do not know the answer for the class Independence[(],
even if it has a very clean and natural “intrinsic” definition. This is the first
question we would like to ask: is Independence[/] closed in the density, or
at least Li-topology? One sensible approach to this question might consist
in developing an alternative, and perhaps more concrete, characterization of
this class that might be interesting in its own right.

If 1 and ¢, are uniquely coupleable with all theons of rank < ¢, then
the same is true for ¢; ® ¢ (Theorem 3.4 (ii)). We do not know if the same
remains true after replacing this class of tests with individual tests, and when
we needed this in one of our proofs, we had to take a considerable detour
(see item 3 in our program at the beginning of Section 7). Thus comes our
second open question: assume that ¢, and 1, as well as ¢5 and ¢ are uniquely
coupleable. Does it imply that ¢; ® ¢, is also uniquely coupleable with 7

Under the additional assumption that ¢;, ¢, are themselves uniquely
coupleable, the question takes a particularly nice and symmetric form: assume
that ¢1, ¢ and ¢3(= 1) are pairwise uniquely coupleable. Does it imply
that ¢1, o, 3 are (mutually) uniquely coupleable? While the analogy with
independence for random variables is now visible, it is not immediately clear
how useful it might turn out here.

Another interesting question is whether unique coupleability establishes
a Galois correspondence between UCouple[l| and limit objects of rank at
most £. In other words, is it true that if ¢ is uniquely coupleable with every
1) € UCouple[/], then rk(¢p) < £7

As we mentioned before, the results of Theorems 3.1, 3.2, 3.5, 3.6 and 3.7
almost complete the Hasse diagram of implications between the families
Independence, UCouple and UInduce. The only missing implication/separations
are the ones between UCouple[(] and Independence[('] when ¢’ < ¢, and this
is our fourth question: does UCouple[l] imply Independence[l — 1]7 Let us
remark that with some change in geometric representation, the somewhat
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subtle theons we introduced in Section 2.3 all suggest that this implication
may actually hold.

Recall that Theorem 3.10(i)=(vii) says that ¢ € UCouple[l] is equivalent
to ¢ ® Yy, € UInducell]. Let us now draw attention to three interesting open
problems that can be extracted from this equivalence.

The first is whether a “converse” of this is true in the spirit_of Theo-
rems 3.12 and 3.13: can every ¢ € UInduce[(] be written as ¢ = (¢ @ Wy, )!
for some qg € UCouple[l] and some open interpretation I: T~ T U TLinorder !

The second problem is an analogue of Theorems 3.12 and 3.13 themselves
in the context of unique inducibility. We conjecture that if all arities are at
most k, then ¢ € UInduce[k — 1] should be equivalent to ¢ = (e, @ Vi)’
for some action ©: S, x L' — L' on a language L', some open interpretation
I: T ~ ToUTLinorder and some O-invariant p € [0, 1] (of course, this would
follow from a positive answer to the previous problem).

The third question is more open-ended. In the three scenarios discussed
in Section 3.1 (permutations, words and Latin squares), the quasirandom
object is “straightforward” but does not satisfy even the weakest of our
properties UInduce[l]. Hence we might reasonably ask if the theory of
“natural” (understood as in the introduction) quasirandomness properties can
be extended beyond UInduce[l]. One possibility would be to consider the
closure of UInduce[l| under independent couplings and open interpretations.
Both the quasirandom permuton ¢y, ® 11, and the quasirandom Latin square
Uiin @ Yrin ® Yy, belong to this class (for every ¢). This definition, however,
is of the same distinctly ad hoc nature we have been trying to avoid in this
paper. Are there any “reasonable” descriptions of this class, be them extrinsic
or intrinsic? The only thing we can prove (and even that is non-trivial) is
that this class is proper, i.e., there are theons that do not belong to it, for an
arbitrary £. If the conjectures from the previous two paragraphs are true, this
would also form another interesting hierarchy: starting from UCouple[/], we
can get progressively weaker families of natural quasirandomness properties
by taking independent coupling with the linear order y,.

Another possible approach would be to start with quasirandom permu-
tations that is by far the most widely studied class, and from their known
properties [Coo04, Coo05, KP13, CKN*20]. However, in comparison to their
(hyper)graph and tournament counterparts, the theory of permutation quasir-
andomness provides a much smaller variety of quasirandomness formulations
as candidates for natural generalizations, essentially boiling down to only
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three types: explicit density notions, discrepancy notions based on intervals
and spectral notions. Let us also note that there is still a whole host of
properties [DEG14, CD17| that random permutations satisfy and that have
not yet been fully explored in the quasirandom setting. In fact, some of these
properties are so fine-grained that it is not even clear if they can be encoded
by subpermutation densities.

The notions of rank and Independence have the following generalization:
for B C N, let us say that a peon N over Q = (X, A, u) is B-compatible if
it only depends on coordinates that are indexed by sets A with |A| € B, that
. . [k(P)] (k(P)]
is, it can be written as N’ = G x XUbE[k(P)J\B( 5 ) for some G C XUbeB( b )
Let us say that an Euclidean structure is B-compatible if all its peons are
so and let us say that ¢ € Hom™(A[T],R) is B-compatible if it has a T-
on representation that is B-compatible. Then rank at most & amounts to
[k]-compatibility and ¢-independence amounts to (N; \ [¢])-compatibility.
We believe that with a careful inductive application of the theon uniqueness
theorems [CR20, Theorems 3.9 and 3.11, Proposition 7.7], one could generalize
the proof of weak independence to show that if ¢; and ¢, are Bi-compatible
and Bs-compatible, respectively and By N By = (), then ¢, and ¢, are uniquely
coupleable. However, we know that UCouple[f], i.e., unique coupleability with
all [¢]-compatible limit objects, is strictly weaker than Independencel(], so it
is natural to ask if the weak independence analogue of (N, \ B)-compatibility
(i.e., asking the exchangeable array K to be independent from (0,4 | |[A| € B)
as a random variable) also yields a strictly weaker property than (N, \ B)-
compatibility when B is not of the form [k] for some k& € N. In particular, this
involves studying unique coupleability with all ¢ € Independence|l] as well.
Building on that, it is also natural to ask if there are examples of uniquely
coupleable ¢; and ¢, that do not fall in this B-compatibility setting or in its
weak independence analogue.
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A The Li-topology

Lemma A.1. The L-distance §; is a metric on Hom™ (A[T], R) and generates
a finer topology than the density topology.

Proof. Let us first check the triangle inequality. Let & be a coupling of ¢, and
¢2 and ¢ be a coupling of ¢ and ¢3 attaining the L;-distances in (30). Let
also J;: T~ T'UT be the structure-erasing interpretation corresponding to
coordinate ¢ and I;;: TUT ~~ TUTUT be the structure-erasing interpretation
corresponding to coordinates ¢ and j. Since § is a coupling of ¢; and ¢z = ¢ I
Proposition 5.2 gives us a coupling {’ of ¢; and ( such that fldT U = S Since
idr UJ; = I19, we get that § is a coupling of ¢, ¢ and ¢3 such that S 12 =¢
and @23 = (. But ?13 is a coupling of ¢ and ¢3 and for each P € L we have

£ (dp) < €M (dp) + € (dp),
hence by (30) we get d1(¢1, d3) < d1(¢1, Do) + 01(P2, P3).

Finally, note that by (29) we have

|61((M)) = o ((M))] < 61(¢1,62) D (1M |)ar)

PeLl

for every M € M(T]. This implies both §;(¢1,¢2) =0 = ¢ = ¢ and
that the Li-topology is finer than the density topology. O]
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