Searching for Solutions

Artificial Intelligence

CSPP 56553

January 14, 2004
Agenda

• Search – Motivation
 – Problem-solving agents
 – Rigorous problem definitions

• Exhaustive search:
 – Breadth-first, Depth-first, Iterative Deepening
 – Search analysis: Computational cost, limitations

• Efficient, Optimal Search
 – Hill-climbing, A*

• Game play: Search for the best move
 – Minimax, Alpha-Beta, Expectiminimax
Problem-Solving Agents

- **Goal-based agents**
 - Identify goal, sequence of actions that satisfy
 - Goal: set of satisfying world states
 - Precise specification of what to achieve
 - Problem formulation:
 - Identify states and actions to consider in achieving goal
 - Given a set of actions, consider sequence of actions leading to a state with some value

- **Search**: Process of looking for sequence
 - Problem \(\rightarrow\) action sequence solution
Agent Environment Specification

- Dimensions
 - Fully observable vs partially observable:
 - Fully
 - Deterministic vs stochastic:
 - Deterministic
 - Static vs dynamic:
 - Static
 - Discrete vs continuous:
 - Discrete

- Issues?
Closer to Reality

• Sensorless agents (conformant problems)
 – Replace state with “belief state”
 • Multiple physical states, successors: sets of successors

• Partial observability (contingency problems)
 – Solution is tree, branch chosen based on percepts
Formal Problem Definitions

- **Key components:**
 - Initial state:
 - E.g. First location
 - Available actions:
 - Successor function: reachable states
 - Goal test:
 - Conditions for goal satisfaction
 - Path cost:
 - Cost of sequence from initial state to reachable state

- **Solution:** Path from initial state to goal
 - Optimal if lowest cost
Why Search?

• Not just city route search
 – Many AI problems can be posed as search

• What are some examples?

• How can we formulate the problem?
Basic Search Algorithm

- Form a 1-element queue of 0 cost=root node
- Until first path in queue ends at goal or no paths
 - Remove 1st path from queue; extend path one step
 - Reject all paths with loops
 - Add new paths to queue
- If goal found=>success; else, failure
Example: Romania
Basic Search Problem

- Vertices: Cities; Edges: Steps to next, distance
- Find route from S(tart) to G(oal)
Formal Statement

- Initial State: in(S)
- Successor function:
 - Go to all neighboring nodes
- Goal state: in(G)
- Path cost:
 - Sum of edge costs
Blind Search

- Need SOME route from S to G
 - Assume no information known
 - Depth-first, breadth-first, iterative deepening
- Convert search problem to search tree
 - Root=Zero length path at Start
 - Node=Path: label by terminal node
 - Child one-step extension of parent path
Search Tree
Breadth-first Search

- Explore all paths to a given depth
Breadth-first Search Algorithm

• Form a 1-element queue of 0 cost=root node
• Until first path in queue ends at goal or no paths
 – Remove 1st path from queue; extend path one step
 – Reject all paths with loops
 – Add new paths to BACK of queue

• If goal found=>success; else, failure
Analyzing Search Algorithms

• Criteria:
 – Completeness: Finds a solution if one exists
 – Optimal: Find the best (least cost) solution
 – Time complexity: Order of growth of running time
 – Space complexity: Order of growth of space needs

• BFS:
 – Complete: yes; Optimal: only if # steps= cost
 – Time complexity: $O(b^{d+1})$; Space: $O(b^{d+1})$
Uniform-cost Search

- **BFS:**
 - Extends path with fewest steps
- **UCS:**
 - Extends path with least cost
- **Analysis:**
 - Complete?: Yes; Optimal?: Yes
 - Time: $O(b^{(C*/e)})$; Space: $O(b^{(C*/e)})$
Uniform-cost Search Algorithm

- Form a 1-element queue of 0 cost = root node
- Until first path in queue ends at goal or no paths
 - Remove 1st path from queue; extend path one step
 - Reject all paths with loops
 - Add new paths to queue
 - Sort paths in order of increasing length
- If goal found => success; else, failure
Depth-first Search

- Pick a child of each node visited, go forward
 - Ignore alternatives until exhaust path w/o goal
Depth-first Search Algorithm

- Form a 1-element queue of 0 cost=root node
- Until first path in queue ends at goal or no paths
 - Remove 1st path from queue; extend path one step
 - Reject all paths with loops
 - Add new paths to FRONT of queue

- If goal found=>success; else, failure
Question

• Why might you choose DFS vs BFS?
 – Vice versa?
Search Issues

• Breadth-first search:
 – Good if many (effectively) infinite paths, $b<<$
 – Bad if many end at same short depth, $b>>$

• Depth-first search:
 – Good if: most partial=>$complete, not too long
 – Bad if many (effectively) infinite paths
Iterative Deepening

• Problem:
 – DFS good space behavior
 • Could go down blind path, or sub-optimal

• Solution:
 – Search at progressively greater depths:
 • 1,2,3,4,5…..
Question

- Is this wasting a lot of work?
Progressive Deepening

• Answer: (surprisingly) No!
 – Assume cost of actions at leaves dominates
 – Last ply (depth d): Cost = b^d
 – Preceding plies: b^0 + b^1 + … b^(d-1)
 • (b^d - 1)/(b -1)
 – Ratio of last ply cost/all preceding ~ b - 1
 – For large branching factors, prior work small relative to final ply
Informed and Optimal Search

• Roadmap
 – Heuristics: Admissible, Consistent
 – Hill-Climbing
 – A*
 – Analysis
Heuristics Search

• A little knowledge is a powerful thing
 – Order choices to explore better options first
 – More knowledge => less search
 – Better search alg?? Better search space

• Measure of remaining cost to goal-heuristic
 – E.g. actual distance => straight-line distance
Hill-climbing Search

- Select child to expand that is closest to goal
Hill-climbing Search Algorithm

- Form a 1-element queue of 0 cost=root node
- Until first path in queue ends at goal or no paths
 - Remove 1st path from queue; extend path one step
 - Reject all paths with loops
 - Sort new paths by estimated distance to goal
 - Add new paths to FRONT of queue
- If goal found=>success; else, failure
Beam Search

- Breadth-first search of fixed width - top w
 - Guarantees limited branching factor, E.g. w=2
Beam Search Algorithm

– Form a 1-element queue of 0 cost=root node
– Until first path in queue ends at goal or no paths
 • Extend all paths one step
 • Reject all paths with loops
 • Sort all paths in queue by estimated distance to goal
 – Put top w in queue
– If goal found=>success; else, failure
Best-first Search

- Expand best open node ANYWHERE in tree
 - Form a 1-element queue of 0 cost=root node
 - Until first path in queue ends at goal or no paths
 - Remove 1st path from queue; extend path one step
 - Reject all paths with loops
 - Put in queue
 - Sort all paths by estimated distance to goal
 - If goal found=>success; else, failure
Heuristic Search Issues

- Parameter-oriented hill climbing
 - Make one step adjustments to all parameters
 - E.g. tuning brightness, contrast, r, g, b on TV
 - Test effect on performance measure

- Problems:
 - Foothill problem: aka local maximum
 - All one-step changes - worse!, but not global max
 - Plateau problem: one-step changes, no FOM +
 - Ridge problem: all one-steps down, but not even local max

- Solution (local max): Randomize!!
Search Costs

<table>
<thead>
<tr>
<th>Type</th>
<th>Worst / Worst Time</th>
<th>Reach Goal?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth-first</td>
<td>B^{d+1}/B^d</td>
<td>Yes</td>
</tr>
<tr>
<td>Breadth-first</td>
<td>B^{d+1}/B^d</td>
<td>Yes</td>
</tr>
<tr>
<td>Hill-Climbing (no backup)</td>
<td>d/B</td>
<td>No</td>
</tr>
<tr>
<td>Hill-Climbing</td>
<td>B^{d+1}/B^d</td>
<td>Yes</td>
</tr>
<tr>
<td>Beam Search</td>
<td>Wd/WB</td>
<td>No</td>
</tr>
<tr>
<td>Best-first</td>
<td>B^{d+1}/B^d</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Optimal Search

- Find BEST path to goal
 - Find best path EFFICIENTLY
- Exhaustive search:
 - Try all paths: return best
- Optimal paths with less work:
 - Expand shortest paths
 - Expand shortest expected paths
 - Eliminate repeated work - dynamic programming
Efficient Optimal Search

• Find best path without exploring all paths
 – Use knowledge about path lengths

• Maintain path & path length
 – Expand shortest paths first
 – Halt if partial path length > complete path length
Underestimates

- Improve estimate of complete path length
 - Add (under)estimate of remaining distance
 - \(u(\text{total path dist}) = d(\text{partial path}) + u(\text{remaining}) \)
 - Underestimates must ultimately yield shortest
 - Stop if all \(u(\text{total path dist}) > d(\text{complete path}) \)
- Straight-line distance => underestimate
- Better estimate => Better search
 - No missteps
Search with Dynamic Programming

• Avoid duplicating work
 – Dynamic Programming principle:
 • Shortest path from S to G through I is shortest path from S to I plus shortest path from I to G
 • No need to consider other routes to or from I
A* Search Algorithm

- Combines good optimal search ideas
 - Dynamic programming and underestimates
- Form a 1-element queue of 0 cost=root node
- Until first path in queue ends at goal or no paths
 - Remove 1st path from queue; extend path one step
 - Reject all paths with loops
 - For all paths with same terminal node, keep only shortest
 - Add new paths to queue
 - Sort all paths by total length underestimate, shortest first \((d(\text{partial path}) + u(\text{remaining})) \)
- If goal found=>success; else, failure
Example: Romania

Graph showing various cities in Romania with distances between them.
A* search example

Arad
366 = 0 + 366

Sibiu
393 = 140 + 253

Timisoara
447 = 118 + 329

Zerind
449 = 75 + 374

Sibiu

Arad
646 = 280 + 366
Fagaras
415 = 239 + 176
Oradea
671 = 291 + 380
Rimnicu Vilcea
413 = 220 + 193

Zerind
449 = 75 + 374
A* search example
A* search example

Diagram showing cities connected in a tree structure with costs between them.
A* Search Example

```
S
  A 13.4
  D 12.9
    A 19.4
    E 12.9
    B 17.7
    F 13
      G 13
```
Heuristics

• A* search: only as good as the heuristic
• Heuristic requirements:
 – Admissible:
 • UNDERESTIMATE true remaining cost to goal
 – Consistent:
 • $h(n) \leq c(n,a,n') + h(n')$
Constructing Heuristics

• Relaxation:
 – State problem
 – Remove one or more constraints
 • What is the cost then?

• Example:
 – 8-square: Move A to B if
 • 1) A & B horizontally or vertically adjacent, and
 • 2) B is empty
 – Ignore 1) -> Manhattan distance
 – Ignore 1) & 2): # of misplaced squares
Game Play: Search for the Best Move
Agenda

• Game search characteristics
• Minimax procedure
 – Adversarial Search
• Alpha-beta pruning:
 – “If it’s bad, we don’t need to know HOW awful!”
• Game search specialties
 – Progressive deepening
 – Singular extensions
Games as Search

- Nodes = Board Positions
- Each ply (depth + 1) = Move
- Special feature:
 - Two players, adversarial
- Static evaluation function
 - Instantaneous assessment of board configuration
 - NOT perfect (maybe not even very good)
Minimax Lookahead

• Modeling adversarial players:
 – Maximizer = positive values
 – Minimizer = negative values

• Decisions depend on choices of other player

• Look forward to some limit
 – Static evaluate at limit
 – Propagate up via minimax
Minimax Procedure

• If at limit of search, compute static value
 • Relative to player

• If minimizing level, do minimax
 – Report minimum

• If maximizing level, do minimax
 – Report maximum
Minimax Search

Idea: choose move to position with highest minimax value

= best achievable payoff against best play

E.g., 2-ply game:

MAX

MIN
Minimax Analysis

- **Complete:**
 - Yes, if finite tree
- **Optimal:**
 - Yes, if optimal opponent
- **Time:**
 - b^m
- **Space:**
 - bm (progressive deepening DFS)
- **Practically:** Chess: $b \sim 35$, $m \sim 100$
 - Complete solution is impossible
Minimax Example
Alpha-Beta Pruning

- Alpha-beta principle: If you know it’s bad, don’t waste time finding out HOW bad
- May eliminate some static evaluations
- May eliminate some node expansions
Simple Alpha-Beta Example
Alpha-Beta Pruning
Alpha-Beta Pruning
Alpha-Beta Pruning
Alpha-Beta Pruning
Alpha-Beta Pruning
Alpha-Beta Procedure

If level=TOP_LEVEL, alpha = NEGMAX; beta = POSMAX

If (reached Search-limit), compute & return static value of current

If level is minimizing level,

While more children to explore AND alpha < beta
 ab = alpha-beta(child)
 if (ab < beta), then beta = ab

Report beta

If level is maximizing level,

While more children to explore AND alpha < beta
 ab = alpha-beta(child)
 if (ab > alpha), then alpha = ab

Report alpha
Alpha-Beta Pruning Analysis

• Worst case:
 – Bad ordering: Alpha-beta prunes NO nodes

• Best case:
 – Assume cooperative oracle orders nodes
 • Best value on left
 • “If an opponent has some response that makes move bad no matter what the moving player does, then the move is bad.”
 • Implies: check move where opposing player has choice, check all own moves
Optimal Alpha-Beta Ordering
Optimal Ordering Alpha-Beta

- Significant reduction of work:
 - 11 of 27 static evaluations

- Lower bound on # of static evaluations:
 - if d is even, $s = 2 \times b^d / 2 - 1$
 - if d is odd, $s = b^{(d+1)/2} + b^{(d-1)/2} - 1$

- Upper bound on # of static evaluations:
 - b^d

- Reality: somewhere between the two
 - Typically closer to best than worst
Heuristic Game Search

• Handling time pressure
 – Focus search
 – Be reasonably sure “best” option found is likely to be a good option.

• Progressive deepening
 – Always having a good move ready

• Singular extensions
 – Follow out stand-out moves
Progressive Deepening

• Problem: Timed turns
 – Limited depth
 • If too conservative, too shallow
 • If too generous, won’t finish

• Solution:
 – Always have a (reasonably good) move ready
 – Search at progressively greater depths:
 • 1,2,3,4,5…..
Progressive Deepening

• Question: Aren’t we wasting a lot of work?
 – E.g. cost of intermediate depths

• Answer: (surprisingly) No!
 – Assume cost of static evaluations dominates
 – Last ply (depth d): Cost = b^d
 – Preceding plies: b^0 + b^1+…b^(d-1)
 • (b^d - 1)/(b -1)
 – Ratio of last ply cost/all preceding ~ b - 1
 – For large branching factors, prior work small relative to final ply
Singular Extensions

- Problem: Explore to some depth, but things change a lot in next ply
 - False sense of security
 - aka “horizon effect”

- Solution: “Singular extensions”
 - If static value stands out, follow it out
 - Typically, “forced” moves:
 - E.g. follow out captures
Additional Pruning Heuristics

- Tapered search:
 - Keep more branches for higher ranked children
 - Rank nodes cheaply

- Rule out moves that look bad

- Problem:
 - Heuristic: May be misleading
 - Could miss good moves
Deterministic Games

Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions.

Othello: human champions refuse to compete against computers, who are too good.

Go: human champions refuse to compete against computers, who are too bad. In go, $b > 300$, so most programs use pattern knowledge bases to suggest plausible moves.
Games with Chance

• Many games mix chance and strategy
 – E.g. Backgammon
 – Combine dice rolls + opponent moves

• Modeling chance in game tree
 – For each ply, add another ply of “chance nodes”
 – Represent alternative rolls of dice
 • One branch per roll
 • Associate probability of roll with branch
Expectiminimax: Minimax + Chance

- Adding chance to minimax
 - For each roll, compute max/min as before
- Computing values at chance nodes
 - Calculate EXPECTED value
 - Sum of branches
 - Weight by probability of branch
Expecti... Tree

Max

Chance

Min

2 4 7 4

2 4 7 4

2 4 7 4

0 0 5 2

0 0 5 2

0 0 5 2
• Game search:
 – Key features: Alternating, adversarial moves
• Minimax search: Models adversarial game
• Alpha-beta pruning:
 – If a branch is bad, don’t need to see how bad!
 – Exclude branch once know can’t change value
 – Can significantly reduce number of evaluations
• Heuristics: Search under pressure
 – Progressive deepening; Singular extensions