The Computational Nature of Language Learning and Evolution

Partha Niyogi

The University of Chicago
1 (a) He ran from there with his money.

1 (b) He his money with there from ran. (⋆)
1 (a) He ran from there with his money.

1 (b) He his money with there from ran. (*)

Linguistic Experience \leftrightarrow Linguistic Knowledge
$\mathcal{G} \quad g_t \in \mathcal{G}$ target grammar

$S_n \quad +ve$ examples

$\mathcal{A} \quad$ Learner (Child)

$\mathcal{A}(S_n) = h_n$
$G \quad g_t \in G \quad \text{target grammar}$

$S_n \quad +ve \text{ examples}$

$\mathcal{A} \quad \text{Learner (Child)}$

$\mathcal{A}(S_n) = h_n$

Learnability $\quad h_n \rightarrow g_t$

Gold (1967); Valiant (1984)
$\mathcal{G}(p_1, \ldots, p_n)$

Swahili

Chinese

Hindi

English

French

Warlpiri
X-bar Theory: Bengali
Langagis, whos reulis ben not writen, as ben Englisch, Frensch and many othere, ben channgid withynne yeeris and countrees that oon man of the oon cuntre, and of the oon tyme, myghte not, or schulde not kunne undirstonde a man of the othere cuntre, and of the othere tyme; and al for this, that the seid langagis ben not stabili and fondamentali writen

Pecock (1454) *Book of Feith* (from Roberts, 1993)
Her ... Aelfred cyning ... gefeaht wid ealne, here, and hine

Here Alfred king fought against whole army and it

geflymde and him aefter rad od pet geweorc, and paer saet

put to flight and it after rode to the fortress and there camped

XIII niht, and pa sealde se here him gislas and myccl

fourteen nights and then gave the army him hostages and great

adas, pet he of his rice woldon, and him eac geheton

oaths that they from his kingdom would [go] and him also promised

pet heora cyng fulwihte onfon wolde, and hi paet gelaston

that their king baptism receive would and they that did
pa Darius geseah paet he oferwunnen beon wolde
then Darius saw that [he conquered be would]

& him aefterfylgende waes
and [him following was]

Nu ic wille eac paes maran Alexandres gemunende beon
now I will also [the great Alexander considering be]
ondraedende paet Laecedemonie ofer hie ricsian mehten swa hie aer dydon
dreading that Laecedemonians over them rule might as they before did
“dreading that the Laecedemonians might rule over them as they had done in the past”
(Orosius 98.17)

peh ne geortriew ic na Gode paet he us ne maeg geescildan
although not shall-distrust I never to-God, that he us not can shield
“although I shall never distrust God so much as to think he cannot shield us”
(Orosius 86.3)
Farewell, farewell to my beloved language
Once English, now a vile orangutanguage
...if languages were learnt perfectly by the children of each generation, then language would not change: English children would still speak a language as old at least as Anglo Saxon and there would be no such languages as French or Italian.

(H. Sweet, 1899)
ISSUES/QUESTIONS

1. Group Level Description: *How does one model populations of linguistic agents?*
2. Time Course: *How fast do languages change? Can one predict their possible evolutionary patterns?*
3. Directionality: *When two language types come together, in which direction will the children evolve?*

HISTORICAL PHENOMENA

1. **Syntax**: Change in word order in English, French, Portuguese, etc.
2. **Phonology**: (a) Change in metrical stress from Proto-IndoEuropean to modern Greek (b) The Great Vowel Shift in English...
3. **Creoles**: Rapid language formation. Do all creoles have similar properties?
4. **Language Typology**: What are language types? How are they distributed? How do they change?
1. Origin of Language: *How did combinatorial, recursive structures emerge?*
2. Communicative Efficiency: *What is the role of communicative efficiency and natural selection?*
3. Communicative Coherence: *How do shared communication systems arise by self organization?*
4. Diversity: *How did the diversity of natural communicative systems evolve?*

Birds, Bees
Whales, Dolphins
Primates, Humans
Population Linguistics

- Microscopic
 - Language Acquisition
 - Individual
 - Grammatical Hypothesis
 - Examples

- Population
 - Linguistic Composition
 - Language Change
 - Macroscopic
 - Generation
Timeline of Inquiry

18th century William Jones (Indo-European Thesis)

19th century Charles Darwin

20th century Linguistic Structure Genetic Code

(Generative Grammar) DNA (Molecular)
Timeline of Inquiry

<table>
<thead>
<tr>
<th>Century</th>
<th>Person</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>18th century</td>
<td>William Jones</td>
<td>Indo-European Thesis</td>
</tr>
<tr>
<td>19th century</td>
<td>Charles Darwin</td>
<td>Genetic Code</td>
</tr>
<tr>
<td>20th century</td>
<td>Linguistic Structure</td>
<td>DNA (Molecular)</td>
</tr>
<tr>
<td></td>
<td>(Generative Grammar)</td>
<td></td>
</tr>
</tbody>
</table>

The formation of different languages and distinct species, are curiously parallel.

(Charles Darwin, *Descent of Man*, 1871)
Evolution in Linguistics and Biology

Language Evolution and Biological Evolution

- grammatical variation in adults
- genetic variation in adults

transmission via learning
transmission via inheritance

grammatical variation in children
genetic variation in children

Natural Selection ??
Major Insights

1. Different learning algorithms have different evolutionary consequences.
 evolutionary criteria in addition to learnability
 learning in heterogeneous populations

2. Phase transition phenomena in linguistic evolution.
 subtle changes in frequency may lead to dramatic changes in language

3. Natural selection, Social connectivity, and the Emergence of Language.
 conditions for a shared language to emerge
1. $\mathcal{L} = \{ L_1, \ldots, L_n \}$

2. $ (x_1, x_2, \ldots, x_n) \in \Delta^{n-1} $

3. $ \{ P_1, P_2, \ldots, P_n \} $

4. $ \mathcal{A} : Data \rightarrow \mathcal{L} $

5. $ k : $ maturation time

6. $ F : \Delta^{n-1} \rightarrow \Delta^{n-1} $
Two Language Models

\[\mathcal{L} = \{ L_1, L_2 \} \]
Two Language Models

\[\mathcal{L} = \{ L_1, L_2 \} \]

\[\mathcal{P} = \{ P_1, P_2 \} \]

where \(P_1[L_1 \cap L_2] = a \) and \(P_2[L_1 \cap L_2] = b \)
Two Language Models

\[\mathcal{L} = \{ L_1, L_2 \} \]

\[\mathcal{P} = \{ P_1, P_2 \} \]

where \(P_1[L_1 \cap L_2] = a \) and \(P_2[L_1 \cap L_2] = b \)

\[\mathcal{A} = ?? \]
1. Start with arbitrary hypothesis.
2. Receive new example sentence, s_n
3. if (s_n parsed)
 then go to 2
 else change hypothesis
Consider a typical child

\[s \sim x_t P_1 + (1 - x_t) P_2 \]

After \(k \) examples,

\[\mathbb{P}[A(D) = L_1] = f(x_t, a, b) \]

Therefore in the next generation,

\[x_{t+1} = f(x_t, a, b) \]
Population Dynamics

\[x_{t+1} = \frac{B + \frac{1}{2}(A - B)(1 - A - B)^N}{A + B} \]

\[A = (1 - b)(1 - x_t) \quad B = (1 - a)x_t \]
Population Dynamics

\[x_{t+1} = \frac{B + \frac{1}{2}(A - B)(1 - A - B)^N}{A + B} \]

\[A = (1 - b)(1 - x_t) \quad B = (1 - a)x_t \]

\[x_{t+1} = \frac{x_t(1 - a)}{(1 - b) + x_t(b - a)} \]

\[a < b \quad a = b \quad a > b \]

\[x_t \to 1 \quad \text{no change} \quad x_t \to 0 \]
Let $x = 0.99$ and $a = 0.11, b = 0.10$.

$$s \sim x P_1 + (1 - x) P_2$$
Let $x = 0.99$ and $a = 0.11$, $b = 0.10$.

$$s \sim xP_1 + (1 - x)P_2$$

In the experience of the typical child:

1. Overwhelmingly many *triggers* for L_1
 - 88% unique L_1 parse
 - < 1% unique L_2 parse

2. With high probability 0.9898 the child acquires L_1

Yet....
Cue Based Models

\[C \subset L_1 \setminus L_2 \]

\[p = P_1(C) \]

1. Receive \(N \) example sentences.
2. Let \(k \) be \# of cue sentences.
3. If
 \[\frac{k}{N} > \tau \]
 Choose \(L_1 \).
Population Dynamics

\[x_{t+1} = \sum_{i=N}^{N} (px_t)^i (1 - px_t)^{N-i} \]

\[x = 0 \text{ (stable)} \quad x = x_1^* \text{ (unstable)} \quad x = x_2^* > x_1^* \text{ (stable)} \]

\[x = 1 \text{ not equilibrium} \]
The Bifurcation
<table>
<thead>
<tr>
<th>Northern Grammar</th>
<th>Southern Grammar</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Scandinavian)</td>
<td>(Saxon)</td>
</tr>
<tr>
<td>+V₂</td>
<td>−V₂</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Structure</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>SV, SVO</td>
<td>SV, SVO</td>
</tr>
<tr>
<td>OVS</td>
<td>S V O₁ O₂</td>
</tr>
<tr>
<td>S V O₁ O₂</td>
<td>Adv S V</td>
</tr>
<tr>
<td>O₁ V S O₂</td>
<td>Adv S V O₁ O₂</td>
</tr>
<tr>
<td>O₂ V S O₁</td>
<td>Adv S V O₁ O₂</td>
</tr>
<tr>
<td>Adv V S O</td>
<td>S Aux V</td>
</tr>
<tr>
<td>etc.</td>
<td>etc.</td>
</tr>
</tbody>
</table>
In the evolution of languages the discarding of old flexions goes hand in hand with the development of simpler and more regular expedients that are rather less liable than the old ones to produce misunderstanding.

Otto Jespersen (1922)
1. $\mathcal{L} = \{L_1, L_2, \ldots, L_n\}$

2. $F(L_i, L_j)$ – mutual intelligibility

 $F(L_i, L_i) = 1$ and $F(L_i, L_j) = a$

3. Q_{ij} – parent $L_i \rightarrow$ child L_j

 $Q_{ii} = q$ and $Q_{ij} = \frac{1-q}{n-1}$
State \(\{x_1, \ldots, x_n\} \in \Delta^{n-1} \)
Population Dynamics

State \[\{x_1, \ldots, x_n\} \in \Delta^{n-1} \]

Fitness \[f_i = f_0 + \sum_{j=1}^{n} F(L_i, L_j) x_j \]
Population Dynamics

State \(\{x_1, \ldots, x_n \} \in \Delta^{n-1} \)

Fitness \(f_i = f_0 + \sum_{j=1}^{n} F'(L_i, L_j)x_j \)

Dynamics \(x_i(t + 1) = \frac{\sum_j x_j(t)f_j Q_{ji}}{\sum_j x_j(t)f_j} \)

Continuous \(\dot{x}_j = \sum_i f_i x_i Q_{ij} - (\sum_i f_i x_i)x_j, \quad 1 \leq j \leq n, \)
The Bifurcation
No fitness, no coherence

\[f_i = f_0 \]

\[\dot{x}_i = f_0 \left(\sum_j x_j Q_{ji} \right) - f_0 x_i \]

\[x(t) \rightarrow \left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n} \right)^T \]
Emergence of Coherence – Social Learning

1. No fitness
2. Learn from Everybody

\[\mathcal{L} = \{L_1, L_2, \ldots, L_n\} \]

\[\mathcal{C} = \{C_1, C_2, \ldots, C_n\} \]

\[C_i \subset L_i \]
Learning Algorithm

\[A : \text{count cues } k_i \]

\[\text{arg max}_i \frac{k_i}{k} \text{ if unique} \]

\[j \sim \frac{1}{n} \text{ otherwise} \]

cue \(i \) with probability \(ax_i \)
Population Dynamics

\[F : \Delta^{(n-1)} \rightarrow \Delta^{(n-1)} \]

\[F_i = f_i + \frac{1}{n} (1 - \sum_j f_j) \]

\[f_j(x(t), a, k) = \sum_{k \in I_j} \binom{k}{k_j} \prod (p_j)^{k_j} \begin{cases} p_i = ax_i & 1 \leq i \leq n \\ p_{n+1} = 1 - a \end{cases} \]

where

\[I_j = \{ (k_1, \ldots, k_{n+1}) | k_j \text{ largest} \} \]
1. small k – uniform solution

2. if $k > k_a$ – new solutions

3. if $k > k_a$ – uniform solutions become unstable

4. finite number ($\leq k(2^n)$) of fixed points

5. Only n are stable.
Further Issues

1. $G \equiv L$: variety of linguistic theories
2. A: variety of learning algorithms
3. P

4. Generational structure
5. Maturation time: developmental constraints
6. Neighborhood effects and social stratification
7. Finite population effects
8. Bilingual and Multilingual settings
$I(x, y)$ is influence of y on x
1. Different learning algorithms have different evolutionary consequences.
 - memoryless/batch
 - symmetric/asymmetric
 - multilingual/monolingual
 - single teacher/many teachers

2. Phase transition phenomena in linguistic evolution.
 - subtle effects of frequency
 - explanations of language change
 - explanations of dialect formation

3. Natural selection, Social connectivity, and the Emergence of Language
 - Coherence conditions
 - Social connectivity
Conclusions

1. Time scales of Language Evolution
 (a) Evolutionary - origin
 (b) Historical - change

2. Role of Learning

3. Role of Computational Models

4. Empirical Validation

5. There are deep connections to
 (a) population models in evolutionary biology
 (b) artificial life and multiagent systems
 (c) bounded rationality in social sciences