What do SpamAssassin, Gene Sequencing, Google, and Deep Blue have in common?

Artificial Intelligence
Introduction: What is AI?

CSPP 56553
Artificial Intelligence
January 7, 2004
Agenda

• Course goals

• Course machinery and structure

• What is Artificial Intelligence?

• What is Modern Artificial Intelligence?
Course Goals

- Understand reasoning, knowledge representation and learning techniques of artificial intelligence
- Evaluate the strengths and weaknesses of these techniques and their applicability to different tasks
- Understand their roles in complex systems
- Assess the role of AI in gaining insight into intelligence and perception
Instructional Approach

• Readings
 – Provide background and detail

• Class sessions
 – Provide conceptual structure

• Homework
 – Provide hands-on experience
 – Explore and compare techniques
Course Organization

• Knowledge representation & manipulation
 – Reasoning, Planning,..

• Acquisition of new knowledge
 – Machine learning techniques

• AI at the interfaces
 – Perception - Language, Speech, and Vision
Artificial Intelligence

• Understand and develop computations to
 – Reason, learn, and perceive

• Reasoning:
 – Expert systems, planning, uncertain reasoning
 – E.g. Route finders, Medical diagnosis, Deep Blue

• Learning:
 – Identifying regularities in data, generalization
 – E.g. Recommender systems, Spam filters

• Perception:
 – Vision, robotics, language understanding
 – E.g. Face trackers, Mars rover, ASR, Google
Course Materials

• Textbook
 – Artificial Intelligence: A Modern Approach
 • 2nd edition, Russell & Norvig
 • Seminary Co-op

• Lecture Notes
 – Available on-line for reference
Homework Assignments

• Weekly
 – due Wednesdays in class

• Two options:
 – All analysis
 – Combined implementation and analysis
 • Choice of programming language

• TAs & Discussion List for help
 – http://mailman.cs.uchicago.edu – Cssp56553
Homework: Comments

• Homework will be accepted late
 – 10% off per day

• Collaboration is permitted on homework
 – Write up your own submission
 – Give credit where credit is due

• Homework is required to pass the course
Grading

- Homework: 40%
- Class participation: 10%
- Midterm: 25%
- Final Exam: 25%
Course Resources

• Web page:
 – http://people.cs.uchicago.edu/~levow/courses/cspp56553
 • Lecture notes, syllabus, homework assignments,..

• Staff:
 – Instructor: Gina-Anne Levow, levow@cs
 • Office Hours: By appointment, Ry166
 – TA: Leandro Cortes, leandro@cs, Ry177
 – TA: Vikas Sindhwani, vikass@cs, Ry 177
Questions of Intelligence

• How can a limited brain respond to the incredible variety of world experience?
• How can a system learn to respond to new events?
• How can a computational system model or simulate perception? Reasoning? Action?
What is AI?

• Perspectives
 – The study and development of systems that
 • Think and reason like humans
 – Cognitive science perspective
 • Think and reason rationally
 • Act like humans
 – Turing test perspective
 • Act rationally
 – Rational agent perspective
Turing Test

- Proposed by Alan Turing (1950)
 - Turing machines & decidability
- Operationalize intelligence
 - System indistinguishable from human
 - Canonical intelligence
 - Required capabilities:
 - Language, knowledge representation, reasoning, learning (also vision and robotics)
Imitation Game

• 3 players:
 – A: Human; B: Computer; C: Judge

• Judge interrogates A & B
 – Asks questions with keyboard/monitor
 • Avoid cues by appearance/voice

• If judge can’t distinguish,
 – Then computer can “think”
Question

• What are some problems with the Turing Test as a guide to building intelligent systems?
Challenges I

Eliza (Weizenbaum)

• Appearance: an (irritating) therapist
• Reality: Pattern matching
 – Simple reflex system
 No understanding
 “You can fool some of the people…” (Barnum)
Challenges II

– Judge: How much is 10562 * 4165?
– B: (Time passes…) 4390730.
– Judge: What is the capital of Illinois?
– B: Springfield.

• Timing, spelling, typos…
• What is essential vs transient human behavior?
Challenges III

• Understanding?

• Searle’s Chinese Room argument
 – Judge submits question in Chinese
 – B is person who doesn’t know Chinese
 • But, B has a book mapping Chinese to Chinese
 – B doesn’t understand Chinese, but simulates

• Problem??
Question

• Does the Turing Test still have relevance?
Modern Turing Test

• “On the web, no one knows you’re a….”
• Problem: ‘bots’
 – Automated agents swamp services
• Challenge: Prove you’re human
 – Test: Something human can do, ‘bot can’t
• Solution: CAPTCHAs
 – Distorted images: trivial for human; hard for ‘bot
• Key: Perception, not reasoning
Questions

• Why did expert systems boom and bomb?

• Why are techniques that were languishing 10 years ago booming?
Classical vs Modern AI

Shakey and the Blocks-world

Versus

Genghis on Mars
Views of AI: Classical

• Marvin Minsky
• Example: Expert Systems
 – “Brain-in-a-box”
 – (Manual) Knowledge elicitation and engineering
 – Perfect input
 – Complete model of world/task
 – Symbolic
Issues with Classical AI

- Oversold!
- Narrow: Navigate an office but not a sidewalk
- Brittle: Sensitive to input errors
 - Large complex rule bases: hard to modify, maintain
 - Manually coded
- Cumbersome: Slow think, plan, act cycle
Modern AI

• Situated intelligence
 – Sensors, perceive/interact with environment
 – “Intelligence at the interface” – speech, vision

• Machine learning
 – Automatically identify regularities in data

• Incomplete knowledge; imperfect input

• Emergent behavior

• Probabilistic
Issues in Modern AI

• Benefits:
 – More adaptable, automatically extracted
 – More robust
 – Faster, reactive

• Issues:
 – Integrating with symbolic knowledge
 • Meld good model with stochastic robustness

• Examples: Old NASA vs gnat robots
 – Symbolic vs statistical parsing
Key Questions

- **AI advances:**
 - How much is technique?
 - How much is Moore’s Law?
- **When is an AI approach suitable?**
 - Which technique?
- **What are AI’s capabilities?**
- **Should we model human ability or mechanism?**
Challenges

• Limited resources:
 – Artificial intelligence computationally demanding
 • Many tasks NP-complete
 • Find reasonable solution, in reasonable time
 • Find good fit of data and process models
 • Exploit recent immense expansion in storage, memory, and processing
AI’s Biggest Challenge

“Once it works, it’s not AI anymore. It’s engineering.” (J. Moore, Wired)
Studying AI

- Develop principles for rational agents
 - Implement components to construct
- Knowledge Representation and Reasoning
 - What do we know, how do we model it, how we manipulate it
 - Search, constraint propagation, Logic, Planning
- Machine learning
- Applications to perception and action
 - Language, speech, vision, robotics.
Roadmap

• Rational Agents
 – Defining a Situated Agent
 – Defining Rationality
 – Defining Situations
 • What makes an environment hard or easy?
 – Types of Agent Programs
 • Reflex Agents – Simple & Model-Based
 • Goal & Utility-based Agents
 • Learning Agents
 – Conclusion
Situated Agents

- Agents operate in and with the environment
 - Use sensors to perceive environment
 - Percepts
 - Use actuators to act on the environment

- Agent function
 - Percept sequence -> Action
 - Conceptually, table of percepts/actions defines agent
 - Practically, implement as program
Situated Agent Example

- Vacuum cleaner:
 - Percepts: Location (A,B); Dirty/Clean
 - Actions: Move Left, Move Right; Vacuum

- A,Clean -> Move Right
- A,Dirty -> Vacuum
- B,Clean -> Move Left
- B,Dirty -> Vacuum
- A,Clean, A,Clean -> Right
- A,Clean, A,Dirty -> Vacuum.....
What is Rationality?

• “Doing the right thing”
• What's right? What is success???
• Solution:
 – Objective, externally defined performance measure
 • Goals in environment
 • Can be difficult to design
 – Rational behavior depends on:
 • Performance measure, agent's actions, agent's percept sequence, agent's knowledge of environment
Rational Agent Definition

• For each possible percept sequence,
 – A rational agent should act so as to maximize performance, given knowledge of the environment

• So is our agent rational?

• Check conditions
 – What if performance measure differs?
Limits and Requirements of Rationality

• Rationality isn't perfection
 – Best action given what the agent knows THEN
 • Can't tell the future

• Rationality requires information gathering
 – Need to incorporate NEW percepts

• Rationality requires learning
 – Percept sequences potentially infinite
 • Don't hand-code
 – Use learning to add to built-in knowledge
 • Handle new experiences
Defining Task Environments

- Performance measure
- Environment
- Actuators
- Sensors
Characterizing Task Environments

• From Complex & Artificial to Simple & Real

• Key dimensions:
 – Fully observable vs partially observable
 – Deterministic vs stochastic (strategic)
 – Episodic vs Sequential
 – Static vs dynamic
 – Discrete vs continuous
 – Single vs Multi agent
Environment types

<table>
<thead>
<tr>
<th>Observable??</th>
<th>Deterministic??</th>
<th>Episodic??</th>
<th>Static??</th>
<th>Discrete??</th>
<th>Single-agent??</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solitaire</td>
<td>Backgammon</td>
<td>Internet shopping</td>
<td>Taxi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environment types</td>
<td>Solitaire</td>
<td>Backgammon</td>
<td>Internet shopping</td>
<td>Taxi</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Observable??</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Deterministic??</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Episodic??</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static??</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrete??</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-agent??</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environment types</td>
<td>Solitaire</td>
<td>Backgammon</td>
<td>Internet shopping</td>
<td>Taxi</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Observable??</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Deterministic??</td>
<td>Yes</td>
<td>No</td>
<td>Partly</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Episodic??</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static??</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrete??</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-agent??</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Environment types

<table>
<thead>
<tr>
<th></th>
<th>Solitaire</th>
<th>Backgammon</th>
<th>Internet shopping</th>
<th>Taxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observable??</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Deterministic??</td>
<td>Yes</td>
<td>No</td>
<td>Partly</td>
<td>No</td>
</tr>
<tr>
<td>Episodic??</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Static??</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Discrete??</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Single-agent??</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Environment types

<table>
<thead>
<tr>
<th></th>
<th>Solitaire</th>
<th>Backgammon</th>
<th>Internet shopping</th>
<th>Taxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observable??</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Deterministic??</td>
<td>Yes</td>
<td>No</td>
<td>Partly</td>
<td>No</td>
</tr>
<tr>
<td>Episodic??</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Static??</td>
<td>Yes</td>
<td>Semi</td>
<td>Semi</td>
<td>No</td>
</tr>
<tr>
<td>Discrete??</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-agent??</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Environment types

<table>
<thead>
<tr>
<th></th>
<th>Solitaire</th>
<th>Backgammon</th>
<th>Internet shopping</th>
<th>Taxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observable??</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Deterministic??</td>
<td>Yes</td>
<td>No</td>
<td>Partly</td>
<td>No</td>
</tr>
<tr>
<td>Episodic??</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Static??</td>
<td>Yes</td>
<td>Semi</td>
<td>Semi</td>
<td>No</td>
</tr>
<tr>
<td>Discrete??</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Single-agent??</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Environment types

<table>
<thead>
<tr>
<th></th>
<th>Solitaire</th>
<th>Backgammon</th>
<th>Internet shopping</th>
<th>Taxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observable??</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Deterministic??</td>
<td>Yes</td>
<td>No</td>
<td>Partly</td>
<td>No</td>
</tr>
<tr>
<td>Episodic??</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Static??</td>
<td>Yes</td>
<td>Semi</td>
<td>Semi</td>
<td>No</td>
</tr>
<tr>
<td>Discrete??</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Single-agent??</td>
<td>Yes</td>
<td>No</td>
<td>No (except auctions)</td>
<td>No</td>
</tr>
</tbody>
</table>
Examples

Vacuum cleaner

Assembly line robot

Language Tutor

Waiter robot
Agent Structure

- Agent = architecture + program
 - Architecture: system of sensors & actuators
 - Program: Code to map percepts to actions

- All take sensor input & produce actuator command

- Most trivial:
 - Tabulate agent function mapping
 - Program is table lookup

- Why not?
 - It works, but HUGE
 - Too big to store, learn, program, etc..
Simple Reflex Agents

• Single current percept
• Rules relate
 – “State” based on percept, to
 – “action” for agent to perform
 – “Condition-action” rule:
 • If a then b: e.g. if in(A) and dirty(A), then vacuum
• Simple, but VERY limited
 – Must be fully observable to be accurate
Model-based Reflex Agent

- Solution to partial observability problems
 - Maintain state
 - Parts of the world can't see now
 - Update previous state based on
 - Knowledge of how world changes: e.g. Inertia
 - Knowledge of effects of own actions
 - \(\Rightarrow \) “Model”

- Change:
 - New percept + Model+Old state \(\Rightarrow \) New state
 - Select rule and action based on new state
Goal-based Agents

- Reflexes aren't enough!
 - Which way to turn?
 - Depends on where you want to go!!

- Have goal: Desirable states
 - Future state (vs current situation in reflex)

- Achieving goal can be complex
 - E.g. Finding a route
 - Relies on search and planning
Utility-based Agents

• Goal:
 – Issue: Only binary: achieved/not achieved
 – Want more nuanced:
 • Not just achieve state, but faster, cheaper, smoother,...

• Solution: Utility
 – Utility function: state (sequence) -> value
 – Select among multiple or conflicting goals
Learning Agents

• Problem:
 – All agent knowledge pre-coded
 • Designer can't or doesn't want to anticipate everything

• Solution:
 – Learning: allow agent to match new states/actions
 – Components:
 • Learning element: makes improvements
 • Performance element: picks actions based on percept
 • Critic: gives feedback to learning about success
 • Problem generator: suggests actions to find new states
Conclusions

- Agents use percepts of environment to produce actions: agent function
- Rational agents act to maximize performance
- Specify task environment with
 - Performance measure, action, environment, sensors
- Agent structures from simple to complex, more powerful
 - Simple and model-based reflex agents
 - Binary goal and general utility-based agents
 - + Learning
Focus

• Develop methods for rational action
 – Agents: autonomous, capable of adapting
 • Rely on computations to enable reasoning, perception, and action
 • But, still act even if not provably correct
 – Require similar capabilities as Turing Test
 • But not limited human style or mechanism
AI in Context

• Solve real-world (not toy) problems
 – Response to biggest criticism of “classic AI”

• Formal systems enable assessment of psychological and linguistic theories
 – Implementation and sanity check on theory
Solving Real-World Problems

- **Airport gate scheduling:**
 - Satisfy constraints on gate size, passenger transfers, traffic flow
 - Uses AI techniques of constraint propagation, rule-based reasoning, and spatial planning

- **Disease diagnosis (Quinlan’s ID3):**
 - Database of patient information + disease state
 - Learns set of 3 simple rules, using 5 features to diagnose thyroid disease
Evaluating Linguistic Theories

- Principles and Parameters theory proposes a small set of parameters to account for grammatical variation across languages
 - E.g. S-V-O vs S-O-V order, null subject
- PAPPI (Fong 1991) implements theory
 - Converts English parser to Japanese by switch of parameter and dictionary