Part 11

Language Learning

51






Chapter 2

Language Acquisition — The
Problem of Inductive
Inference

An appropriate point to begin our whole narrative is to consider the problem
of language acquisition. Children learn with seemingly effortless ease, the
language of their parents and caretakers. Let us begin by considering the
computational difficulty of the problem that children solve so routinely.

In order to get started, we will consider a language to be a set of sen-
tences. Given a finite alphabet (we take this to be the lexicon) ¥, we denote
by X* the universe of all possible finite strings (sentences) in the usual way.
A language then is simply a subset of ¥* — a subset consisting of the well
formed strings. We have considered in the previous chapter, several exam-
ples from natural languages like English, French, and Yiddish to illustrate
how some strings (sentences) are in the language! while others are not. The
underlying grammar of a language determines which sentences are accept-
able and which are not. Later in this chapter, we will consider alternative
and perhaps more general conceptions of language — these will not change
the fundamental import of our discussion here.

!Note that in a formal sense, it is quite uncontroversial to speak of a language as a
subset of 3*. What is potentially more problematic is the notion of a natural language like
English. We will take the position that individuals have their own individual languages and
these might differ from each other. These individual languages are all natural languages.
If the members of a community have significant overlap in their languages so much so
that mutual intelligibility is extremely high then one might label this shared language as
“English” or “French” or “Chinese” as the case may be.
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54 CHAPTER 2. LANGUAGE ACQUISITION — INDUCTION

Consider a child born and raised in a homogeneous English speaking
community. Such a child is exposed to a finite number of sentences as a
result of interaction with its linguistic environment. Yet on the basis of this,
the child is able to generalize and thus form and understand novel sentences
it has not encountered before. It is this ability to infer (induce) the novel
elements of a set that is the cornerstone of successful language learning. Let
us consider the following idealized setting for such a phenomenon.

Imagine the community speaks a language L; C X*. This is the target
language that the learner must identify or approximate in some sense. As
a result of interaction with the community, the child learner ultimately has
access to a sequence (in time) of sentences

81,52,83,845--- ,8n,- ..

where s; € L; is the ith example available to the learner. Suppose that the
learner makes a guess about the target language L; after each new sentence
becomes available.

Consider the case when the learner has no prior knowledge about the
nature of L;. Suppose that the kth example has just been received and the
learner now has to make a guess about the identity of the target. What
should the learner do? All it knows is that the target contains s; through s
— there are an infinite number of possible languages that contain s; through
sg. Any of them could be the target. How many of them should (can) the
learner consider? What should the learner guess?

Such is the dilemma of the learning child when confronted with finite
linguistic evidence over the course of language acquisition. A theoretical
analysis of this situation will rapidly lead us to the conclusion that learning
in the complete absence of prior information is impossible. But first, let us
consider a framework within which we can meaningfully discuss the problem
of learning and inductive inference and better understand the various issues
that underlie effective learning.

2.1 A Framework for Learning

The canonical problem to which much of language learning can conceptually
be reduced is that of identifying an unknown set on the basis of example
sentences. The framework within which analysis of (see Osherson, Stob,
Weinstein, 1986; Valiant, 1984; Niyogi, 1998; Wexler and Culicover, 1980;
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Jain et al, 1998) such problems can usefully be conducted consists of the
following components:

1. Target Language L; € L is a target language drawn from a class of
possible target languages (£). This is the language the learner must
identify on the basis of examples.

2. Ezample Sentences s; € L, are drawn from the target language and
presented to the learner. Here s; is the ith such example sentence.

3. Hypothesis Languages h € H drawn from a class of possible hypothesis
languages that child learners construct on the basis of exposure to
example sentences in the environment.

4. Learning Algorithm A is an effective procedure by which languages
from H are chosen on the basis of example sentences received by the
learner.

2.1.1 Remarks

At this point, some clarifying remarks are worthwhile.

1. Languages and Grammars: We have formulated the question of learn-
ing a language as essentially that of identifying a set. We have not so far
specified the nature of these sets. We now put the restriction that these lan-
guages must be computable. Therefore, following the computability thesis
of Church and Turing, we will consider only recursively enumerable (r.e.)
languages. An r.e. language has a potentially infinite number of sentences
and has a finite representation in terms of a Turing Machine or a Phrase
Structure Grammar. Thus languages, machines, and grammars are formally
equivalent ways (Harrison, 1978) of specifying the same set. In our notation,
g typically refers to a grammar and L, refers to the language generated by
it. With slight abuse of notation, in much of what follows, we will refer to
the sets in question as grammars or languages depending upon the context.
The r.e. languages constitute an enumerable set and effective procedures
exist to enumerate the grammars (machines) that generate them (Rogers,
1958; Hopcroft and Ullman, 1979). Since a grammar is a finite represen-
tation of the language, it is reasonable to suppose that language users and
learners work with these finite representations rather than the infinite lan-
guages themselves. Since many different grammars may be compatible with
the same language, this raises the question of intensional versus extensional
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learning — a notion that is captured in the distinction between I-language
and E-language (Chomsky, 1986) that is worthwhile to keep in mind as the
book develops.

Thus in a formal sense, we really have a collection G of possible target
grammars and £ is then defined as

L ={Lglg € G}

It is finally worth noting that all computable Phrase Structure Grammars
may be enumerated as g1,g2,.... Given any r.e. language L there are an
infinite number of g;’s such that Ly, = L. Then any collection of grammars
may be defined by specifying their indices in an acceptable enumeration.

2. Ezample Sentences: Sentences will be presented to the learner one
at a time. One might imagine many different modes of interaction with the
environment as a result of which such sentences become available. However,
it is worthwhile to note that the ability of children to learn a language does
not seem to be sensitive to the precise order in which sentences are pre-
sented to them. (Newport, Gleitman, and Gleitman, 1977; Schieffelin and
Eisenberg, 1981). Hence, in our treatment of learnability we will mostly
require that a psychologically plausible learning algorithm can be shown to
converge to the target in a manner that is independent of the order of presen-
tation of sentences. In much of this book, we will almost exclusively consider
examples presented in i.i.d. fashion? according to a fixed, underlying, proba-
bility distribution p. The distribution y characterizes the relative frequency

%In reality, linguistic experience is conducted with clear dependencies and correlations
between successive sentences. This dependence is based on considerations of pragmatics
and discourse and difficult to model precisely. However, it is possible that such depen-
dencies affect the semantic content of sentences but not their syntactic structure. For
example, the sentences “John ate an apple” and “Bill moved the car” have different lexical
choices and correspondingly different semantic content. They may occur as part of dif-
ferent conversations with different probability distributions of the precise sentences that
follow it. However, both have similar syntactic structure and are of the form Subject-
Verb-Object (SVO). It may be that if sentences are viewed as strings over syntactic
categories, the i.i.d assumption is a believable one. Further, it may also be that while
there are immediate dependencies between sentences based on discourse, there are no long
range dependencies and the i.i.d. assumption is like sampling from the stationary distri-
bution of the corresponding Markov process. In any event, the probabilistic assumption
of i.i.d. sentences is used as a convenient mathematical device to get a handle on the fact
that different syntactic forms occur with different frequencies. The precise consequences
of such an assumption may then be understood opening the path to understanding more
complicated phenomena. This is one of the many abstractions we make in order to be able
to take first steps in reasoning about what is otherwise a very complex situation.
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of different kinds of sentences that children are likely to encounter during
language acquisition. For example, they are more likely to hear shorter sen-
tences than substantially embedded longer sentences. This distribution u
might have support over all of ¥* in which case both positive (sentences in
the target language) as well as negative (sentences not in the target lan-
guage) examples will be presented to the learner. On the other hand, u
might have support only over L; in which case only positive examples are
presented to the learner. This latter case is psychologically the more real
as considerable evidence seems to exist suggesting that children do not have
much exposure to negative examples over their learning period (Brown and
Hanlon, 1970; Hirsh-Pasek, Treiman, and Schneiderman, 1984; Demetras,
Post, and Snow, 1986). 3

3. The learning algorithm A is an effective procedure allowing the learn-
ing child to construct hypotheses about the identity of the target language
on the basis of the examples it has received. In principle, any learner, be
it the child learner over the course of language acquisition, or a machine
learner, has to follow a procedure or algorithm and is therefore subject to
the computational laws that govern such processes. In particular, following
the Church Turing thesis, we will accept the equivalence of partial recur-
sive functions and effective procedures, and therefore consider learning algo-
rithms to be mappings from the set of all finite data streams to hypotheses
in H. A particular finite data stream of k example sentences may be denoted
as (s1,89,... ,5¢). Let D = {(s1,... ,51)|s; € £*} = (Z*)* be the set of all
possible sequences of k example sentences that the learner might potentially
receive. Then we can define

D = UpsoD"

to be the set of all finite data sequences. Since DF is enumerable, so is D
and we can then let A4 to be a partial recursive function

A: D> H

where H is the enumerable set of hypothesis grammars* (languages). Given
a data stream ¢t € D, the learner’s hypothesis is given by A(f) and is an

3Much of the time, members of the adult community simply produce sentences in their
language giving the child exposure to positive examples. The only source of negative
examples therefore comes from mistakes that children make during language acquisition
and the feedback from this is often absent, impoverished, or misleading.

4A language is a set with a potentially infinite number of sentences. However, they
have finite representations in terms of grammars. It is reasonable therefore to postulate
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element of 7{. In much of this book, our treatment of learning will largely
be in a probabilistic setting with natural ties to statistical learning theory as
developed in Vapnik (1982, 1998) or Valiant (1984) as well as probabilistic
settings of inductive inference in the extended Gold tradition (Jain et al,
1998). In this we will deviate from our strict formulation of the learner as
a deterministic procedure to consider probabilistic learners that are allowed
to flip a coin to choose hypotheses that are sometimes elements of H and
sometimes subsets of 7. An important thing to note is that the behavior of
the learner for a particular data stream (si,... ,s;) € DF is independent of
the target language or languages from which the data is drawn. It depends
only on the data stream and can be predicted either deterministically or
probabilistically if the learning algorithm is analyzable.

Some kinds of learning procedures are worth introducing here and we will
return to them at several points over the course of this book. A consistent
learner always maintains a hypothesis (call it h, after n examples) that is
consistent with the entire data set it has received so far. Thus, if the data
set the learner has received is denoted by (s1,...,Sp), then the learner’s
grammatical hypothesis h,, is such that each s; € Ly,. An empirical risk
minimizing learner uses the following procedure

hyp, = arg min R(h; (s1,--. ,5n))

heH
The risk function R(h,(s1...,s,)) measures the fit to the empirical data
consisting of the example sentences (si,...,S,). In many cases, this mini-

mization might not be unique in which case the learner will need a further
criterion to decide which of the minima should be picked as a hypothesis
language. Some kind of Occam principle is natural to consider here. For ex-
ample, the learner might conjecture the smallest or simplest grammar that
fits the data well.> A memoryless learning algorithm is one whose hypothesis

that human knowledge of a language has a compact encoding in terms of a grammar.
Correspondingly, learners therefore conjecture (develop) grammars as they attempt to
learn a language. The set # is the hypothesis set of possible grammars they may conjecture
(develop) in the course of learning a language. The map A from linguistic experience D
to grammatical hypotheses H may be viewed as the language learning map, the language
development map, or the language growth map depending on one’s point of view.

®This idea finds a clear instantiation in the Minimum Description Length principle
(MDL) of Rissanen and its application to language learning as in Rissanen and Ristad
(1992), de Marcken (1996), Brent and Cartwright (1996), Brent (1999) and Goldsmith
(2001). Earlier treatments of this idea are to be found in the evaluation metric of Chomsky
(1965) and complexity functions of Feldman (1972).
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at every point depends only on the current data and the previous hypothesis.
Let t, = (s1,... ,8n) € D be a data set with n examples and let ¢,_; be the
first n — 1 examples (i.e., t,—1 = (81,.-- ,8n—1)) of this data set. Then A is
such that A(t,) depends only upon A(t,—1) and s,. Learning by enumera-
tion is another common strategy. Here the learner enumerates all possible
grammars in H in some order. Let this enumeration be hi,hg,.... It then
begins with the conjecture h;. Upon receiving new example sentences, the
learner simply goes down this list and updates its conjecture to the first one
that is consistent with the data seen so far. Variants to this basic idea may
be considered.

4. Criterion of Success: A significant component of the learning frame-
work involves a criterion of success so that we can measure how well the
learner has learned at any point in the learning process. This takes the form
of a distance measure d so that for any target grammar g; and any hypothe-
sis grammar h, one can define the distance between the target grammar and
the hypothesis grammar as d(g¢, h). If h, is the learner’s hypothesis after n
sentences have been received, then learnability implies that

nll)nolo d(gt, hn) =0

In other words, the learner’s hypothesis converges to the target in the limit.
If the learning algorithm A is such that for every possible target grammar
gt € G, the learner’s hypothesis converges to it (when presented with a data
sequence from the target grammar), then the family G is said to be learnable
by A. By varying d, and by varying whether the convergence needs to be in
a probabilistic sense or not, different convergence criteria may be obtained.
We will consider a few different ones in the treatment that follows.

Two related notions might be introduced here. We use the term general-
ization error to refer to the quantity d(g, hy,) that measures the distance of
the learner’s hypothesis (after n examples) to the target. Learnability im-
plies that the generalization error eventually converges to zero as the number
of examples goes to infinity. In a statistical setting, the generalization error
is a random variable and can only converge to zero in a probabilistic sense
(Vapnik, 1982; Valiant, 1984).

4. Generality of the framework: It is worthwhile to emphasize that the
basic framework presented here for the analysis of learning systems is quite
general. The target and hypothesis classes £ and H might consist of gram-
mars in a generative linguistics tradition. Example of such grammars include
those in the tradition of Government and Binding (Chomsky, 1981); Head
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Driven Phrase Structure Grammar (HPSG; Pollard and Sag, 1994); Lexi-
cal Functional Grammar (LFG; Kaplan and Bresnan, 1982; Bresnan, 2001),
Autolexical Grammar (Sadock, 1991) and so on. They might consist of gen-
eral grammatical families such as finite state grammars (DFAs), context free
grammars (CFGs), tree adjoining grammars (TAGs; Joshi, Levy, and Taka-
hashi, 1975) and so on. They might consist of grammars in a connectionist
tradition. We do not commit ourselves to any representational issues here
but choose a generic enumeration scheme to enumerate the grammars in
the class®. Again, no commitment is made just yet to learning algorithms —
they could in principle be grammatical inference procedures, gradient descent
schemes like those occurring in connectionist learning, Minimum Description
Length (MDL) learning, maximum likelihood learning via the EM algorithm
and so on. Different research traditions use different grammatical families,
different representations and correspondingly different learning algorithms.
Most of these are analyzable in the framework considered here.

In what follows, we always consider the case in which the hypothesis class
H is equal to the target class G. In other words, Ly = {Ly|h € H} = L.
If this were not the case, for some languages (those in £\ L) the learner
could never converge to the target because it could never hypothesize the
target language (grammar). Such languages could never come to be spoken
by humans and therefore would not exist as natural languages.

2.2 The Inductive Inference Approach

The first study of this problem of identifying sets was conducted in the
sixties with the pioneering work of Gold (1967). Later work by Feldman
(1972), Blum and Blum (1975), Angluin(1980,1988), Osherson, Stob, and
Weinstein (1986), Pitt (1989), Gasarch, Smith (Gasarch and Smith, 1992),
Jain et al (1998) and a host of others elaborate on this theme. Jain et al
(1998) provides an excellent and updated exposition of the various technical
results in this area. In this section, we provide a brief introduction to the
paradigm of identification in the limit and a proof of Gold’s celebrated result.
We then proceed to interpret this result and its extensions in the context of
the natural phenomena of language acquisition.

First, we need to define a few terms.

5The fact that grammars may be enumerated follows from the computability thesis we
have adopted here.
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Definition 1 A text t for a language L is an infinite sequence of examples
S1y--- y8n,... such that (i) each s; € L (ii) every element of L appears at
least once in t. We denote by t(k) the kth element of the text. This is simply
sk. We denote by ti the first k elements of the text. This is simply s1 ... sg.
Thus ty, € D¥ (if represented as a k-tuple).

Let us now define the notion of learnability in the limit for this framework.

Definition 2 Fiz a distance” metric d, a target grammar g; € G and a text
t for the target language (Lg,). The learning algorithm A identifies (learns)
the target g;(Lg,) on the text t in the limit if

lim d(A(t),g:) =0
k—o00

If the target grammar gy is identified (learned) by A for all texts of Lg,, the
learning algorithm is said to identify (learn) g¢ in the limit. If all grammars
in G can be identified (learned) in the limit, then the class of grammars G
(correspondingly class of languages L) is said to be identifiable (learnable)
in the limit. Thus learnability is equivalent to identification in the limit.

Now consider the case where G = H. After some more notational niceties,
we will prove the following fundamental result.

"The choice of the distance metric d allows us to consider many different notions of
convergence to a target grammar. It is worth noting that any two grammars g and h
define corresponding sets of expressions (languages) Ly and L. However, the metric d is
defined on the space of grammars and may incorporate both extensional and intensional
terms. For example, a purely extensional notion of distance would be one in which d(g, h)
depends only on L, and L, and nothing else. In that case, for all grammars f such
that Ly = Ly we would have d(g,h) = d(f,h). If iy and i, are the indices of g and
h in some acceptable enumeration of the grammars, then a purely intensional notion of
distance could be d(g,h) = |ig — ip|. In some sense, both the specific choices discussed
above are unsatisfactory. In fact, from a cognitive perspective, there is a long tradition of
thought in generative grammar which attributes some psychological reality to grammars.
A child’s developing linguistic knowledge is codified, represented and interpreted in terms
of its grammar. Consequently, some grammars may be interpretable while others may not.
Therefore, the child’s convergence to the parent’s grammar ought to include considerations
of grammatical representation. On the other hand, since the index of a grammar may bear
no natural relationship to the extensional set identified as the corresponding language, a
distance measure like d(g,h) = |ig — in| might end up ignoring extensional agreement
altogether resulting in an absurdity. In much of our discussion in this chapter, we will
discuss learning based on extensional criteria to understand fundamental limitations of
inductive inference. In subsequent chapters, we will take a more linguistic point of view
and consider intensional criteria in models of language acquisition.
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Definition 3 Given a finite sequence x = $1,892,... ,8, (of length n), we
denote the length of the sequence by lh(x) = n. For such a sequence z, we
denote by © C L the fact that each s; in x is contained in the language L.
We denote by range(z) the set of all unique elements of x. Thus x C L
is shorthand for the more set-theoretically correct statement range(z) C L.
The concatenation of two sequences T = X1,... ,Tp AGNd Y = Y1, --- ,Ym 1S
denoted by toy =121,... ,TnYls--- »Ym-

Now we are in a position to state

Theorem 1 (after Blum and Blum; e-version) If A identifies a target
grammar g in the limit, then, for every e > 0, there exists a locking data set
lc € D such that (i) lc C Ly (ii) d(A(l¢),9) <€, and (iii) d(A(lc 0 0),9) < €
for all o € D where o C Ly. In other words, after encountering the locking
data set, the learner will be e-close to the target as long as it continues to be
given sentences from the target language.

Proof: We prove by contradiction. Suppose no locking data set exists.
Then for every | € D such that [ C L, and d(A(l),g) < ¢, there must exist
some 0; € D (where 0; C Lg) that has the property d(A(l o 07),9) > €. We
will use this fact to construct a text for L, on which A will not identify the
target. Begin with a text r = s1,89,...,8y,... for L. Now construct a
new text ¢ in the following manner. Let ¢V = s1. If d(A(¢™), Ly) < ¢,
then we pick o, that violates the locking property and update the text by
letting q(i‘H) = q(i) 0 T4(i) © Sit1- If d(.A(q(i)),Lg) > €, then we simply let
q(”l) = q(i) 0 8;+1. Since an s; is added at each stage of the text creation
process, it is clear that ¢ is a valid text. At the same time, it is clear that
A can never converge to g for the text q. This is because every time it
conjectures a grammar h such that d(h,g) < € (say at ¢%)), it is forced to
conjecture some other grammar that is not in the e-neighborhood of g by
the time it reaches ¢\9) o T4 In other words, the learner’s conjectures on ¢
are such that d(A(g;), g) > e infinitely often. ]

This suggests that if a grammar g (correspondingly, a language L) is
identifiable (learnable) in the limit, a locking data set exists which “locks”
the learner’s conjectures to within an e-ball of the target grammar after
encountering this locking data set. In what follows, we will consider the
important and classical case of exactly identifying the target language in the
limit. Here the distance metric is 0 — 1-valued and given by d(g1,¢g2) = 1 if
and only if Ly, = Lg,. Putting € = 3 in the previous theorem, we get the
following classical result
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Theorem 2 (Blum and Blum, 1975) If A identifies a target grammar g
in the limit, then, there exists a locking data set | € D such that (i)l C Ly
(ii) d(A(l),g) =0, and (iii) d(A(lco),g) =0 for all 0 € D where o C L,.

Utilizing this result, we can now prove Gold’s famous theorem.

Theorem 3 (Gold, 1967) If the family L consists of all the finite lan-
guages and at least one infinite language, then it is not learnable (identifi-
able) in the limit.

Proof: We prove by contradiction. Suppose that an algorithm A is able
to identify the family £. Therefore, in particular, it is able to identify the
infinite language (call it Liy¢). Therefore, by theorem 2, a finite locking data
sequence must exist (call it ojyr). Consider the language L = range(oint)-
This is a finite language and therefore is in £. Furthermore, one can con-
struct a text ¢ for this language such that t; = ojyr where k = [h(os)-
However, by the locking property, for such a text ¢, the algorithm A con-
verges to Liys. Therefore, A does not identify L and therefore does not
identify L. [ |
Since both regular and context free languages contain all the finite lan-
guages and many infinite ones, it immediately follows as a corollary that

Corollary 1 The family of languages represented by (i) Deterministic Fi-
nite Automata and (i) Context Free Grammars are not identifiable in the
limat.

Thus, all grammatical families in the core Chomsky hierarchy of gram-
mars are unlearnable in this sense. Before we examine the implications of
this result, it is worthwhile to consider a formulation of the necessary and
sufficient conditions for the learnability of a family of languages. The proof
of Gold’s result presented here uses the notion of locking sequences that was
introduced by Blum and Blum some years after Gold’s original paper. The
use of such locking sequences in the proof illustrates how they hold the key
to learnability of language families. This is indeed the case as the following
theorem shows:

Theorem 4 (Angluin, 1980) The family L is learnable (identifiable) if
and only if for each L € L, there is a subset Dy, such that if L' € L contains
Dy, then L' is not a proper subset of L.
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Proof: First we prove the necessary part. Since L is learnable, therefore, an
algorithm A exists and for every L € L a locking data sequence o7, must exist.
Consider the case of a particular language L and its locking data sequence
or. If there is some other language L' € £ such that (i)range(or) C L' and
(ii) L' C L then it is possible to construct a text ¢ for L' such that tx, = oy,
where k = [h(or). On such a text, because of the locking property, the
algorithm A will be such that d(.A(t;), L) — 0 and since L' C L, we have
that d(A(t;),L') / 0. Therefore L' and consequently the family £ is not
identifiable in the limit.

Now we prove the sufficient part. Suppose that for each L, there exists
a Dy, C L such that if Dy, C L' for some L' € L, then L' ¢ L. We now show
how to construct an algorithm A to learn the family L.

Let Ly, Ls, ..., be an enumeration of the languages in £ where for each
L; there exists a Dy, as discussed. Consider the following learning algorithm.
On an input data stream o € D such that [h(c) = k, the learner searches
for the least index 7 < k such that Dy, C range(o) C L;. If no such ¢ exists,
the learner simply conjectures L as a default. We need to prove that this
algorithm will identify every language in L.

Let the target language be L;. Consider a text ¢ for L;. After k >
j example sentences have been encountered, the learner could potentially
conjecture L;. The only reason it may not is if it conjectures some L; where
1 < 7. We claim that for every ¢ < j, the learner will either not conjecture
L; at all or eventually abandon it for good. To see this, consider some L;
(i < 7). There are two cases to consider:
Case I: L; \ L; = (. This means that L; C L;. But then Dy, cannot be a
subset of L;. Since range(ty) C L; for all k, it can never be the case that
Dy, C range(ty) C L;. The learner can never conjecture L; at any point.
Case II: L; \ L; # (. This means there is some sentence s € L; that is not
in L;. Eventually this sentence must occur in #; for some k. For all n > k,
therefore it can never be the case that range(t,) C L;. Thus the learner will
never conjecture L; after this point. [

2.2.1 Discussion

In the light of these results, let us now take stock of the situation.

Remark 1. We have considered here the difficulty of inferring a set from
examples of members of this set. The problem is clearly motivated by the
inference problem children have to solve in the process of learning a language.
A particular language may be viewed as a set of well-formed expressions.
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The nature of this set is unknown to the child before language acquisition.
In syntax, for example, this refers to the set of well-formed sentences (or
phrases or constructions depending upon one’s point of view); in phonology,
these refer to the set of well-formed phonological forms. Every such set has a
finite representation in terms of an underlying grammar. Crucially, children
are not exposed directly to the grammar — they are exposed only to the
expressions® of their language and their task is to learn the grammar that
provides a compact encoding of the ambient language they are exposed to.

Remark 2. It is worth noting that the precise notion of convergence depends
upon the distance metric d imposed on the space of grammars. We have con-
sidered in some of the above theorems the case in which the metric d(g1,g2)
is 0 — 1 valued and depends only on whether L, = Lgy,. In this metric the
learner may converge on the correct extensional set but may not converge to
the correct grammar. In fact the learner is not required to converge to any
single grammar at all. Some would argue that this notion of convergence
may be behaviorally plausible but cognitively implausible. Taking the view
that grammars have a cognitive status and therefore that the maturation of
the child’s linguistic knowledge must be captured in the development of its
grammar, one may impose the stronger metric where d(g;,g;) = |7 — j| or
|C(i) — C(j)| where 4, j are indices of the grammars and C(z) and C(j) are
measures of grammatical complexity in some sense. This notion of conver-
gence is significantly more stringent and much less is learnable in this case.
In much of this chapter, we will review results using the more relaxed exten-
sional (behavioral) notion of convergence and appreciate the impossibility
of tabula rasa learning even in this setting. It is finally worth noting that a
related notion of convergence was originally proposed by Gold (1967) where
it was required that the learner stabilize (converge) to some grammar that
was extensionally correct. This may be viewed as a compromise between the
two extremes that have just been outlined.

Remark 3. It may be argued that the proper role of language is to medi-
ate a mapping between form and meaning or symbol and referent in the
Saussurean (Saussure, 1983) sense. When one takes this point of view, one
reduces a language to a mapping from 37 to X5 where 37 is the set of all
linguistic expressions (over some alphabet 1) and X% is a characterization
of the set of all possible meanings. In this framework, a language L is re-
garded as a subset of X7 x X3 — in other words a potentially infinite set

8See Lightfoot, 1991 for a discussion on learning from cues or phrasal fragments that
seem to have a status somewhere in between an expression and a grammatical rule.
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of (form,meaning) pairs or associations. There are, in fact, many possible
formalizations of the notion of a language for our purposes. We enumerate
below a list of possibilities.

1. L C ¥* — this is the central and traditional notion of a language both
in computer science and linguistics.

2. L C ¥ x X5 — a subset of form-meaning pairs and in a formal sense
no different from notion 1.

3. L:X* — [0,1] — a language maps every expression to a real number
between 0 and 1. For any expression s € ¥*, the number L(s) charac-
terizes the degree of well-formedness of that expression with L(s) =1
denoting perfect grammaticality and L(s) = 0 denoting complete lack
of it. Note that notion 1 simply considers languages to realize map-
pings from ¥* to {0,1} — thus sentences are either grammatical or
ungrammatical with no notion of graded grammaticality. The support
of this function may be a restricted subset of ¥* — this restricted subset
may be regarded to be a language in sense of notion 1.

4. L is a probability distribution g on ¥* — this is the usual notion of a
language in statistical language modeling.

5. L is a probability distribution p on 37 x ¥3.

It is worthwhile to observe that each of the extended notions of language
makes the learning problem for the child harder rather than easier. Thus
the non-learnability results discussed earlier have a significance greater than
the particular formal context in which they have been developed.

Remark 4. The arguments presented above suggest that if the space £L =H
of possible languages is too large, then the family is no longer learnable. As
a matter of fact, taking the result of Gold (1967), we see that even the space
of regular languages (DFAs) is too large for learnability by this account. It
is also worth emphasizing that the arguments are of an informational rather
than computational nature. In other words, we consider A to be a mapping
from D to ‘H. Even if this mapping were not computable, the negative results
about learnability presented here would still stand.

Remark 5. One may think that the unlearnability of regular languages is due
to the fact that all the finite sets are included in this family. Since, we know
that natural languages are never finite, one may ask what sort of learnability
results would hold for families of languages £ where each member of £ was
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required to be infinite. For example, is the class of infinite regular languages
unlearnable? While Gold’s Theorem does not apply to this case, it is worth
noting that the proof technique does carry over. Consider two languages 11
and Ly such that Ly C L2 and further Ly \ L; is an infinite set. Clearly
one may find two such languages in £ = { infinite regular languages }. Let
o2 be a locking sequence for Ls. Then clearly, L1 Urange(os) is a language
that contains oy, is a proper subset of Lo and is contained in £. One sees
that this language will not be learnable from a text whose prefix is o9 as the
learner will lock on to Lo on such a text.
Remark 6. The most compelling objection to the classical inductive infer-
ence paradigm comes from statistical quarters. It seems unreasonable to
expect the learner to ezactly identify the target on every single text. The
natural framework that modifies both assumptions is the so called Probably
Approzimately Correct learning framework (Valiant, 1984) that tries to learn
the target approximately with high probability. We discuss this in the next
section but it is worthwhile to note here that the PAC model also emphasizes
identification in the limit — the quantity d(g¢, h,) is now a random variable
that must converge to 0 — not on every single data sequence as in in the
classical Gold style inductive inference framework, but with probability 1
(weak convergence of random variables).

Before we consider the PAC approach, let us first review some additional
results in more stochastic formulations that have existed in the inductive
inference framework.

2.2.2 Additional Results

In the classical framework of the previous section, no assumption was made
about the source that generated the text. Let us assume that the text
is generated in i.i.d. fashion according to a probability measure p on the
sentences of the target language L. In much of this book, we will adopt this
assumption in order to derive probabilistic bounds on the performance of
the language learner that will be critical in deriving our models of language
change.

The measure u has support on L. Therefore, one may define correspond-
ing measures on the product spaces. Thus, we have measure pyo on the
product space L x L. All texts ¢ from the language L that have been gener-
ated according to i.i.d. draws from p will be such that to € L x L. Similarly,
we can define the measure p3 on the space L X L X L and so on. By the
Kolmogorov extension theorem, a unique measure p, is guaranteed to exist
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on the set T = [[;°; L; (where L; = L for each i). The set T consists of
all texts that may be generated from L by i.i.d. draws according to u, i.e.,
t € T is such that t(k) € L for all k£ and each ¢(k) is drawn in i.i.d. fashion
according to u. The measure p is defined on T' and thus we have a measure
on the set of all texts.

Theorem 5 Let A be an arbitrary learning algorithm and g be an arbitrary
(not necessarily target) grammar. Then the set of texts on which the learning
algorithm A converges to g is measurable.

Proof: Consider the set
A= {t| lim d(A(t),g) = 0}
k—o00

This is the set of all texts on which the learning algorithm converges to the
grammar g. To see that this is measurable, it is enough to see that for each
k,l1, the set By (defined as below) is measurable.

By = {td(A(ts),0) < 1)

As a matter of fact, poo(Bry) = px({T € L* | d(A(T),g) < 1}). Now let
Cr = Ui Nm>i B,

Thus C} is simply the set of texts for which the learning algorithm eventually
makes conjectures that lie within a % ball of the grammar g. By the usual
properties of sigma algebras, C is clearly measurable. Finally, we see that

A=n2C

is measurable too. L
As aresult, it is possible to define learning with measure 1 in the following
way.

Definition 4 Let g be a target grammar and texts be presented to the learner
in i.1.d. fashion according to a probability measure p on Lg. If there exists
a learning algorithm A such that peo({t|limg_ o0 d(A(tr),g) = 0}) =1 then
the target is said to be learnable with measure 1. The family G is said to be
learnable with measure 1 if all grammars in G are learnable with measure 1
by some algorithm A.
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According to this notion of learnability, it is worthwhile to note that

1. If the measure p is known in a certain sense, the entire family of r.e.
sets becomes learnable with measure 1. We shall see a proof of this
shortly.

2. On the other hand, if x is unknown, the Superfinite languages (those
having all the finite languages and at least one infinite language) are
not learnable. Thus, the class of learnable languages is not enlarged
for distribution free learning in a stochastic setting.

3. Computable distributions make languages learnable. Thus any collec-
tion of computable distributions is identifiable in the limit. This is
comparable to Gold (1967) where it is shown that if examples are con-
strained to be produced by effective procedures (called computable pre-
sentations) the class of learnable languages is significantly enhanced.

Let us consider the set of r.e. languages and let Li, Lo, L3,... be an
enumeration of them. Let measure y; be associated with language L;. Thus
w; has support on L; and if L; is to be the target language, then examples
are drawn in i.i.d. fashion according to this measure. As discussed above,
by the extension theorem a natural measure p; o, exists on the set of texts
for L;. Then it is possible to prove that

Theorem 6 With strong prior knowledge about the nature of the u;’s, the
family L of r.e. languages is measure one learnable.

Proof: The proof follows that in Osherson, Stob, and Weinstein (1986).
Let s1,s2,... be an enumeration of all finite strings (sentences) in ¥*. For
an example sequence o € D, let us say that o agrees with L; through n if
for each s; (i < n), we have s; € L; & s; € range(o). In other words, o and
L; agree on the membership of the first n sentences of X*.

Now let us first introduce the set

Ajnm = {t]t is a text for L; and 3i < nl|s; € L; \ range(ty,)}

Thus A; ym is the set of all texts for L; such that one of the first n elements of
¥*is in L;j but does not appear in t,,. It is easy to see that A; , ;11 C Ajnm.
Therefore ptjo(Ajnm) is a monotonically decreasing function of m. As a
matter of fact, since Ny_; Aj,m = ¢, we have

Jim 100 (Ajnm) =0



70 CHAPTER 2. LANGUAGE ACQUISITION — INDUCTION

for every fixed j,n.

Next we define the function d(n) as

d(n) = least m such that p;co(Ainm) < 27" for all i < n.

In other words, if one fixes n, then after seeing at least d(n) examples,
one is guaranteed that if the target were one of L; through L,, with high
probability one would get the membership values for each of the sentences
sp € ¥* through s, € £*. It is also clear that d(n) is a monotonically
increasing function of n. Further, as n grows, one would eventually establish
the membership of every sentence and thus identify the target language with
measure 1.

The learning algorithm would work as follows. On an input sequence
o € D, let m = lh(c). Then, the learning algorithm finds the largest n such
that (i) n < m and (ii) d(n) < m. We will indicate such an n by d~*(m).
It is therefore appropriate to conjecture one of Ly through L,. Let j be the
least integer such that j < n and L; agrees with o through n. If no such j
exists, then let j = 1. The algorithm conjectures L; on input sequence o.

Now we need to prove that the algorithm learns the target grammar
with measure 1. Let the target language be such that k is the least index
for it. Consider now the set of texts on which the learning algorithm does
not converge to Li. This is given by

B = {t|A(t,) # k for infinitely many n}

We will show that the measure of B is 0. To see this consider the following
intermediate set X given by

Xk = MiUm>i Apa-1(m);m

Now,

Claim 1: B C Xj.

To see this, consider a ¢ € B. This means that on ¢, we have A(ty,) # Ly
infinitely often. There are two reasons why .A(t,,) might not be equal to Ly.
They are (i) ¢,, and Ly do not agree through d='(m) or (ii) there exists some
L; (i < k) such that L; and t,, agree through d~!(m). However, for any such
L;, since t,,, and L; must eventually disagree for some m, no such L; can be
conjectured infinitely often. Therefore the only reason that something other
than L is conjectured infinitely often is that %, and L, must not agree
through d!(m) for infinitely many m’s. Therefore,

t€ X =N Un>i Ak,d—l(m),m
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Claim 2: M Uy Ak,d—l(m),m C NM; Up>i Ak,n,d(n)-
To see this, assume ¢ € N; Umsi A g-1(m),m- Now we need to show that
t € N Un>i Agn,dn)- To show the latter, we need to show that for every
i, there exists some n > 4 such that ¢t € Ay, 4n)- However, since ¢t €
Ni Um>i Ag,g-1(m),m, therefore t € Ay 4-1(m) m for some m > d(i +1). Let
n = d~(m) for such an m. Clearly, n > i + 1. Therefore, t € Ay, ,,, where
d(n) < mand n > i+ 1. Since Agp 1 C Agpy for all I, we clearly have
t € Ay nd(n) for some n > .
Finally notice that since 3, ftic0(Agnam)) < o0, by the Borel Cantelli
lemma, and Claims 1 and 2, pgoo(Xg) = 0. The set of texts on which
the learning algorithm does not converge has measure zero. [
It might appear that by simply changing the requirement from learning
on all texts to learning on almost all texts, the class of learnable languages
is significantly enlarged. This is however misleading since the measure one
learnability of the above theorem requires one to know d(n). This is a very
strong assumption indeed. In particular, if the learning algorithm works
for one particular set of measures {yu;}, it is very easy to perturb the source
measures so as to ensure non-learnability. Therefore, a more natural require-
ment as one moves to a probabilistic framework is to require learnability in
a distribution-free sense.

Definition 5 Consider a target grammar g and a text stochastically pre-
sented by i.i.d. draws from the target language Ly according to a measure p.
If a learning algorithm exists that can learn the target grammar with measure
one for all measures p then g is said to be learnable in a distribution free
sense. A family of grammars G is learnable in a distribution free sense if
there exists a learning algorithm that can learn every grammar in the family
with measure one in a distribution free sense.

It is worthwhile to note that when one considers statistical learning, the
distribution free requirement is the natural one and all statistical estimation
algorithms worth their salt are required to converge in a distribution free
sense. When this restriction is imposed, the class of learnable families is not
enlarged. In particular, it is possible to prove

Theorem 7 (Angluin,1988) If a family of grammars G is learnable with
measure one (on almost all texts) in a distribution free sense, then it is
learnable in the limit in the Gold sense (on all texts).

As a matter of fact, one can prove the even stronger theorem
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Theorem 8 (Pitt,1989) If a family of grammars G is learnable with mea-
sure p > % then it is learnable in the limit in the Gold sense.

This immediately implies of course that regular languages are not mea-
sure one learnable in a distribution free sense. We will soon turn our at-
tention to a model of learning that requires only weak convergence of the
learner to the target. Here we will only require that

lim Pd(A(t), 9) > ] =0

leading to the well known PAC (Probably Approximately Correct) model of
learning.

Before we do so, however, it is worthwhile to mention a few positive
results on the learning of grammatical families that are worth keeping in
mind for a more complete and nuanced understanding of the possibilities
and limitations of learning and inductive inference.

1. We see that given a family of languages £, if the learning algorithm
knows the source distribution of each of the languages, then the fam-
ily is learnable with measure one. If, on the other hand, the text is
presented stochastically from some unknown distribution, the family
is not learnable. One might frame the question of language learning
as essentially identifying (learning in some sense) a measure y from a
collection of measures M. This reduces to a density estimation prob-
lem which in principle is harder than function approximation (or set
identification). Indeed, if no constraints are put on the family M,
then identifying the target measure is not possible. It is reasonable to
ask under what conditions the family M becomes identifiable in the
limit. One answer to this question was provided by Angluin (1988)
where it was proved that a uniformly computable distribution could be
identified in the limit in a certain sense. Let M = {ug, 1, 42...} be
a computable (hence enumerable) family of distributions. Define the
distance between two distributions p; and p; as

d(pi, pj) = sup |pi(z) — pj(z)|
TEX*

This is the Ly, norm on sequences. The family M is said to be uni-
formly computable if there exists a total recursive function f(i,z,¢)
such that for every i, for every = € ¥*, and for every €, f(i,z,¢€) out-
puts a rational number p such that

lpi(z) —p| <€
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The learner receives a text probabilistically drawn according to an
unknown target measure from the family M. After k examples are
received, the learning algorithm guesses A(tx) € M. It is possible to
construct a learning algorithm that has the property

Tim d(A(te), 1) = 0

Special cases of this result are the learnability of stochastic finite state
grammars (van der Mude and Walker, 1978) and stochastic context
free grammars (Horning, 1969). It is worth noting that uniform com-
putability is a very strong prior constraint on the set of all distribu-
tions. For example, in the context of stochastic context free grammars,
one obtains probability measures on context free languages by tying
probabilities to context free rules. As a result, the probability distri-
butions are always such that longer strings become exponentially less
likely. An arbitrary collection of probability measures with support on
context free languages need not be uniformly computable and so need
not be learnable.

2. A second class of positive results arise from active learning on the
part of the learner. Here the learner is allowed to make queries about
the membership of arbitrary elements z € ¥* (membership queries).
This allows the regular languages to be learned in polynomial time
though context free grammars remain unlearnable (Angluin, 1987; An-
gluin and Kharitonov, 1995). Other query-based models of learning
with varying degrees of psychological reality have also been consid-
ered. They enlarge the family of learnable languages but none allow
all languages to be learnable (Gasarch and Smith, 1992). It is certainly
reasonable to consider the possibility that children explore the environ-
ment and this active exploration facilitates learning and circumvents
some of the intractability inherent in inductive inference. On the other
hand, the ability to make arbitrary membership queries seems to be
too strong and it is likely that the learning child possesses this ability
only to a limited extent.

3. The problem of inference is seen to be difficult because the learner is
required to succeed on all or almost all texts. It is natural to consider
further restrictions on the set of texts on which the learner is required
to succeed. These are as follows:
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(a) Recursive texts: A text t is said to be recursive if {t,|n € N} is
recursive. The learner is required to converge to the target language
for all recursive texts that correspond to this language. It is possible to
show there exists a map A (from data sets to grammars) such that all
phrase structure grammars are learnable. Unfortunately this map is
not computable, and the following theorem (see Jain et al, 1998) holds:
If a computable map exists that can learn a family of languages £ from
recursive texts, then L is algorithmically learnable from all texts. This
result implies that restricting learnability to recursive texts does not
enlarge the family of learnable languages.

(b) Ascending texts: A text t is said to be ascending if for all n < m, the
length of t(n) is less than or equal to the length of ¢(m), i.e., sentences
are presented in increasing order of length. It is possible to show that
there are language families £ that are learnable from ascending texts
but not learnable from all texts. Superfinite families (i.e., families
containing all the finite languages and at least one infinite language)
however, remain unlearnable in this setting.

(¢) Informant texts: A text t for a language L is said to be an informant
if it consists of both positive and negative examples. Every element of
3* appears in the text with a label indicating whether it belongs to the
target language or not. All recursively enumerable sets are learnable
from informant texts. The general consensus in empirical studies of
language acquisition seems to be that children are hardly ever exposed
to negative examples. While it is true that there may be ways to get
indirect evidence of negative examples, it still seems unlikely that the
learning child ever gets an opportunity to sample the space of negative
examples with enough coverage to get an unbiased estimate of the
target language.

. One may consider weaker convergence criteria. For example, an overly

weak convergence criterion is to put a metric on the family of lan-
guages defined by d(L1, La) = Y ,ex u(8)|11,(s) — 11,(s)| (where p
is a fixed measure on ¥*) and define convergence in this norm. This
strategy (Wharton, 1974) leads to the unfortunate consequence that
the finite languages become dense in the space of r.e. languages and
therefore a learning procedure need only output finite languages in or-
der to learn successfully. A more satisfactory weakening is provided by
the framework of anomalies where one is required to learn the target
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language upto (at most) k£ mistakes. Gold identification corresponds to
k = 0 and it is possible to show (Case and Smith, 1983) that a proper
hierarchy of learnable families is obtained as k varies. Yet another
criterion is the notion of strongly approaching (Feldman, 1972) where
the learner must eventually be dislodged from all incorrect hypotheses
and supply a correct hypothesis infinitely often.

5. One may consider various ways to incorporate structure into the learn-
ing problem leading to learnability results. Examples include learning
context free grammars from structured examples (Sakakibara, 1990) or
more recently the work on learning categorial grammars (Kanazawa,
1998). If one were able to provide a cognitively plausible justification
for how such structures were made available to the learning child, then
such approaches would provide a natural framework for structured
learning of linguistic families.

We have tried in the previous sections to provide the central develop-
ments and results of the theory of inductive inference that continues to pro-
vide the basic formal framework to reason about language acquisition. Some
caveats notwithstanding, the main implication of these results is that learn-
ing in the complete absence of any prior information is infeasible. Through
the various sections we have tried to provide the reader with a feel for some
of the prior knowledge that is used to prove the technical results.

2.3 The Probably Approximately Correct Model
and the VC Theorem

Another significant approach to learning theory is the decidedly statistical
route pursued by a large number of researchers in computer science and
statistics. The central theoretical framework for such an approach was pio-
neered by Vapnik and Chervonenkis (1971) and elaborated fully in Vapnik
(1998). In the context of computer science, this work was introduced with
additional computational complexity considerations by Valiant (1984) as the
PAC (Probably Approximately Correct) Model that has stimulated a rich
dialog between computer science and statistics over the last two decades.
The canonical problem in statistical learning theory is the learning of
functions. The concept class and the hypothesis class are classes of func-
tions f : X — Y where X and Y are arbitrary sets. The learner is required
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to converge (identify, learn) to the target in the limit. However, this conver-
gence is probabilistic as we now clarify.

2.3.1 Sets and Indicator Functions

In the canonical framework of statistical learning theory, the class of pos-
sible target functions (usually referred to as the concept class in the PAC
literature) — F and the hypothesis class H are both classes of functions
f X =Y. In the case of language, it is natural to consider X to be the set
¥* — the set of all possible strings, and Y to be the set {0,1}. Therefore for
a particular language L C ¥*, we can define the indicator function for it as

1n(z) : ¥* — {0,1}

where 1,(z) = 1 if and only if x € L. Thus, identifying or learning a
language is equivalent to learning the indicator function corresponding to
that language.

Languages now have three natural representations (i) as recursively enu-
merable subsets of ¥* (ii) as Turing machines or programming systems or
phrase structure grammars (iii) as indicator functions over ¥*.

In our discussions so far, we have always taken F = H and we will
continue with this assumption.

2.3.2 Graded Distance

The discussion on language learning in the inductive inference framework is
dominated by the notion of exact identification where the distance measure
d(1p,1p) = 1 if and only if L = L' and = 0 otherwise. It may reasonably
be argued that such a distance does not allow for a natural graded topology
on the space of possible languages. Therefore, we rectify this by considering
the L;(P) topology on the space of languages as follows.

Define a probability measure P on ¥*. Then, the L; (P) distance between
two languages L and L' might be defined as

d(L,L') = Y [12(s) = 1r/()|P(s)

sEX*

Given any language L, we can therefore naturally define the e-neighborhood
of the language as
Np(e) = {L'd(L, L") < e}
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This allows us to consider languages that are arbitrarily close to each other
and potentially alleviate the apparent pathologies introduced by the notion
of exact identification in the limit.

2.3.3 Examples and Learnability

We assume that examples are randomly presented to the learner according
to a probability distribution P on ¥*. In the generic framework of function
learning, the learner is presented with both positive and negative examples.
Undoubtedly, the task of learning the target function with balanced (positive
and negative) examples is easier than learning from positive examples alone.
While the latter is the more natural setting for language acquisition, let us
first develop the basic insights of statistical learning theory in the context of
the easier function learning problem in order to understand some essential
constraints on inductive inference from finite data.

Let L be the target language. Thus, 1y : £* — {0,1} is the target
function corresponding to this language. Examples are (z,y) pairs where
z € ¥* (drawn according to P ) and y = 1(z).

On the basis of these examples, the learner hypothesizes functions in H
(recall H : ¥* — {0,1}). As before, the learner is a mapping from possible
data sets to the hypothesis class. In view of the fact that positive and
negative examples are received, we will need to redefine Dy, — the set of all
data streams of length k — to be

Dy = {(z1,--- »2k) | zi = (x5, 9:); 2 € B, y; € {0,1}}

After receiving [ data points, the learner conjectures a function hy € H.
The most natural statistical learning procedure to consider is one that min-
imizes empirical risk. According to this procedure, the learner’s hypothesis
ﬁl is chosen as

. 1<
| = argmin - ;:1 lys — h(z)|

We have indicated the learner’s hypothesis by iil where the “symbol explicitly
denotes that the learner’s hypothesis £; is a random function. This is simply
because the learner’s hypothesis depends upon the randomly generated data.

More generally, a learning algorithm A is an effective procedure mapping
data sets to hypotheses, i.e.,

A:U?ile —>H
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Therefore, /”Zl = A(d;) where d; is a random element of D;. Successful learn-
ing would require the learner’s hypothesis to converge to the target as the
number of data points goes to infinity. Because the learner’s hypothesis is a
random function, it is now natural to consider this convergence in probabil-
ity. Hence, we can define the following:

Definition 6 The learner’s hypothesis Ry converges to the target (11,) with
probability 1, if and only if for every e > 0

lim P[d(hy, 1) > €] = 0

l—00

Some remarks are worthwhile. First, note that the probability distribu-
tion P does double duty for us. On the one hand, it allows us to define the
distance between languages as the L1 (P) distance between their correspond-
ing indicator functions. Convergence is therefore measured in this norm. On
the other hand, it also provides the distribution with which data is drawn
and presented to the learner. It therefore characterizes the probabilistic be-
havior of the random function lil. Crucially, however, P is unknown to the
learner except through the random draws of examples.

Second, note that the notion of convergence is ezactly the notion of weak
convergence of a random variable. In the standard case of inductive infer-
ence treated earlier (for a text t) the distance d(A(tg), L) is a deterministic
sequence that must converge to zero for learnability. Now, the text ¢ is gen-
erated randomly in i.i.d fashion. Therefore, d(A(tx), L) is a random variable
that is required to converge to zero with probability one.

This notion of weak convergence is usually stated in an (e,d) style in
PAC formulations of learning theory in computer science communities. If Iy
converges to the target 17 in a weak sense, it follows that for every ¢ > 0
and every ¢ > 0, there exists an m(e, §) such that for all [ > m(e, §), we have

Pld(hy,11) > €] < 6

In other words, with high probability (> 1 — ¢), the learner’s hypothesis
(ﬂl) is approzimately close ( within an € in the appropriate norm) to the
target language. The quantity m(e,d) is usually referred to as the sample
complexity of learning. Finally, we are able to define the notion of learnabil-
ity within this PAC framework.

Definition 7 Consider a target language L. If there exists a learning algo-
rithm A such that for any distribution P on X* according to which examples
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((x,1(z)) pairs) are drawn and presented to A, the learner’s hypothesis
converges to the target with probability 1, the target language L is said to be
learnable. A family of languages L is said to be learnable if there exists a
learning algorithm A which can learn every language in the family.

2.3.4 The Vapnik-Chervonenkis (VC) Theorem

It is natural now to consider what classes £ are learnable under this new
framework of learnability. The most fundamental characterization of learn-
ability was provided by the pioneering work of Vapnik and Chervonenkis
(1971). We provide a treatment of their work in the current context of
language learning,.

Let £ be a collection of languages and H be the associated collection
of indicator functions on ¥*. Thus # = {1;|L € L£}. Now let the target
language be L; € L. Correspondingly, the target function is 1, € H.

Note that

Ly = arggleigE’HlLt —1z]]

Within the framework of empirical risk minimization, the learner’s hy-
pothesis is given by

l

. 1
I, = in - 1
| = argmin - ;:1 lyi — 11(z)]

The language L; empirically chosen by the learner corresponds to an indica-
tor function 1 L from the class H of hypothesis functions on 3*. According to

our previously denoted notation ﬁl =1 i Recall, however, that the learner
in general need not be an empirical risk minimizing learner. The following
theorem (also developed in Blumer et al, 1986) applies in complete generality
irrespective of the learning algorithm used.

Theorem 9 (Vapnik and Chervonenkis, 1971,1991) Let L be a collec-
tion of languages and H be the corresponding collection of functions. Then
L is learnable if and only if H has finite VC dimension.

In order to make sense of this theorem, we need to define the VC dimen-
sion of the family # of functions. We first develop the notion of shattering.

Definition 8 A set of points z1,... ,x, is said to be shattered by H if for
every set of binary vectors b = (b1, ba, ... ,by), there exists a function hy, € H
such that hy(z;) =1 b; = 1.
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In other words, for every different way of partitioning the set of n points
into two classes, a function (a different function for every different partition)
in H is able to implement the partition. Obviously, 7 must have at least 2"
different functions in it.

Definition 9 The VC dimension of a set of functions H is d if there exists
at least one set of cardinality d that can be shattered and no set of cardinality
greater than d can be shattered by H. If no such finite d exists, the VC
dimension is said to be infinite.

Theorem 9 provides a completely different characterization of learnable
families from those that have emerged in our previous treatments. Before
we examine its consequences for language learning, let us consider a proof
of the necessity of finite VC dimension for learnability to hold.

2.3.5 Proof of Lower Bound for Learning

Recall that learnability requires that for every e > 0 and é > 0, there exists
a finite m(e, §) such that if the learner draws m > m(e,§) examples, then

P[d(hm,h) > €] < 6

for all h € H and for all distributions P on %* according which instances are
provided.
We will now show that if 7 has VC dimension = d, then

1

d 3
m(e,d) > ZlogQ(E) +10g2(8—5)

Therefore it immediately follows that if H has infinite VC dimension, then
m(e, d) cannot be finite. Consequently, the class H is unlearnable.

Preliminaries:

Assume #H has VC dimension = d. We now construct a probability
distribution on ¥* that will force the learner to draw at least m > m(e, §) >
41og,(3)+1og,(45) examples to learn some target function in 7 to e-accuracy
with confidence greater than 1 — .

Since the VC dimension is d, there must exist a set of points 1, z9,... ,Z4
with each z; € ¥* such that these points can be shattered. Consider a
probability distribution P that puts measure 5 on each of these points and
zero measure on the rest of the elements of ¥*. Let X = {z1,... ,z4}.
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According to this probability distribution P, any two functions h; € H
and hy € H will have d(h1,he) = 0 if and only if hy and hy agree on each
of the z;’s. We may consider hy to be equivalent to ho if d(hqi,he) = 0. It
is easy to check that this is an equivalence relation and there are exactly
2¢ different equivalence classes in #H. Accordingly, we will not distinguish
between different members of the same equivalence class and for the rest of
the proof, it is sufficient to assume that || = 2.

Step 1:

Let z be a random draw of m i.i.d. examples from ¥* according to P
and zp be the labelled data set obtained by labelling the points according
to the function h € H. Then z;, € Dy, and A(zy) is the learner’s hypothesis
on receiving this labelled data set.

Imagine that z contained exactly [ distinct elements of X, i.e., the other
d — 1 elements did not occur in the data set. There are 2! different ways
in which the [ instances in z may be labelled by a potential target function
h. Let H; C H be the collection of functions that label these instances
according to the ith labelling scheme. Thus we see that H; through H. are
a disjoint partitioning of 7. Consider the sum

2l
Y d(A(za),h) =) Y d(Alza),h) (2.1)
heH i=1 heH;

Note that for each #;, there are exactly 29! different functions in it.
These functions agree on the [ distinct instances found in z. Therefore, for
each h € H,;, the data set zj is the same. On the remaining d — [ instances
that have not been seen, these functions label them in each of 24~ different
ways. Consider the quantity d(.A(zp),h). On the d — [ instances that have
not been seen, let A(z,) and h disagree on j instances. In that case, we have
J
A(AGen), ) >
There are (d;.l) different ways in which h and A(z;,) might disagree with
each other on exactly j of the unseen d — [ instances. Therefore, we have

Al /7 o\ . At
zdm@wng%@.ﬁgz%r%; (2.2)

heH; J
Combining 2.1 and 2.2, we have

dg_
> d(AG),h) > 5
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Step 2:
Let
S = {z|z has [ distinct elements }

Then we have
1d—-1

> Pz Z d(A > 25— P(S)

zZES heH

where P(z) denotes the probability of drawing the instance set z and P(S)
denotes the total probability of drawing instances in the set S. Changing
the order of sums, we see

5 0 Y P zn),h) > 5= P(5)
heH zeS
from which it is clear that there exists at least one h, € H such that
> P(z)d(A(zp,), hs) > =——P(S5)
2
z€S

Step 3:
We see that h, is a candidate target function for which the learner’s
hypothesis is potentially inaccurate quite often. Consider the set

Sp = {z € S|d(A(zn.), hs) > B}

In other words, Sp is the set of draws of m instances (with exactly ! unique
elements) on which the learner’s hypothesis differs from the target by more
than 8. We can lower bound P(Sg) by noticing that

ld
i 2 ZP A(zp, ), hy) + Z P(z)d(A(zp, ), hs)

z€Sg z€S\Sp

P(Sp) + B(P(S) — P(Sp))

From this we have
1d
(1-0Ps) 2 (355 - 5) PO

Step 4:
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Let 8 = €. Then we see that if the target were h, then with probability
at least P(S,) the learner’s hypothesis would be more than € away from the
target. Let us find the conditions under which

d 2
Since [ was arbitrary, we can let [ = %. In that case for all € < %, it is easy
to check that Ldo1 )
SS— — €] P(S)> P(S
(355 —¢) PS) > 5P(©)

Therefore, it is enough to find the conditions for P(S) > 8. Recall that
P(S) is the probability of drawing exactly ! distinct items from d items in m
i.i.d. trials. There are (’;) different ways of choosing [ items. For each such
choice, there are [! different ways in which the items could appear in the
first | positions. Consider the ith such choice. Any sequence of m examples
(denoted by z) such that (i) its first / items correspond to this choice and
(ii) the remaining m — [ items are made up of only elements of this [-set
is a member of S. Let S be the set of all elements of S that satisfy this

property. Clearly

P(S®) = ()L

Since each of the () are disjoint subsets of S, we have that

P(s) > (7)1!%)%5)“"—“

Step 5:
Putl = %. Then we have

(7)u(§)l<§)<m—’> - (i’)u(j—i)lgﬂm—” - <“’ll>u<§)l(§)m SN

Now,

Therefore, if
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we have

P(S.) > éP(S) > 5,

Thus if the target were h,, the probability that the learner’s hypothesis
is more than ¢ away from the target is greater than §. If H had infinite VC
dimension we can always choose a d large enough so that for every e < %,
the probability of making a mistake larger than § can be correspondingly
arranged The class of infinite VC dimension will therefore be unlearnable in
this sense. [

2.3.6 Implications

Thus we see that the class of languages £ must be such that % = {1.|L €
L} must have finite VC dimension for learnability to hold. An immediate
corollary is

Corollary 2 The class of all finite languages is unlearnable in the PAC
setting.

Remark: The PAC framework is often misunderstood to be one that allows a
larger collection of languages to be learned than the Gold framework. In this
context it is worth making two remarks. First, we have just seen that the set
of all finite languages is not PAC learnable. It is easy to check that this family
is Gold learnable. Second, in the PAC setting, one learns from both positive
and negative examples. If the learner is allowed such a privilege in the
Gold setting (learning from informants), we have see already that the entire
family of r.e. sets may be identified. It is also possible to define collections
of languages that are PAC learnable but not Gold learnable. Hence we
conclude that PAC and Gold are just different frameworks with no obvious
relationship.

Corollary 3 The class of languages represented by (i) finite automata (DFA’s)
(ii) context free grammars (CFGs) are both unlearnable in the PAC setting.

Interestingly, from two very different but plausible frameworks for infer-
ring a language from finite examples, one arrives at the unlearnability of the
basic families in the Chomsky Hierarchy unless further constraints are put
on the problem of language acquisition.

One possible constraint that may be put on the class of languages is a
constraint on the number of rewrite rules or the size of the representation
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in some notational system. For example, consider the set of all languages
describable by a DFA with at most n states over an alphabet ¥ where |Z| =
k. Call this family H,,. It is immediate that H, is a finite class and an upper

bound on its size is given by
n
|Ha| < [(k)]"

Therefore we get that the VC dimension of H,, is bounded by

VO(H,) < logzd(",j)]") < nklogy(n)

Similar calculations may be conducted for more interesting families of lan-
guages and an Occam principle may then be used.

A second aspect of the framework of statistical learning theory merits
some more discussion. The distance d(A(tx), L;) between the learner’s hy-
pothesis and the target is required to decrease eventually to zero as more
and more data become available, i.e., as kK — o0o. It is of interest to know
the rate at which this convergence occurs and this issue has been a signif-
icant direction of work in the field. In general, using Hoeffding bounds on
uniform laws of large numbers, it is usually possible to guarantee a rate of
O(ﬁ) The rate of convergence takes on a particular significance in a cog-
nitive context as “learnability in the limit” is ultimately only an idealized
notion that is not realized in practice. After all, humans have only a finite
amount of linguistic experience on the basis of which they must generalize to
novel situations. Furthermore, there appears to be a critical (maturational)
time period over which much of language acquisition takes place. At the
end of this learning phase, children develop mature grammars that remain
relatively unaltered over their lifetime. Therefore, it becomes of interest to
characterize the probability with which a typical child might acquire the
target grammar after its critical linguistic experience during the learning
phase. The techniques of statistical learning theory allow us to get a handle
on this question. In the rest of this book, this probabilistic characterization
of learnability will be used to quantify the degree to which the grammar of
children might differ from that of their parents — thereby opening the door
to the study of language change.
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2.3.7 Complexity of Learning

Much of inductive inference began with attempts to understand the con-
ditions under which a learning algorithm would eventually converge to a
target grammar. Even if learnability is possible in principle, one needs to
analyse the complexity of the learning task. It could well be that conver-
gence would take too long rendering the algorithms cognitively implausible
for computational reasons. Much of the PAC and VC based analyses inject
complexity-theoretic ideas into an evaluation of learnability. The discussion
in prior sections focused on the informational complexity of learning with
bounds on how many examples one would require to learn approximately
well. It is also worth noting that given a finite sample, the task of choosing
an appropriate grammar that fits the data may be an optimization prob-
lem of some difficulty. A range of hardness results clarify this phenomenon.
For example, it is NP-hard to find the smallest DFA consistent with a set
of positive and negative example sentences (Gold, 1978). From a different
point of view, Kearns and Valiant (1989) show that efficient DFA inference
is hard under certain cryptographic assumptions. Abe and Warmuth (1992)
consider the computational complexity of learning more general families of
probabilistic grammars (e.g. Hidden Markov Models) and show that it is
the computational complexity rather than informational complexity that is
the barrier to efficient learnability for such cases.

2.3.8 Final Words

In this chapter, we have reviewed frameworks for meaningfully studying the
abstract problem of inferring a language from examples. The problem was
studied in great generality with minimal prior commitment to particular lin-
guistic or cognitive predispositions. It is worthwhile to qualify our position
here. We believe in linguistic structure. That is, we do believe that the ob-
jects of a language like phonemes, syllables, morphemes, phrases, sentences
and so on may be given a formal status and a particular language may then
be characterized by the unique combinatorial and compositional structure of
its linguistic objects. At the same time, the formal expressions of a language
do refer (semantically) to states of affairs in the world and in this sense,
language mediates a relationship between form and meaning. Beyond that,
we have made in this chapter, minimal commitment to the nature of linguis-
tic structure in the world’s languages or the procedure by which they are
acquired by children. Therefore, our discussion has centered largely on the
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general problem of acquiring formal systems via learning algorithms. The
general import of the results presented here is that tabula rasa learning, i.e.,
learning in the complete absence of prior information is infeasible. Successful
language acquisition therefore must come about because of the constraints
inherent in the interaction of the learning child with its linguistic environ-
ment. The nature of these constraints is a matter of some debate and in
the next section we take a more linguistically oriented view of this state of
affairs.
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Chapter 3

Language Acquisition — A
Linguistic Treatment

In the previous chapter, we considered in a somewhat abstract setting the
inherent difficulty of inferring the identity of a potentially infinite set on
the basis of examples from this set. We considered this problem from many
different points of view to highlight, in particular, how learning with uncon-
strained hypothesis classes is impossible. Let us summarize the essential flow
of the argument so far to appreciate the implications for linguistic theory
and cognitive science.

1. Languages have a formal structure and in this sense may be viewed
as sets of well-formed expressions. We have already discussed several
different notions of language that are elaborations of this idea lead-
ing ultimately to perhaps the most general notion of a language as a
probability distribution on permissible form-meaning pairs. One may
choose to work at any appropriate point in the linguistic hierarchy —
from phonology to morphology to syntax to semantics — and at any
such level one may meaningfully discuss the nature of the well formed
expressions in any particular natural language. Successful adult us-
age of a language relies on tacit knowledge of the nature of these well
formed expressions — knowledge that is acquired over the course of
language acquisition.

2. On exposure to finite amounts of data, children are able to learn a
language and generalize to produce and understand novel expressions
they may have never encountered before.

89
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3. Language acquisition does not depend upon the order of presentation
of sentences and it largely proceeds on the basis of positive examples
alone. There is very little explicit instruction to children regarding the
nature of the grammatical rules that underlie the well-formedness of
expressions. If we view grammars as compact representations of sets
of expressions, then it is reasonable to think of language acquisition
as a process of grammar construction, i.e., developing compact repre-
sentations of the linguistic experience encountered over the course of
language acquisition. Clearly children develop these representations
without explicit instruction regarding the appropriate nature of such
representations.

4. All naturally occurring languages are learnable by children. Thus chil-
dren raised in a Mandarin speaking environment of China would learn
Mandarin, in the English speaking environment of Chicago would learn
English and so on. Therefore there are no language specific (specific to
a particular natural language, that is) predispositions. Furthermore,
the class of possible natural languages must be such that every member
of this class is learnable.

5. In the complete absence of prior information (constraints on the pro-
cess of language acquisition), successful generalization to novel expres-
sions is impossible. Therefore, it must be the case that children do not
consider every possible set (of well formed expressions) that is consis-
tent with the data they receive. They consider some hypotheses and
discard others — thus the class  must be constrained in some fashion.

6. Therefore the real issue at hand is the nature of the constraints that
guide the learning child towards the correct grammatical hypotheses.
Linguistic theory in the generative tradition attempts to circumscribe
the range of grammatical hypotheses that humans might entertain.
In this sense, most formal grammatical theories may be viewed as
theories about the nature of H. Developmental psychologists attempt
to characterize the constraints on the nature of A — the learning
algorithm that children may plausibly use during language acquisition.
Taken together, they constitute an explananation for how successful
language acquisition may come about.

In this chapter, we begin our discussion by examining in some detail a
language learning problem in a highly constrained setting that some linguists
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and psychologists have considered to be a useful model for study. This
constrained setting illustrates the interaction of constraints from

1. Linguistic Theory as embodied in grammar formalisms such as Govern-
ment and Binding (Chomsky, 1981; Haegeman, 1991), HPSG (Pollard
and Sag, 1994), Optimality Theory (Prince and Smolensky, 1993)and
approaches that may be accomodated within a broad construal of the
Principles and Parameters view (Chomsky, 1986).

2. Psychological Learning Theory as embodied in learning algorithms that
make minimal demands on the learner in terms of memory and compu-
tational burdens. Examples of such algorithms include the Triggering
Learning Algorithm (Gibson and Wexler, 1994), the Stratified Learn-
ing Hierarchies of Tesar and Smolensky, 1996, and related approaches
described in Bertolo, 2001.

The origin of some of the ideas presented in this chapter lie in an attempt
to formulate the learning theoretic underpinnings for the Triggering Learn-
ing Algorithm presented in “Triggers” (Gibson and Wexler, 1994). In the
next section, we provide a glimpse of some of the linguistic reasoning that
accompanies the learning-theoretic considerations underlying the generative
approach to linguistics.

We then give a brief account of the Principles and Parameters framework,
and the issues involved in learning within this framework. This sets the stage
for our investigations, and we use as a starting point the Triggering Learning
Algorithm (TLA) working on a three-parameter syntactic subsystem first
analyzed by Gibson and Wexler. The significant portion of the chapter
analyzes the TLA from the perspective of learnability. Issues pertaining to
parameter learning in general, and the TLA in particular, are discussed at
appropriate points.

In the next chapter, we continue with the analysis developed here. We
show how the framework allows us to characterize the sample complexity of
learning in parameterized linguistic spaces. We then generalize well beyond
the Principles and Parameters approach. In particular, we discuss how the
Markov chain framework developed for the analysis of the TLA in parame-
terized linguistic spaces is applicable to any learning algorithm for any class
of grammars (languages). Some general properties and special cases are then
considered for important classes of cognitively plausible learning algorithms.
The techniques thus developed will allow us to characterize the behavior of
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the individual learner precisely and create the learning-theoretic foundation
upon which the rest of the book is developed.

3.1 Language Learning and The Poverty of Stim-
ulus

While it is clear from the discussion in the previous chapter that the class H
of possible grammatical hypotheses must be constrained to ensure successful
learnability, the analysis was conducted in a very abstract setting providing
virtually no insight into the possible nature of these constraints. Much of
linguistic theory, however, is developed with the goal of elucidating the pre-
cise nature of such constraints. The learning-theoretic arguments presented
formally in the Gold setting and its variants in the previous chapter are de-
veloped somewhat more informally as the poverty of stimulus argument in
the vast literature in generative linguistics.

To develop some appreciation for the nature of the reasoning involved,
consider the following paradigmatic case of question formation in English.

(1) John is bald.
(1a) Is John bald?

Users of English are able to take declarative statements as in (1) and con-
vert them to appropriate questions as in (1a). Thus both (1) and (1a) are
sequences of English words that speakers of English recognize as grammati-
cal. Presumably, their knowledge (unconscious) of the underlying grammar
of English enables them to make this judgement.

Suppose the learner is provided with (1) and (1a) as examples of English
sentences. On the basis of this, there are many different rules that the learner
may logically infer. For example, let us consider two different rules that are
consistent with the data that may be inferred.

1. Given a declarative sentence, take the second word in the sentence and
move it to the front to form the appropriate question.

[13P%})

2. Given a declarative sentence, take the first “is” and move it to the
front.

Now consider the novel declarative statement where there are multiple
instances of the word “is”.
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(2) The man who is running is bald.

What might the appropriate interrogative form of this statement be?
We instinctively recognize that (2a) is the appropriate interrogative form as
opposed to (2b) below.

(2a) Is the man who is running < > bald?
(2b*) Is the man who < > running is bald?

Examining (2),(2a), and (2b*) we see that neither rule 1 nor rule 2 is
adequate for making the correct generalization from (2) to (2a) but not
(2b*). In order to make the correct generalization, one must recognize that
grammatical sequences have an internal structure. Thus, one may write (1)
as

(1) <John> is <bald>
and write (2) as
(2) <The man who is running> is <bald>

It is now clear that rule 1 is clearly wrong whereas rule 2 may be saved
with some additional consideration. To fully develop the rules for question
formation will require significantly greater analysis but at this point, there
are already two main conclusions that linguists would draw. First, that
given a finite amount of data, there are always many grammatical rules
consistent with the data but which make different generalizations about novel
examples. We have already explored this issue in some mathematical detail
in the previous chapter where the problem of inferring the correct rule system
(grammar) was studied. Second, that sentences have an internal structure
and these constituents play an important role in determining the correct
grammatical system with the right generalization properties.

The poverty of stimulus argument' is developed through several paradig-
matic cases of the form that we have just considered from many different

'The poverty of stimulus argument has been and has remained controversial. While the
discussion of the previous chapter argues that some form of prior constraint is inevitable,
disagreements are over the precise nature of these constraints and how much of it is lan-
guage specific. For two different kinds of discussions about this question, see Pullum and
Scholz (2002) and Elman et al (1996).
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areas of language (from morphology to syntax) and in many languages of
the world.

A rich literature exists on the kinds of generalizations children appear to
make during language acquisition. This is accompanied by much theorizing
about the kinds of grammatical objects and rules that are invoked in the
different languages of the world. (See Atkinson, 1992; Crain and Thorn-
ton, 1998 for a treatment of language acquisition from the perspective of
generative linguistics).

One particular approach to these questions has been the Principles and
Parameters (P&P) approach that we discuss in the next section. Before
proceeding to examine the basic tenets and some examples of the P&P ap-
proach to language, it is worthwhile to clarify that it represents only one
particular point of view. Many other approaches exist and most linguistic
theories including those subsumed by P&P may be regarded as tentative
theses about the nature of H{ — theses that may well turn out to be inade-
quate or wrong. Therefore it would certainly be premature for us to commit
ourselves to any one particular articulation of 7. Rather, we aim to present
the basic principles of learning and evolution in a manner that is general
enough to be adapted to any particular linguistic setting depending upon
one’s theoretical persuasion.

With that qualifying remark, let us move on.

3.2 Constrained Grammars—Principles and Param-
eters

Having recognized the need for constraints on the class of grammars H,
researchers have investigated several possible ways of incorporating such
constraints in the classes of grammars to describe the natural languages
of the world. Examples of this range from linguistically motivated gram-
mars such as Head-driven Phrase Structure Grammars (HPSG), Lexical-
Functional Grammars (LFG), Government and Binding (GB), Optimality
Theory (OT) to bigrams, trigrams and connectionist schemes suggested from
an engineering consideration of the design of spoken language systems. Note
that every such grammar suggests a very specific model for human language,
with its own constraints and its own complexity.

The Principles and Parameters framework (Chomsky, 1981) attempts to
describe H in a parametric fashion. It tries to articulate the “universal”
principles common to all the natural languages of the world and the param-
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eters of variation across them. On this account, roughly speaking, there are
a finite number of principles governing the production of human languages.
These abstract principles can take one of several (finite) specific forms—this
specific form manifests itself as a rule, peculiar to a particular language (or
class of languages). The specific form that such an abstract principle can
take is governed by setting an associated parameter to one of several val-
ues. In typical versions of theories constructed within such a framework, one
therefore ends up with a parameterized class of grammars. The parameters
are boolean valued—setting them to one set of values, defines the grammar of
German (say), setting them to another set of values, defines the grammar,
perhaps, of Chinese.

One may also view this as an attempt to recover the principal dimensions
of language variation. A high level analogy with data analysis is perhaps
appropriate here. Given a set of data points x1,...x, in a k& dimensional
space (where k is large) the well known technique of principal components
analysis projects the data into a subspace that preserves as much of the
variation in the data set as possible. Parametric modeling of the data is
then conducted in this lower dimensional subspace. Each naturally occuring
language may be viewed as a data point in a very high dimensional space. To
reduce the problem of modeling the space of all naturally occuring languages
to more manageable proportions one tries to reduce the dimensionality (per-
haps drastically) by considering subspaces or modules that are “important”
in some sense.

Although the syntactic framework of Government and Binding (Chom-
sky, 1981) is most closely associated with the P&P framework, a broad in-
terpretation of this point of view would include several additional linguistic
theories such as HPSG, varieties of LG, Optimality Theory and so on. For
example, in a constraint based theory such as Optimality Theory, there are
n universal constraints and different natural languages differ in the ranking
they give to each of these constraints. On this account, there are n! different
natural language grammars.

These ideas are best illustrated in the form of examples. We provide,
now, two examples, drawn from syntax and phonology respectively.

3.2.1 Example: A 3-parameter System from Syntax

Different aspects of syntactic competence are treated in a modular fashion
and here we discuss three syntactic parameters that were first extensively
studied in the framework of learning theory by Gibson and Wexler (1994).
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Two X-bar parameters:

A classic example of a parametric grammar for syntax comes from X-bar
theory (see Jackendoff, 1977 for an early exposition). This describes a param-
eterized phrase structure grammar, which defines the production rules for
constituent phrases, and ultimately sentences in the language. The general
format for phrase structure is summarized by the following parameterized
production rules:

XP — Spec X'(p1 = 0) or X' Spec(p; = 1)
X" — Comp X'(ps = 0) or X' Comp(py = 1)
X' =X

X P refers to an X-phrase, where X, or the “head”, is a lexical category
like N (Noun), V' (Verb), A (Adjective), P (Preposition), and so on. Thus,
one could generate a Noun Phrase (denoted by N P) where the head X = N
is a noun, or a Verb Phrase (V' P) and other kinds of phrases by a recursive
application of these production rules. “Spec” refers to specifier, in other
words, that part of the phrase that “specifies” it, roughly like the old in the
Noun Phrase, the old book.

“Comp” refers to the complement, roughly a phrase’s arguments, like an
ice-cream in the Verb Phrase ate an ice-cream, or with envy in the Adjec-
tive Phrase green with envy. Spec and Comp are constituents and could
be phrases with their own specifiers and complements. Furthermore, in a
particular phrase, the spec-position, or the comp-position might be blank
(in these cases, Spec — @, or Comp — ) respectively).

Thus we might include the additional rules

Spec —+ X P;Spec — 0

and
Comp — X P; Comp — ()

Further, these rules are parameterized. Languages can be spec-first (p1 =
0) or spec-final (p; = 1). Similarly, they can be comp-first, or comp-final.
For example, the parameter settings of English are (spec-first,comp-final).
Applying these rules recursively, one can thus generate embedded phrases of
arbitrary length in the language.

As an example, consider the English Noun Phrase (after Haegeman,
1991)

[The investigation (of [the corpse]yp)pp(after lunch)pp]np
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The constituents are indicated by bracketing. The square bracket [ is used
to indicate a Noun Phrase (NP) while a regular bracket ( is used to indicate
a Prepositional Phrase (PP). A partial derivation of the entire phrase is
provided below:

XP — [SpecX'] — [Spec[X'Comp]] — [Spec[X'X P]|

— [Spec[[X' X P]X P]] — [Spec[[X X P]X P]| — [the|[NPP]PP]]

Thus, the N expands into the noun “investigation” and the two prepositional
phrases expand into “of the corpse” and “after lunch” respectively by a
similar application of these rules.

In general, the derivation may be described as a tree structure. Shown
in Fig. 3.1 is an embedded phrase which demonstrates the use of the X-bar
production rules (with the English parameter settings) to generate another
arbitrary English phrase.

In contrast the parameter settings of Bengali are (spec-first,comp-first).

The translation of the same sentence is provided in Fig. 3.2. Notice, how
a difference in the comp-parameter setting causes a systematic difference in
the word orders of the two languages. It is claimed by some linguists that
as far as basic, underlying word order is concerned, X-bar theory covers all
the important possibilities for natural languages®. Languages of the world
simply differ in their settings with respect to the X-bar parameters.
One transformational parameter (V2): The two parameters described
above define generative rules to obtain basic word-order combinations per-
mitted in the world’s languages. As mentioned before, there are many other
aspects which govern the formation of sentences. For example, there are
transformational rules which determine the production of surface word order
from the underlying (base) word-order structure obtained from the produc-
tion rules above. We saw an example of this earlier when we studied the
relation between the interrogative form and the declarative form of the same
sentence. The interrogative form was obtained by a transformation of the
declarative. This transformation involved moving an appropriate constituent
(in the example considered, it was the word “is”) to the front.

2There are a variety of other formalisms developed to take care of finer details of
sentence structure. This has to do with case theory, movement, government, binding and
so on. See Haegeman (1991). There is also the issue of scrambling and how to deal with
languages having apparently free word order.
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VP XP ——> Spec X'

Spec
| v X' —=> X’ Comp

(empty) \
PP (Comp)

/\

Vv Spec

— PP (Comp)
(erﬂpty)
(Comp)
\} Spec
(empty) /\

o

Spec
P NP (Comp)
P /\
Spec N’
|
(empty) ‘
N
| )
ran from there  with his money

Figure 3.1: Analysis of an English sentence. The parameter settings for
English are spec-first, and comp-final.



3.2. CONSTRAINED GRAMMARS-PRINCIPLES AND PARAMETERS99

VP

XP —-—> Spec X’
Spec
(empty) V' X' —-=>Comp X'
PP (Comp)
Spec P’ /_/V
‘ PP (Comp)
(empty)
NP (Comp) P s
‘ Spec P’ \Vi
|
/\ P (empty)
Spec N’
NP (Comp) P’
N
/\ P
Spec N’
w |
(empty)
N
\
or paisa niye shekhan theke douralo
(his) (money)  (with) (there)  (from) (ran)

Figure 3.2: Analysis of the Bengali translation of the English sentence of
the earlier figure. The parameter settings for Bengali are spec-first, and
comp-first.
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These transformational rules may also be parameterized and one such
parameterized transformational rule that governs the movement of words
within a sentence is associated with what has come to be known as the V2
parameter. It is observed that in German and Dutch declarative sentences,
the relative order of verbs and their complements seem to vary depending
upon whether the clause in which they appear is a root clause or subordinate
clause. Consider, the following German clauses:

(1)...dass (that) Karl das (the) Buch (book) kauft (buys).
...that Karl buys the book.

(2)...Karl kauft das Buch.
...Karl buys the book.

This seems to present a complication in that from these sentences it is not
clear whether German is comp-first (as example 1 seems to suggest where the
complement “das Buch” precedes the verb “kauft”) or comp-final (as exam-
ple 2 seems to suggest). It is believed (Haegeman, 1991) that the underlying
word-order form is comp-first (like Bengali, and unlike English, in this re-
spect); however, the V2 parameter is set for German (p3 = 1). This implies
that finite verbs must move so as to appear in exactly the second position in
root declarative clauses (p3 = 0 would mean that this need not be the case).
Therefore the surface form of (2) is derived by applying such a V2 constraint
after generating a base form according to comp-first generative rules. This
may be viewed as a specific application of a more general transformational
rule Move-a. For details and analysis, see (Haegeman, 1991).

Each of these three parameters can take one of two values. There are,
thus, 8 possible grammars (grammatical modules really), and correspond-
ingly 8 languages by extension, generated in this fashion. At this stage,
the languages are defined over a vocabulary of syntactic categories, like N,
V and so on. Applying the three parameterized rules, one would obtain
different ways of combining these syntactic units to form valid expressions
(sentences) in each of the 8 languages. The appendix contains a list of the
set of unembedded (degree-0) sentences obtained for each of the languages,
L, through Lg in this parametric system. The vocabulary has been modified
so that sentences are now defined over more abstract units than syntactic
categories.



3.2. CONSTRAINED GRAMMARS-PRINCIPLES AND PARAMETERS101

3.2.2 Example: Parameterized Metrical Stress in Phonology

The previous example dealt with a parameterized family for a syntactic
module of grammar. Let us now consider an example from phonology. Our
example relates to the domain of metrical stress which describes the possible
ways in which words in a language can be accented during pronunciation.

Consider the English word, “candidate”. This is a three syllable word,
composed of the three syllables, /can/,/di/,and, /date/. A native speaker
of American English typically pronounces this word by stressing the first
syllable of this word. Similarly, such a native speaker would also stress the
first syllable of the tri-syllabic word, “/al/-/pha/-/bet/” so that it almost
rhymes with “candidate”. In contrast, a French speaker would stress the final
syllable of both these words—a contrast which is perceived as a “French”
accent by the English ear.

For simplicity, assume that stress has two levels, i.e., each syllable in
each word can be either stressed, or unstressed®. Thus, an n-syllable long
word could have, in principle, as many as 2" different possible ways of being
stressed. For a particular language, however, only a small number of these
ways is phonologically well-formed. Other stress patterns sound accented, or
awkward. Words could potentially be of arbitrary length*. Thus one could
write phonological grammars—a functional mapping from these words to
their correct stress pattern. Further, different languages correspond to differ-
ent such functions,i.e., they correspond to different phonological grammars.
Within the Principles and Parameters framework, an attempt is made to
parameterize these phonological grammars.

Let us consider a simplified version of two principles associated with 3
boolean valued parameters that play a role in the Halle and Idsardi (1992)
metrical stress system. These principles describe how a multisyllable word
can be broken into its constituents (recall how sentences were composed of

3While we have not provided a formal definition of either stress, or syllable, it is hoped,
that at some level, the concepts are intuitive to the reader. It should, however, be pointed
out that linguists differ on their characterization of both these objects. For example, how
many levels can stress have? Typically, (Halle and Idsardi, 1992) three levels are assumed.
Similarly, syllables are classified into heavy and light syllables. We have discounted such
niceties for ease of presentation.

“One shouldn’t be misled by the fact that that a particular language has only a finite
number of words. When presented with a foreign word, or a “nonsense” word one hasn’t
heard before, one can still attempt to pronounce it. Thus, the system of stress assignment
rules in our native language probably dictates the manner in which we choose to pronounce
it. Speakers of different languages would accent these nonsense words differently.
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constituent phrases in syntax) before stress assignment takes place. This is
done by a bracketing schema which places brackets at different points in the
word, thereby marking (bracketing) off different sections as constituents.
A constituent is then defined as a syllable sequence between consecutive
brackets. In particular, a constituent must be bounded by a right bracket
on its right edge, or, a left bracket on its left edge (both these conditions
need not be satisfied simultaneously). Further, it cannot have any brackets
in the middle. Finally, note that not all syllables of the word need be part
of a constituent. A sequence of syllables might not be bracketed by either
an appropriate left, or right bracket—such a sequence, cannot have a stress-
bearing head, and might be regarded as an extra-metrical sequence.

1. the edge parameters: there are two such parameters.
a) put a left (p; = 0) or right (p; = 1) bracket
b) put the above mentioned bracket exactly one syllable after the left
(p2 = 0) edge or before the right (p, = 1) edge of the word.

2. the head parameter: each constituent (made up of one or more sylla-
bles) has a “head”. This is the stress bearing syllable of the constituent,
and is in some sense, the primary, or most important syllable of that
constituent (recall how syntactic constituents, the phrases, had a lex-
ical head). This phonological head could be the leftmost (ps = 0), or,
the rightmost (p3 = 1) syllable in the constituent.

Suppose, the parameters are set to the following set of values: [p; =
0, p2 =0, ps = 0]. Fig. 3.3 shows how some multisyllable words would have
stress assigned to them. In this case, any n-syllable word would have stress
in exactly the second position (if such a position exists) and no other. In
contrast, if [p;1 = 0, po = 0, p3 = 1], the corresponding language would
stress the final syllable of all multi-syllable words. Monosyllabic words are
unstressed in both languages.

These 3 parameters represent a very small (almost trivial) component of
stress pattern assignment. There are many more parameters which describe
in more complete fashion, metrical stress assignment. At this level of anal-
ysis, for example, the language Koya has ps = 0, while Turkish has p3 = 1;
see Kenstowicz (1994) for more details. This example provides a flavor of
how the problem of stress-assignment can be described formally by a para-
metric family of functions. The analysis of parametric spaces developed in
this chapter can be equally well applied to such stress systems.
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Figure 3.3: Depiction of stress pattern assignment to words of different syl-
lable length under the parameterized bracketing scheme described in the
text.

3.3 Learning in the Principles and Parameters Frame-
work

Language acquisition in the Principles and Parameters framework reduces to
the estimation of the parameters corresponding to the “target” language. A
child is born in an arbitrary linguistic environment. It receives examples in
the form of sentences it hears in its linguistic environment. On the basis of
example sentences it hears, it presumably learns to set the parameters appro-
priately. Thus, referring to our 3-parameter system for syntax, if the child
is born in a German speaking environment, and hears German sentences,
it should learn to set the V2 parameter (to +V2), and the spec-parameter
to spec-first. Similarly, a child hearing English sentences, should learn to
set the comp-parameter to comp-final. In principle, the child is thus solving
a parameter estimation problem—an unusual class of parameter estimation
problems, no doubt, but in spirit, little different from the parameter esti-
mation problems that are encountered in statistical learning. One can thus
ask a number of questions about such problems. What sort of data does
the child need in order to set the target parameters? Is such data readily
available to the child? How often is such data made available to the child?
What sort of algorithms does the child use in order to set the parameters?
How efficient are these algorithms? How much data does the child need?
Will the child always converge to the target “in the limit” ?

Language acquisition, in the context of parameterized linguistic theories,
thus, gives rise to a class of learning problems associated with finite parame-
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ter spaces. Furthermore, as emphasized particularly by Wexler in a series of
works (Hamburger and Wexler, 1975; Culicover and Wexler, 1980; and Gib-
son and Wexler, 1994), the finite character of these hypothesis spaces does
not solve the language acquisition problem. As Chomsky notes in Aspects
of the Theory of Syntaxz (1965), the key point is how the space of possible
grammars— even if finite—is “scattered” with respect to the primary language
input data. It is logically possible for just two grammars (or languages) to
be so near each other that they are not separable by psychologically realistic
input data. This was the thrust of Wexler and Hamburger, and Culicover
and Wexler’s earlier work on the learnability of transformational grammars
from simple data (with at most 2 embeddings). More recently, a signifi-
cant analysis of specific parameterized theories has come from Gibson and
Wexler (1994). They propose the Triggering Learning Algorithm—a simple,
psychologically plausible algorithm which children might conceivably use to
set parameters in finite parameter spaces. Investigating the performance of
the TLA on the 3-parameter syntax subsystem discussed in our previous
example yields the surprising result, that the TLA cannot achieve the target
parameter setting for every possible target grammar in the system. Specifi-
cally, there are certain target parameter settings, for which the TLA could
get stuck in local mazima from which it would never be able to leave, and
consequently, learnability would never result.

In this chapter, our interest lies both in the learnability, and the sample
complezity of the finite hypothesis classes suggested by the Principles and
Parameters theory. An investigation of this sort requires us to define the
important dimensions of the learning problem—the issues which need to be
systematically addressed. The following figure provides a schematic repre-
sentation of the space of possibilities which need to be explored in order to
completely understand and evaluate a parameterized linguistic family from
a learning-theoretic perspective. The important dimensions are as follows:

1. the parameterization of the language space itself: a particular linguistic
theory would give rise to a particular choice of universal principles, and
associated parameters. Thus, one could vary along this dimension of
analysis, the parameterization of the hypothesis classes which need to
be investigated. The parametric system for metrical stress (Example 2)
is due to Halle and Idsardi (1992). A variant, investigated by Dresher
and Kaye (1990), can equally well be subjected to analysis.

2. the distribution of the input data: once a parametric system is decided
upon, one must, then, decide the probability distribution according
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Data
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Memory Requirements

Learning Algorithm

Figure 3.4: The space of possible learning problems associated with param-
eterized linguistic theories. Each axis represents an important dimension
along which specific learning problems might differ. Each point in this space
specifies a particular learning problem. The entire space represents the class
of learning problems that are considered interesting within the Principles
and Parameters framework.
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to which data (i.e., sentences generated by some target grammar be-
longing to the parameterized family of grammars) is presented to the
learner. Clearly, not all sentences occur with equal frequency. Some are
more likely than others. How does this affect learnability? How does
this affect sample complexity? One could, of course, attempt to come
up with distribution-independent bounds on the sample complexity.
This, as we shall soon see, is not possible.

3. the presence, and nature, of noise, or extraneous examples: in practice,
children are exposed to noise (sentences, which are inconsistent with
the target grammar) due to the presence of foreign, or idiosyncratic
speakers, disfluencies in speech, or a variety of other reasons. How does

one model noise? How does it affect sample complexity or learnability
or both?

4. the type of learning algorithm involved: a learning algorithm is an effec-
tive procedure mapping data to hypotheses (parameter values). Given
that the brain has to solve this mapping problem, it then becomes of
interest to study the space of algorithms which can solve it. How many
of them converge to the target? What is their sample complexity? Are
they psychologically plausible?

5. the use of memory: this is not really an independent dimension, in the
sense, that it is related to the kind of algorithm used. The TLA and
variants, as we shall soon see, are memoryless algorithms. These can
be modeled by a Markov chain.

This is the space that needs to be explored. By making a specific choice
along each of the five dimensions discussed (corresponding to a single point
in the 5-dimensional space of Fig. 3.4, we arrive at a specific learning prob-
lem. Varying the choices along each dimension (thereby traversing the entire
space of Fig. 3.4) gives rise to the class of learning problems associated with
parameterized linguistic theories. For our analysis, we choose as a concrete
starting point the Gibson and Wexler Triggering Learning Algorithm (TLA)
working on the 3-parameter syntactic subsystem in the example shown. In
our space of language learning problems, this corresponds to (1) a 3-way
parameterization, using mostly X-bar theory; (2) a uniform sentence dis-
tribution over unembedded (degree-0) sentences; (3) no noise; (4) a local
gradient ascent search algorithm; and (5) memoryless (online) learning. Fol-
lowing our analysis of this learning system, we consider variations in learning
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algorithms, sentence distribution, noise, and language/grammar parameter-
izations.

3.4 Formal Analysis of the Triggering Learning Al-
gorithm

Let us start with the TLA. We first show that this algorithm and others like
it are completely modeled by a Markov chain. We explore the basic com-
putational consequences of this fundamental fact, including some surprising
results about sample complexity and convergence time, the dominance of
random walk over hill climbing, and the potential applicability of these re-
sults to actual child language acquisition and possibly language change — a
theme that we build upon over the course of this book.

3.4.1 Background

Following Gold (1967) and Gibson and Wexler (1994) the basic framework
is that of identification in the limit. Recall Gold’s assumptions from the
previous chapter. The learner receives an (infinite) sequence of (positive)
example sentences from some target language. After each example presen-
tation, the learner either (i) stays in the same state; or (ii) moves to a new
state (changes its parameter settings). If after some finite number of exam-
ples the learner converges to the correct target language and never changes
its guess, then it has correctly identified the target language in the limit;
otherwise, it fails.

In the Gibson and Wexler model (and others) the learner obeys two addi-
tional fundamental constraints: (1) the single-value constraint—the learner
can change only 1 parameter value each step; and (2) the greediness con-
straint—if the learner is given a positive example it cannot recognize, it will
change a parameter value, only if with the new parameter settings it is now
able to analyze the new sentence. The TLA can then be precisely stated as
follows. See Gibson and Wexler (1994) for further details.

e [Initialize] Step 1. Start at some random point in the (finite) space of
possible parameter settings, specifying a single hypothesized grammar
with its resulting extension as a language;

e [Process input sentence] Step 2. Receive a positive example sentence s;
on ith iteration (examples drawn from the language of a single target
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grammar, L(G})), from a uniform distribution on the degree-0 sen-
tences of the language (we relax this distributional constraint later
on);

e [Learnability on error detection] Step 3. If the current grammar parses
(generates) s;, then go to Step 2; otherwise, continue.

e [Single-step hill climbing] Step 4. Select a single parameter uniformly
at random, to flip from its current setting, and change it (0 mapped
to 1, 1 to 0) 4ff that change allows the current sentence to be analyzed;

e [Iterate] Step 5. Go to Step 2.

Of course, this algorithm never halts in the usual sense. Gibson and
Wexler aim to show under what conditions this algorithm converges “in the
limit”—that is, after some number, m, of steps, where m is unknown, the
correct target parameter settings will be selected and never changed. They
investigate the behavior of the TLA on a linguistically natural, 3-parameter
subspace (of the complete linguistic parametric space which involves many
more parameters). This subspace was discussed in Sec. 3.2.1 and will be
reviewed again shortly. Note that a grammar in this space is simply a
particular n-length array of 0’s and 1’s; hence there are 2" possible gram-
mars (languages). Gibson and Wexler’s surprising result is that the simple
3-parameter space they consider is unlearnable in the sense that positive-
only examples can lead to local mazima—incorrect hypotheses from which a
learner can never escape. More broadly, they show that learnability in such
spaces is still an interesting problem, in that there is a substantive learning
theory concerning feasibility, convergence time, and the like, that must be
addressed beyond traditional linguistic theory and that might even choose
between otherwise adequate linguistic theories.

Remark. Various researchers (Clark & Roberts 1993; Frank & Kapur, 1992;
Gibson & Wexler, 1994; Lightfoot, 1991, Fodor, 1998, Bertolo, 2001) have
explored the notion of triggers as a way to model parameter space language
learning. For these researchers, triggers are essentially sentences from the
target that cannot be analyzed by the learner’s current grammatical hypoth-
esis and thereby indirectly inform it about the correct hypothesis. Gibson
and Wexler suggest that the existence of triggers for every (hypothesis, tar-
get) pair in the space suffices for TLA learnability to hold. As we shall
see later, one important corollary of our stochastic formulation shows that
this condition does not suffice. In other words, even if a triggered path ex-
ists from the learner’s hypothesis language to the target, the learner might,
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with high probability, not take this path, resulting in nonlearnability. A
further consequence is that many of Gibson and Wexler’s proposed cures
for nonlearnability in their example system, such as a “maturational” or-
dering imposed on parameter settings, simply do not apply. On the other
hand, this result reinforces Gibson and Wexler’s basic point that apparently
simple parameter-based language learning models can be quite subtle—so
subtle that even a seemingly complete computer simulation can fail to un-
cover learnability problems.

3.4.2 The Markov formulation

Given this background, we turn directly to the formalization of parameter
space learning in terms of Markov chains. This formalization is in fact
suggested but left unpursued in a footnote of Gibson and Wexler (1994).

Parameterized Grammars and their Corresponding Markov Chains

Consider a parameterized grammar (language) family with n parameters.
We picture the 2"-size hypothesis space as a set of points; see Fig. 3.5 for
the 3-parameter case. Each point corresponds to one particular vector of pa-
rameter settings (languages, grammars). Call each point a hypothesis state
or simply state of this space. As is conventional, we define these languages
over some alphabet®. One state is the target language (grammar). Without
loss of generality, we may place the (single) target language at the center
of this space. Since by the TLA the learner is restricted to moving at most
1 binary value in a single step, the theoretically possible transitions be-
tween states can be drawn as (directed) lines connecting parameter arrays
(hypotheses) that differ by at most 1 binary digit (a 0 or a 1 in some cor-
responding position in their arrays). (Recall that the distance between the
grammars in parameter space is the so-called Hamming distance.)

We may further place weights, b;j, on the transitions from state i to
state j. These correspond to the probabilities that the learner will move
from hypothesis state i to state j. In fact, given a probability distribution
over the sentences of the target language L(G), we can carry out an exact
calculation of these transition probabilities themselves. Thus, we can picture
the TLA learning space as a directed, labeled graph V with 2" vertices.

®Following standard notation, ¥ denotes a finite alphabet and ©* denotes the set of all
finite strings (sentences) obtained by concatenating elements of X.
5Gibson and Wexler construct an identical transition diagram in the description of their
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As mentioned, not all these transitions will be possible in general. For
example, by the single value hypothesis, the system can only move 1 bit at
a time. Also, by assumption, only differences in surface strings can force
the learner from one hypothesis state to another. For instance, if state ¢
corresponds to a grammar that generates a language that is a proper subset
of another grammar hypothesis j, there can never be a transition from j
to 4, and there might be one from i to j. Further, it is clear that once we
reach the target grammar there is nothing that can move the learner from
this state, since no positive evidence will cause the learner to change its
hypothesis. Thus, there must be a loop from the target state to itself, and
no exit arcs. In the Markov chain literature, this is known as an Absorbing
State (A). Obviously, a state that leads only to an absorbing state will also
drive the learner to that absorbing state. If a state corresponds to a grammar
that generates some sentences of the target there is always a loop from that
state to itself, with some nonzero probability. Finally, let us introduce the
notion of a closed set of states C to be any proper subset of states in the
Markov chain such that there is no arc from any of the states in C' to any
state outside C in the Markov chain (see Isaacson & Madsen, 1976; Resnick,
1992, and later in this chapter for further details). In other words, it is a set
of states from which there is no way out to other states lying ouside this set.
Clearly, a closed set with only one element (state) is an absorbing state.

Note that in the absence of noise, the target state is always an Absorbing
State in the systems under discussion. This is because once the learner is
at the target grammar, all examples it receives are analyzable and it will
never exit this state. Consequently, the Markov chains we will consider
always have at least one A. Given this formulation, one can immediately
give a very simple learnability theorem stated in terms of the Markov chains
corresponding to finite parameter spaces and learning algorithms’. We do
this below.

computer program for calculating local maxima. However, this diagram is not explicitly
presented as a Markov structure; it does not include transition probabilities, which we
shall see lead to crucial differences in learnability results. Of course, topologically, both
structures must be identical.

"Note that learnability requires that the learner converge to the target state from any
initial state in the system.
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Markov Chain Criteria for Learnability

We argued how the behavior of the Triggering Learning Algorithm can be
formalized by a Markov Chain. This argument will be formally completed
by providing details of the transition probabilities in a little while. While the
formalization is provided for the TLA, every memoryless learning algorithm
A for identifying a target grammar g; from a family of grammars G via
positive examples can be formalized as a Markov chain M (see the following
chapter). In particular, M has as many states as there are grammars in G
with the states in M being in 1-1 correspondence with grammars g € G.
The target grammar gy corresponds to a target state sy of M. We call
M the Markov chain associated with the triple (A, G, g¢), and the triple
itself a memoryless learning system, or learning system for short. The triple
decides completely the topology of the chain. The transition probabilities of
the chain are related to the probability P with which sentences are presented
to the learner.

An important question of interest is whether or not the learning algo-
rithm A identifies the target grammar in the limit. The following theorem
shows how to translate this conventional Gold-learnability criterion for iden-
tifiability in the limit into a corresponding Markov chain criterion for such
memoryless learning systems.

We first recall the familiar definition for a probabilistic version of Gold-
learnability:

Definition 10 Consider a family of grammars G, a target grammar gy €
G, and a learning algorithm A that is exposed to sentences from the target
according to some arbitrary distribution P. Then gy is said to be Gold
learnable by A for the distribution P if and only if A identifies gy in the
limit with probability 1.

A family of grammars G is Gold-learnable if and only if each member of
G is Gold-learnable.

The learnability theorem below says that if a target grammar g; € G is
to be Gold-learnable by A, then the Markov chain associated with the par-
ticular learning system must be restricted in a certain way. To understand
the statement of the theorem, we first recall the related notions of absorb-
ing state and closed set of states. Intuitively, these terms refer to Markov
chain connectivity and associated probabilities: an absorbing state has no
exit link to any other state, while a closed set of states is the extension of the
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absorbing state notion to a set of states. They have already introduced in-
formally in the earlier section for pedagogical reasons. They are reproduced
here again for completeness of the current formal account.

Definition 11 Given a Markov chain M, an absorbing state of M is a
state s € M that has no exit arcs to any other states of M.

Since by the definition of a Markov chain the sum of the transition prob-
abilities exiting a state must equal one, it follows that an absorbing state
must have a self-loop with transition probability 1. In a learning system
that makes transitions based on error detection, the target grammar will
be an absorbing state, because once the learner reaches the target state, all
examples are analyzable and the learner will never exit that state.

Definition 12 Given a Markov chain M, a closed set of states (C) is
any proper subset of states in M such that there is no arc from any of the
states in C' to any state not in C.

If two states belong to the same closed set C' then there may be transitions
from one to the other. Further, there can be transitions from states outside C
to states within C. However, there cannot be transitions from states within
C to states outside C. Clearly, an absorbing state represents the special
case of a closed set of states consisting of exactly one element, namely, the
absorbing state itself.

We can now state the learnability theorem.

Theorem 10 Let < A, G, g € G > be a memoryless learning system.
Let sentences from the target be presented to the learner according to the
distribution P and let M be the Markov chain associated with this learning
system. Then the target g is Gold-learnable by A for the distribution P if
and only if M is such that every closed set of states in it includes the target
state corresponding to gy.

Proof: This has been relegated to the appendix for continuity of reading.
|

Thus, if we are interested in the Gold-learnability of a memoryless learn-
ing system, one could first construct the Markov chain corresponding to
such a system and then check to see if the closed sets of the chain satisfy
the conditions of the above theorem. If and only if they do, the system is
Gold-learnable.
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We now provide an informal example of how to construct a Markov chain
for a parametric family of languages. This is followed by a formal account
of how to compute the transition probabilities of the Markov chain. Finally,
we note some additional properties of the learning system that fall out as
a consequence of our analysis. For example, our analysis is consistent with
the subset principle, it can handle a variety of algorithms, and even noise.

Example.

Consider the following 3-parameter system studied by Gibson and Wexler
(1994). Its binary parameters are: (1) Spec(ifier) first (0) or last (1); (2)
Comp(lement) first (0) or last (1); and Verb Second constraint (V2) does not
exist (0) or does exist (1). Recalling our discussion in the previous section,
we follow standard linguistic convention. Thus, by Specifier we mean the
part of a phrase that “specifies” that phrase, roughly, like the old in the
old book; by Complement we mean roughly a phrase’s arguments, like an
ice-cream in John ate an ice-cream or with envy in green with envy. There
are also 7 possible “words” in this language: S, V, O, O1, 02, Adv, and
Aux, corresponding to Subject, Verb (Main), Object, Direct Object, Indirect
Object, Adverb, and Auxiliary Verb. There are 12 possible surface strings for
each (—V2) grammar and 18 possible surface strings for each (+V2) grammar
if we restrict ourselves to unembedded or “degree-0” examples for reasons
of psychological plausibility (see Wexler & Culicover, 1980; Lightfoot, 1991;
and Gibson & Wexler, 1994 for discussion). Note that the “surface strings”
of these languages are actually phrases such as [Subject, Verb, Object] as
in John ate an ice-cream. Figure (3) of Gibson and Wexler summarizes the
possible binary parameter settings in this system. For instance, parameter
setting #5 corresponds to the array [0 1 0]= Specifier first, Comp last, and
—V2, which works out to the possible basic English surface phrase order
of Subject—Verb—Object (SVO). As shown in Gibson and Wexler’s figure
(3), the other possible arrangements of surface strings corresponding to this
parameter setting include S V; S V O1 O2 (two objects, as in give John an
ice-cream); S Aux V (as in John will eat); S Aux V O; S Aux V O1 O2; Adv
S V (where Adv is an Adverb, like quickly); Adv SV O; Adv SV 01 02;
Adv S Aux V; Adv S Aux V O; and Adv S Aux V O1 O2.

Fig. 3.6 of the appendix gives a complete list of all degree-0 (unembed-
ded) sentences (expressions) for each of the eight different grammars in this
simple system. As shown in the table, English and French correspond to the
language L5, Bengali and Hindi correspond to Ly while German and Dutch
correspond to Lg.
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The Markov chain for the 3-parameter example

Suppose the target language is SVO (Subject Verb Object, or “English” set-
ting #5=[0 1 0]). Within the Gibson and Wexler 3-parameter system, there
are 23 = 8 possible hypotheses, so we can draw this as an 8-point Markov
configuration space, as shown in Fig. 3.5. The shaded rings represent in-
creasing distance in parameter space (Hamming distances) from the target.
Each labeled circle is a Markov state, a possible array of parameter settings
or grammar, hence specifies a possible target language. Each state is exactly
1 binary digit away from its possible transition neighbors. Each labeled, di-
rected arc between the points is a possible transition from state 7 to state 7,
where the labels are the transition probabilities; note that the probabilities
from all arcs exiting a state sum to 1. We shall show how to compute these
probabilities immediately below. The target grammar, a double circle, lies
at the center. This corresponds to the (English) SVO language. Surround-
ing the bulls-eye target are the three other parameter arrays that differ from
[0 1 0] by one binary digit each; we picture these as a ring 1 Hamming dis-
tance away from the target: [0, 1, 1], corresponding to Gibson and Wexler’s
parameter setting #6 in their figure 3 (Spec-first, Comp-final, +V2, basic
order SVO+V2); [0 0 0], corresponding to Gibson and Wexler’s setting #7
(Spec-first, Comp-first, —V2, basic order SOV); and [1 1 0], Gibson and
Wexler’s setting #1 (Spec-final, Comp-final, —V2, basic order VOS).

Around this inner ring lie three parameter setting hypotheses, all 2 binary
digits away from the target: [0 0 1], [1 0 0], and [1 1 1] (grammars #2, 3, and
8 in Gibson and Wexler’s figure 3). Finally, one more ring out, three binary
digits different from the target, is the hypothesis [1 0 1], corresponding to
target grammar 4.

It is easy to see from inspection of the figure that there are exactly two
Absorbing States in this Markov chain, that is, states that have no exit arcs
with non-zero probability. One absorbing state is the target grammar (by
definition). The other absorbing state is state 2 (corresponding to language
VOS+V2, ie., [1 11]). Finally, state 4 (parameter setting [1 0 1]), while
not an absorbing state in itself, has no path to the target. It has arcs that
lead only to itself or to state 2 (an absorbing state which is not the target).
These two states correspond to the local maxima at the head of Gibson and
Wexler’s figure 4. Hence this target language is not learnable. In addition
to these local maxima, the next section below shows that there are in fact
other states from which the learner will, with high probability, never reach
the correct target.
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8/9

Figure 3.5: The 8 parameter settings in the GW example, shown as a Markov
structure. Directed arrows between circles (states, parameter settings, grammars)
represent possible nonzero (possible learner) transitions. The target grammar (in
this case, number 5, setting [0 1 0]), lies at dead center. Around it are the three
settings that differ from the target by exactly one binary digit; surrounding those are
the 3 hypotheses two binary digits away from the target; the third ring out contains
the single hypothesis that differs from the target by 3 binary digits. Note that the
learner can either stay in the same state or step in or out one ring (binary digit)
at a time, according to the single-step learning hypothesis; but some transitions
are not possible because there is no data to drive the learner from one state to the
other under the TLA. Numbers on the arcs denote transition probabilities between
grammar states; these values are not computed by the original GW algorithm. The
next section shows how to compute these values, essentially by taking language set
intersections.
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3.4.3 Derivation of the transition probabilities for the Markov
TLA structure

We have discussed in the previous section how the behavior of the TLA
can be modeled as a Markov chain. The argument is incomplete without
a characterization of the transition probabilities of the associated Markov
chain. We first provide an example and follow it with a formal exposition.
Example. Consider again the 3-parameter system in Fig. 3.5 with target
language 5. What is the probability that the learner will move from state 8
to state 6 7 The learner will make such a transition if it receives a sentence
that is analyzable according to the parameter settings of state 6, but not
according to the parameter settings of state 8. For example, a sentence of
the form (S V O1 O2) as in Peter gave John an ice-cream could drive the
learner to change its parameter settings from 8 to 6. If one assumes a proba-
bility distribution with which sentences from the target are presented to the
learner, one could find the total probability measure of all such sentences
and use it to calculate the appropriate transition probability.

Formalization

The computation of the transition probabilities from the language family can
be done by a direct extension of the procedure given in Gibson and Wexler
(1994). Let the target language L; consist of the strings si, s9, ..., i.e.,

Lt = {81, 592,83, }

Let there be a probability distribution P on these strings. Suppose the
learner is in a state s corresponding to the language L;. Consider some
other state k corresponding to the language L. What is the probability that
the TLA will update its hypothesis from L, to Lj after receiving the next
example sentence? First, observe that due to the single valued constraint,
if k£ and s differ by more than one parameter setting, then the probability
of this transition is zero. In fact, the TLA will move from s to k only if
the following two conditions are met: (1) the next sentence it receives (say,
w occurring with probability P(w)) is analyzable by the parameter settings
corresponding to k and not by the parameter settings corresponding to s;
and (2) the TLA has a choice of n parameters to flip on not being able to
analyze w and it happens to pick the one which would move it to state k.
Event 1 occurs with probability 3°,c(z,\r,)nr, P(w). This is simply the
probability measure associated with all strings w that are both in the target
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L; and Ly, but not in the language L (the learner’s currently hypothesized
language). Event 2 occurs with probability 1/n, since the parameter to flip
is chosen uniformly at random out of the n possible choices. Thus the co-
occurrence of both these events yields the following expression for the total
probability of transition from s to k after one step:

Pls — k] = Z (1/n)P(w)

we(L\Ls)NLy

Since the total probability over all the arcs out of s (including the self-loop)
must be 1, we obtain the probability of remaining in state s after one step
as:
Pls—s]=1- Z Pls — k]
k is a neighboring state of s

In other words, the probability of remaining in state s is 1 minus the prob-
ability of moving to any of the other (neighboring) states.

Finally, given any parameter space with n parameters, we have 2" lan-
guages. Fixing one of them as the target language L; we obtain the following
procedure for constructing the corresponding Markov chain. Note that this
is simply the Gibson and Wexler procedure for finding local maxima, with
the addition of a probability measure on the language family.

e [Assign distribution| Fix a probability measure P on the strings of the
target language L.

e [Enumerate states] Assign a state to each language i.e., each L;.

e [Normalize by the target language] Intersect all languages with the
target language to obtain for each 4, the language L, = L; N L;. Thus
with state ¢ associated with language L;, we now associate the language
L.

¢ [Take set differences] For any two states ¢ and k, ¢ # k, if they are more
than 1 Hamming distance apart, then the transition P[¢ — k] = 0. If
they are 1 Hamming distance apart then P[i — k] = 1 P(L} \ L}). For
i =k, we have Pli —i] =137, P[i — j].

Remark. This model captures the dynamics of the TLA completely. We
note that the learner’s movement from one language hypothesis to another
is driven by purely extensional considerations—that is, it is determined by
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set differences between language pairs. A detailed investigation of this point
is beyond the scope of this chapter.

Example (continued): For our three parameter system, we can follow
the above procedure to calculate set differences and build the Markov figure
straightforwardly. For example, consider P[8 — 6]; we compute (Lg \ Lg) N
L; ={SV0102,S Aux V O, S Aux V O1 O2}. This set has three degree-0
sentences. Assuming a uniform distribution on the 12 degree-0 strings of the
target Ls, we obtain the value of the transition from state 8 to state 6 to
be %(3/ 12) = % Further, since the normalized language L) for state 1 is
the empty set, the set difference between states 1 and 5 (L§ \ L) yields the
entire target language, so there is a (high) transition probability from state 1
to state 5. Similarly, since states 7 and 8 share some target language strings
in common, such as S V, and do not share others, such as Adv S and S V

O, the learner can move from state 7 to 8 and back again.

3.5 Conclusions

In this chapter we have provided a brief account of the linguistic reason-
ing that lies behind the Principles and Parameters approach to linguistic
theory (Chomsky, 1981). We have considered a psycho-linguistically moti-
vated algorithm for language acquisition within this framework. Once the
mathematical formalization has been given many additional properties of
this particular learning system now become evident. For example, an issue
that is amenable to analysis in the current formalization has to do with the
existence of subset/superset pairs of languages. The existence of such pairs
does not alter the procedure by which the Markov chain is computed, nor
does it alter the validity of our main learnability theorem. However, it is
clear by our analysis, that if the target happens to be a subset language, the
superset language will correspond to an absorbing state. This is because all
target sentences are analyzable by the superset language and if the error-
driven learner happens to be at the state corresponding to it, it will never
exit. This additional absorbing state automatically implies non-learnability
by our theorem. However, following Gibson and Wexler and others working
in this tradition, we will assume that such complications do not typically
arise in the parametric systems under discussion in the current and the next
chapter.

Tt is now easy to imagine other alternatives to the TLA that will avoid the
local maxima problem: we can vary any of the five aspects of the language
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learning models we described at the beginning of this chapter. To take
just one example, as it stands, the learner is allowed to change only one
parameter setting at a time. If we relax this condition so that the learner can
change more than one parameter at a time, i.e., the learner can conjecture
hypotheses far from its current one (in parameter space), then the problem
with local maxima disappears. It is easy to see that in this case, there can be
only one Absorbing State, namely the target grammar. All other states have
exit arcs (under the previous assumption of no subset/superset relations).
Thus, by our main theorem, such a system is learnable.

As another variant, consider the possibility of noise—that is, occasionally
the learner gets strings that are not in the target language. Gibson and
Wexler state (fn. 4) that this is not a problem: the learner need only pay
attention to frequent data. But this is of course a serious problem for the
model; how is the learner to “pay attention” to frequent data? Unless some
kind of memory or frequency-counting device is added, the learner cannot
know whether the examples it receives are noise or not. If the learner is
memoryless, then there is always some finite probability, however small,
of escaping a local maximum. Clearly, the memory window has to be large
enough to ensure that sufficient statistics are computable to distinguish noise
from relevant data. A serious investigation of this issue is beyond the scope
of this chapter.

To explore these and other possible variations systematically, we will
return, in the next chapter, to the 5-way classification scheme for learning
models introduced at the beginning of this chapter. We consider first details
about sample complexity. Next, we turn to questions about the distribution
of the input data, and ask how this changes the sample complexity results.
We also consider more realistic input distributions — in particular, those ob-
tained using statistics computed from the CHILDES corpus (MacWhinney,
1996). Finally, we briefly consider sample complexity issues if the learning
algorithms operate in batch rather than on-line mode.

Needless to say, the Principles and Parameters framework discussed here
represents a very particular approach to describing the class H of possible
natural language grammars within which learning algorithms like the Trig-
gering Learning Algorithm have been formulated. In the next chapter, we
will also see how the learning framework developed in this context is gen-
eral enough to accomodate a wider variety of approaches to the problem of
language acquisition. The ability to characterize rates of learning within the
Markov framework developed here will take on an added significance as we
move on in subsequent chapters to study the problem of language change
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and evolution.
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Chapter Appendix

3.6 Unembedded Sentences For Parametric Gram-
mars

Fig. 3.6 provides the unembedded (degree-0) sentences from each of the 8
grammars (languages) obtained by setting the 3 parameters of example 1 to
different values. The languages are referred to as L; through Lg.

3.7 Proof of Learnability Theorem

To establish the theorem, we recall three additional standard terms asso-
ciated with the Markov chain states: (1) equivalent states; (2) recurrent
states; and (3) transient states. We then present another standard result
about the form of any Markov chain: its canonical decomposition in terms
of closed, equivalent, recurrent, and transient states.

3.7.1 Markov state terminology

Definition 13 Given a Markov chain M, and any pair of states s,t € M,
we say that s is equivalent to t if and only if s is reachable from t and t is
reachable from s, where by reachable we mean that there is a path from one
state to another.

Two states s and ¢ are equivalent if and only if there is a path from s
to t and a path from ¢ to s. Using the equivalence relation defined above,
we can divide any M into equivalence classes of states. All the states in one
class are reachable (from and to) the states in that class.

Definition 14 Given a Markov chain M, a state s € M is recurrent if
the chain returns to s in a finite number of steps with probability 1.

Definition 15 Given a Markov chain M, and a state s € M, if s is not
recurrent, then s is transient.

We will need later the following simple property about transient states:
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Lemma 1 Given a Markov chain M, if t is a transient state of M, then,
for any state s € M
lim ps(n) =0

n—o0

where psi(n) denotes the probability of going from state s to state t in exactly
n steps.

Proof: (Sketch) Proposition 2.6.3 (page 88) of Resnick (1992) states that

oo
Zpst(n) < o0
n=1

Therefore, Y psi(n) is a convergent series. Thus pg(n),—e0 — 0. [

3.7.2 Canonical Decomposition

A particular Markov chain might have many closed states (see Definition 12
earlier in text), and these need not be disjoint; they might also be subsets
of each other. However, even though there can be many closed states in a
particular Markov chain, the following standard result shows that there is a
canonical decomposition of the chain (Lemma 2) that will be useful to us in
proving the learnability theorem.

Lemma 2 Given a Markov chain M, we may decompose M into disjoint
sets of states as follows:

M=TuCiuUC,...

where (i) T is a collection of transient states and (i) the C;’s are closed,
equivalence classes of recurrent states.

Proof: This is a standard Markov chain result; see Corollary 2.10.2 of page
99 of Resnick (1992). |
We can now proceed to a proof of the main learnability theorem.

3.7.3 Proof of Main Theorem

=. We need to show that if the target grammar is learnable, then every
closed set in the chain must contain the target state. By assumption, target
grammar gy is learnable. Now assume for sake of contradiction that there is
some closed set C' that does not include the target state associated with the
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target grammar. If the learner starts in some s € C, by the definition of a
closed set of states, it can never reach the target state. This contradicts the
assumption that g; was learnable.

< Assume that every closed set of the Markov chain associated with the
learning system includes the target state. We now need to show that the
target grammar is Gold-learnable. First, we make use of some properties of
the target state in conjunction with the canonical decomposition of Lemma, 2
to show that every non-target state must be transient. Then we make use
of Lemma 1 about transient states to show that the learner must converge
to the target grammar in the limit with probability 1.

First, note the following properties of the target state:

(1) by construction, the target state is an absorbing state, i.e., no other
state is reachable from the target state;

(ii) therefore, no other state can be in an equivalence relation with the
target state and the target state is in an equivalence class by itself;

(iii) the target state is recurrent since the chain returns to it with
probability 1 in one step (the target state is an absorbing state).

These facts about the target state show that the target state consititutes
a closed class (say C;) in the canonical decomposition of M. However, there
cannot be any other closed class Cj,j # 4 in the canonical decomposition
of M. This is because by the definition of the canonical decomposition any
other such C; must be disjoint from Cj, and by the hypothesis of the theorem,
such C; must contain the target state, leading to a contradiction. Therefore,
by the canonical decomposition lemma, every other state in M must belong
to T', and must therefore be a transient state.

Now denote the target state by s;. The canonical decomposition of M
must therefore be in the form:

TU {Sf}.

Without loss of generality, let the learner start at some arbitrary state
s. After any integer number n of positive examples, we know that,

Z pst(n) =1

teM

because the learner has to be in one of the states of the chain M after
n examples with probability 1. But by the decomposition lemma and our
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previous arguments M = T'U s;. Therefore we can rewrite this sum as two
parts, one corresponding to the transient states and the other corresponding
to the final state:

Zpst(n) +p35f (n) =1
teT
Now take the limit as n goes to infinity. By the transient state lemma,
every pst(n) goes to zero for ¢ € T. There are only a finite (known) number
of states in 7. Therefore, 3-,cr pst(n) goes to zero. Consequently, pss, goes
to 1. But that means that the learner converges to the target state in the
limit (with probability 1). Since this is true irrespective of the starting state
of the learner, the learner converges to the target with probability 1, and
the associated target grammar gy is Gold-learnable.
|
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Language | Spec | Comp | V2 Degree-0 unembedded sentences
1y 1 i v "y 8" "vos" "volo?s "auxvse” "auxvos”
"aUX v ol o2 8" "aDv vs” "apv v os” "aDvv ol o?s”
PADV ATX ¥ 8” "ADV AUX V O 8" "ADV AUX Vv 01 02 8°
I, ] 1 1 1 "sv* "g v o” "o vs” "svol o
"ol v o2s” "0o2 v ol s "sAaux v? s aUx v O
"o 4UX v 8" "3 AUX v 0l 02" "ol aux vo2 5" "02 asux v ol 8"
4DV v 8" *ADV v 0 8" "ADV v 01 02 8" "ADV AUX ¥ 8"
" ADV ATX Vv 0 8" "aDV ATX V 0l 02 8”
La 1 V] 0 v 8" Yo vs” Yo2olvs "vauxs” Yo v auxs®
02 01 v aTX 8" "4DV v 8" "aDVv O V8" "aDVvO? 0l VvS*
ADV v AUX 8” "ADV O vV AUX 8" "aDv 02 01 v AUX 8°
Ly 1 0 1 "sv” "ovs' s vo’"s vo?ol” "ol vo?s”
"o2 vols' "sauxv” "sauxov' "oaux vs”
”s aTx 02 01 v” "0l AUX 02 V8" 02 aUX 0l V8" "aDV V &’
"aDvv os” "saDvvo2ols® "apvaux v
TADV ATX O V 8" "ADV ATX 02 01 v 8
Ly O 1 1] gV’ "s vo” "svolo?” Vsaux v" "saux v o”
{Englizh, "s ATX v 01 02" "ADV 8 v "ADV S v 0" "ADV S v 0l 027
French) "ADV 8 AUX V" "ADV S AUX V O” "ADV 5 AUX Vv 01 027
Le| O 1 1 "gv' "svo’ "ovs” "svolo?” "olvs ol
"o2 veo0l” "s aUx v” "s aUx v o” "o aUx s v
"s aTX v 0l 02" "ol aux s v 02" "02 sux s v ol” "sDv v &
4DV V 80" "ADV Vv 801 02" "ADV AUX 8 V" "ADV 4UX S8 VO©
"ADV AUX 8 v 01 027
Lz O 0 0] "8 ¥” "8 o v” "5 02 0l v ¥s v aux®
{Bengali, s 02 0l v aux” "aDVv S V" "aDVS O V" "aDVvE 02 01 ¥V*
Hindi) 7ADV 8 v ATX” "ADV 8 O v AUX” "aDv 5 02 ol v aux”
Lg| 0O 0 1 "sv” "sv o' "ovs”"s vo?2ol” "olvso2”
{German, "o2 vsol” "sauxv” "sauxov' "o auxs v
Dutch) "0l 4aUX 8 02 V" P02 AUX 801 Vv” 4DV v 8" "aDV Vv 3 0O
"apv v 302 ol” "ADV aUX 8 V" YaDv AUXS O V"
’s AUX 02 01 ¥” "8 0 v AUX" "ADV aUX 8 02 01 V"

125

Figure 3.6: A list of all the degree-0 (unembedded) expressions for each of
eight different grammatical types. The eight grammatical types (denoted by
L; through Lg) are obtained by setting the spec, comp, and V2 parameters
respectively. Expressions are not lexicalized but are denoted as strings over
grammatical categories. These categories are S (Subject), O (Object), V
(Verb), ADV (Adverb), AUX (Auxiliary verb), O1 (Direct Object), O2
(Indirect Object) for the sentence types shown.
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Chapter 4

Language Acquisition — More
Computational Detalils

In this chapter, we continue our exploration of the Markov chain framework
for the analysis of learning algorithms for language acquisition. There are
two main themes to this exploration. First, we see how the framework allows
us to get a theoretical handle on the important question of rates of learn-
ability. Not only must the learner converge to the target in the limit, it must
do so at psychologically plausible rates. We develop this point in the next
few sections. Second, we see in later parts of this chapter, that all learning
algorithms may be characterized by inhomogeneous Markov chains. More
significantly, however, the cognitively interesting class of memory limited
learning algorithms may be ultimately characterized by first order Markov
chains. We explore this in subsequent parts of this chapter. We conclude
finally with a brief overview of computational work in language acquisition
that engages the research traditions in linguistics and psychology at varying
levels of detail.

4.1 Characterizing Convergence Times for the Markov
Chain Model

The Markov chain formulation gives us some distinct advantages in theoreti-
cally characterizing the language acquisition problem. First, we have already
seen how given a Markov Chain one could investigate whether or not it has
exactly one absorbing state corresponding to the target grammar. This is
equivalent to the question of whether any local maxima exist. One could

127
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also look at other issues (like stationarity or ergodicity assumptions) that
might potentially affect convergence. Later we will consider several variants
to the TLA and analyze them formally within the Markov framework. We
will also see that these variants do not suffer from the local maxima problem
associated with GW’s TLA.

Perhaps the significant advantage of the Markov chain formulation is that
it allows us to also analyze convergence times. Given the transition matrix
of a Markov chain, the problem of how long it takes to converge has been
well studied. This question is of crucial importance in learnability. Following
GW, we believe that it is not enough to show that the learning problem is
consistent i.e., that the learner will converge to the target in the limit. We
also need to show, as GW point out, that the learning problem is feasible,
i.e., the learner will converge in “reasonable” time. This is particularly
true in the case of finite parameter spaces where consistency might not be
as much of a problem as feasibility. The Markov formulation allows us to
address the feasibility question. It also allows us to clarify the assumptions
about the behavior of data and learner inherent in such an approach. We
begin by considering a few ways in which one could formulate the question
of convergence times.

4.1.1 Some Transition Matrices and Their Convergence Curves

Let us begin by following the procedure detailed in the previous chapter to
explicitly calculate a few transition matrices. Consider the three parameter
example that was informally considered before. The target grammar was
grammar 5 (according to our numbering of the languages in Fig. 3.6). For
simplicity, let us first assume a uniform distribution on the degree-0 strings
in Ls, i.e., the probability the learner sees a particular string s; in L5 is
1/12 because there are 12 (degree-0) strings in Lz. We can now compute
the transition matrix as the following, where 0’s occupy matrix entries if not
otherwise specified:
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To
Ly Ly Ly Ly Ls Lg¢ L7 Lg
. i 1 1 T
1 2 6 3
Lo 1
3 1 1
Ls YR 6
From L4 12 12
Ls 1
1 5
o g5,
7 LI
Ly | 5 36 9

Notice that both 2 and 5 correspond to absorbing states; thus this chain
suffers from the local maxima problem. Note also (following Fig. 3.5 as well)
that state 4 exits either to itself or to state 2 and is also a problematic initial
state. For a given transition matrix 7, it is possible to compute’

Too = lim T™.

m—00

If T is the transition probability matrix of a chain, then Tj;, i.e. the
element of T in the i¢th row and jth column is the probability that the
learner moves from state i to state j in one step. It is a well-known fact
that if one considers the corresponding ‘4, j element of 7™ then this is the
probability that the learner moves from state 7 to state 7 in exactly m steps.
Correspondingly, the 7, jth element of T, is the probability of going from
initial state ¢ to state j “in the limit” as the number of examples goes to
infinity. For learnability to hold irrespective of which state the learner starts
in, the probability that the learner reaches state 5 should tend to 1 as m
goes to infinity. This means that column 5 of T, should consist of 1’s, and
the matrix should contain 0’s everywhere else. Actually we find that T™
converges to the following matrix as m goes to infinity:

!The limiting matrix is not always guaranteed to exist. The existence of a limiting
distribution is equivalent to the chain being ergodic. For precise conditions on ergodicity,
see Isaacson and Madsen, 1976 or any standard text on Markov chains. For our discussion,
we will assume that a limit exists, and barring pathological conditions, it does for the
applications we consider.
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To
Ly Ly, Ly Ly Ls Lg¢ Ly Lg

Ly 02 00 2 00 0
Ly 1
T, — Ly % %
> From L4 1
Ls 1
Lg 1
Ly 1
Ly | 1 |

Examining this matrix we see that if the learner starts out in states 2 or
4, it will certainly end up in state 2 in the limit. These two states correspond
to local maxima grammars in the GW framework. If the learner starts in
either of these two states, it will never reach the target. From the matrix
we also see that if the learner starts in states 5 through 8, it will certainly
converge in the limit to the target grammar.

The situation regarding states 1 and 3 is more interesting, and not cov-
ered in Gibson and Wexler (1994). If the learner starts in either of these
states, it will reach the target grammar with probability 3/5 and reach state
2 (the other absorbing state) with probability 2/5. Thus we see that local
maxima (states unconnected to the target) are not the only problem for
learnability. As a consequence of our stochastic formulation, we see that
there are initial hypotheses from which triggered paths exist to the target,
however the learner will not take these paths with probability one. In our
case, because of the uniform distribution assumption, we see that the path
to the target will only be taken with probability 3/5. By making the distri-
bution more favorable, this probability can be made larger, but it can never
be made one.

This analysis considerably increases the number of problematic initial
states from that presented in Gibson and Wexler (1994). While the broader
implications of this are not clear, it certainly renders moot some of the
linguistic? implications of GW’s analysis.

2For example, GW rely on “connectedness” to obtain their list of local maxima. From
this (incorrect) list, noticing that all local maxima were +Verb Second (+V2), they argued
for ordered parameter acquisition or “maturation”. In other words, they claimed that the
V2 parameter was more crucial, and had to be set earlier in the child’s language acquisition
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Obviously one can examine other details of this particular system. How-
ever, let us now look at a case where there is no local maxima problem.
This is the case when the target languages have verb-second (V2) movement
in GW’s 3-parameter case. Consider the transition matrix (shown below)
obtained when the target language is L;. Again we assume a uniform dis-
tribution on strings of the target.

To
Ly Ly L3 Ly Ls Le¢ L7 Lg
L [1 1
L2 é g 2 1
DoE o, i
From L4 % 36 9
L 1 23 1
3 5 36 g?
L6 36 1 36 11 1
P w N
Ly | 18 75 |

Here we find that 7™ does indeed converge to a matrix with 1’s in the
first column and 0’s elsewhere. Consider the first column of T™. It is of the
form:

(p1(m), p2(m), p3(m), pa(m), ps(m), pe (m),p7(m),ps(m))'

Here p;(m) denotes the probability of being in state 1 at the end of m
examples for the case in which the learner started in state 7. For learnability,
we naturally want

lim p;(m) =1

m— 00

and for the example at hand this is indeed the case. Fig. 4.1 shows a plot of
the following quantity as a function of m, the number of examples.

plm) = min{pi(m)}

The quantity p(m) is easy to interpret. For example, p(m) = 0.95 means
that for every initial state of the learner the probability that it is in the target
state after m examples is at least 0.95. Further, there is one initial state (the
worst initial state with respect to the target, which in our example is Lg)

process. Our analysis shows that this is incorrect, an example of how computational
analysis can aid the search for adequate linguistic theories.
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Figure 4.1: Convergence as a function of number of examples. The horizontal
axis denotes the number of examples received and the vertical axis represents
the probability of converging to the target state. The data from the target
is assumed to be distributed uniformly over degree-0 sentences. The solid
line represents TLA convergence times and the dotted line is a random walk
learning algorithm (RWA). Note that random walk actually converges faster
than the TLA in this case.
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for which this probability is exactly 0.95. We find on looking at the curve
that the learner converges with high probability within 100 to 200 (degree-
0) example sentences, a psychologically plausible number. One can now
of course proceed to examine actual transcripts of child input to calculate
convergence times for more realistic distributions of examples.

Now that we have made a first attempt to quantify the convergence
time, several other questions can be raised. How does convergence time
depend upon the distribution of the data? How does it compare with other
kinds of Markov structures with the same number of states? How will the
convergence time be affected if the number of states increases, i.e the number
of parameters increases? How does it depend upon the way in which the
parameters relate to the surface strings? Are there other ways to characterize
convergence times? We now proceed to answer some of these questions.

4.1.2 Absorption Times

In the previous section, we computed the transition matrix for a fixed (in
principle, this could be arbitrary) distribution and characterized the rate of
convergence in a certain way. In particular, we plotted p(m), (the probability
of converging from the most unfavorable initial state) against m (the number
of samples). However, this is not the only way to characterize convergence
times. Given an initial state, the time taken to reach the absorption state
(known as the absorption time) is a random variable. One can compute the
mean and variance of this random variable. For the case when the target
language is L1, we have seen that the transition matrix has the form:

(& q)

Here ) is a 7-dimensional square matrix. The mean absorption times from
states 2 through 8 is given by the vector (see Isaacson and Madsen (1976) )

p=T-Q)™"1

where 1 is a 7-dimensional column vector of ones. The vector of second
moments is given by

W= (I—Q) ™ (2u—1).
Using this result, we can now compute the mean and standard deviation of

the absorption time from the most unfavorable initial state of the learner.
(We note that the second moment is fairly skewed in such cases and so is not
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Learning Mean abs. St. Dev.
scenario time of abs. time
TLA (uniform) 34.8 22.3
TLA (a = 0.99) 45000 33000
TLA (a = 0.9999) | 4.5 x10% | 3.3 x 108
RW 9.6 10.1

Table 4.1: Mean (col. 1) and Standard Deviation (col. 2) of absorption times
to the target state for TLA with different distributions and the Random Walk
Algorithm. See text for more explanation.

symmetric about the mean, as may be seen from the previous curves.) The
four learning scenarios considered are the TLA with uniform, and increas-
ingly malicious distributions (discussed later), and the random walk (also
discussed later).

4.1.3 Eigenvalue Rates of Convergence

We have shown how to characterize learnability by Markov chains. Recall
that Markov chains corresponding to memoryless learning algorithms have
an associated transition matrix 7. We saw that T* was the transition matrix
after k examples, and in the limiting case,

lim 7% = T,.
k—o00
In general, the structure of T, as discussed earlier, determined whether
the target grammar was learnable with probability 1. The rate at which T
converges to T, determines the rate at which the learner converges to the
target “in the limit”. This rate allows us to bound the sample complexity
in a formal sense, i.e., it allows us to bound the number of examples needed
before the learner will be at the target with high confidence. In this section,
we develop some formal machinery borrowed from classical Markov chain
theory that is useful to bound the rate of convergence of the learner to
the target grammar for learnable target grammars. We first develop the
notion of an eigenvalue of a transition matrix and show how this can be
used to construct an alternative representation of 7%. We then discuss the
limiting distributions of Markov chains from various initial conditions, and
finally combine all these notions to formally state some results for the rate
at which the learner converges to the target.
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Eigenvalues and Eigenvectors

Many properties of a transition matrix can be characterized by its eigenvalues
and eigenvectors.

Definition 16 A number X is said to be an eigenvalue of a matriz T if there
exists some nonzero vector X' satisfying

x'T = \x'.

Such a row vector x' is called a left eigenvector of T corresponding to the
eigenvalue X. Similarly, a nonzero column vector y satisfying Ty = Ay is
called a right eigenvector of T.

It can be shown that the eigenvalues of a matrix T can be obtained by
solving

N —T|=0 (4.1)

where I is the identity matrix and |M| denotes the determinant of the matrix

M.
Example: Consider the matrix
Such a matrix could, for example, be the transition matrix for a learner in

T- [
a parametric space with two grammars, i.e., a space defined by one boolean
valued parameter. In order to solve for the eigenvalues of the matrix, we

need to solve
A0

This reduces to the quadratic equation

[FULEEYIN]
S\t e

[SULEEVI\]
WIS =

2, 1
A—2)2 ==
A-37=3

which can be solved to yield A =1 and A = % as its two solutions. It can be
easily seen that the row vector, x = (1, 1) is a left eigenvector corresponding
to the eigenvalue A = 1. As a matter of fact, all multiples of (1,1) are
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eigenvectors for this particular eigenvalue. Similarly, it can also be seen that
x = (1,—1) is a left eigenvector for the eigenvalue A = 1. |

In general, for an m x m matrix T', Eq. 4.1 is an mth order equation and
can be solved to yield m solutions (complex-valued) for A\. Two other facts
about eigenvalue solutions of such transition matrices are worth noting here.

1. For transition matrices corresponding to finite Markov chains, it is
possible to show that A = 1 is always an eigenvalue. Further, it is the
largest eigenvalue in that any other eigenvalue, A, is less than one in
absolute value, i.e., |A| < 1.

2. For transition matrices corresponding to finite Markov chains, the mul-
tiplicity of the eigenvalue A = 1 is equal to the number of closed classes
in the chain.

In our example above, we do see that A = 1 is an eigenvalue. It has
multiplicity of 1, indicating that there is only one closed class in the chain;
in the example, the class consists of the two states of the chain.

Representation of T%

The eigenvalues and associated eigenvectors can be used to represent 7 in
a form that is convenient for bounding the rate of its convergence to T'.
This representation is only true for matrices that are of full rank, i.e., m X m
matrices that have m linearly independent left eigenvectors.

Let T be an m X m transition matrix. Let it have m linearly independent
left eigenvectors x, ... , x|, corresponding to eigenvalues A1, Aa, ... , A One
could then define the matrix L whose rows are the left eigenvectors of the
matrix 7. Thus

X
X3
L=
!

Xm

Clearly, since the rows of L are linearly independent, its inverse, L™!
exists. It turns out that the columns of L~ are the right eigenvectors of 7.
Let the ith column of L~ be y;; i.e.,

L_lz[}ﬁ Y2 -+ Ym
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Now we can represent 7% in a convenient form stated in the following
lemma:

Lemma 3 Let T be an m X m transition matrix having m linearly indepen-
dent left eigenvectors, x,... ,x., corresponding to eigenvalues A1, ... , Apy.
Further let L be the matriz whose rows are the left eigenvectors and let the

columns of L™1 be y;’s. Then

m
T" = My
=1

Thus, according to the lemma above, T* can be represented as the linear
combination of m fixed matrices (y;x}). The coefficients of this linear com-
bination are AF. Clearly, we see that the rate of convergence of T* is now
bounded by the rate of convergence of terms like \¥.

Example (contd.) Continuing our previous example, we can construct the
matrices, L and L™! out of the left eigenvectors. In fact using our solutions
from before, we see that

: ]

2

_ |11 -1 _
L= [ 1 1 ] and L™ = [
The rows of L are the x;’s and the columns of L~! are the y;’s. [ |

N[
N —

Initial Conditions and Limiting Distributions

Recall that the learner could start in any initial state. One could quantify
the initial condition of the learner by putting a distribution on the states
of the Markov chain according to which the learner picks its initial state.
Let this be denoted by the row vector IIy = (m1(0), 72(0), ... , 7 (0)). Thus,
m;(0) is the probability with which the learner picks the ith state as the
initial state. For example, if the learner were equally likely to start in any
state, then 7;(0) = L for all 4.

The above characterizes the probability with which the learner is in each
of the states before having seen any examples. The learner would then move
from state to state according to the transition matrix 7. After k examples,
the probability with which the learner would be in each of the states is given
by:

I, = I,T*
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Finally, one could characterize the limiting distribution as
M= lim T} = Ts (4.2)
k—o0

Clearly, II characterizes the probability with which the learner is in each
of the states “in the limit”. Suppose the target were L1, and it were Gold-
learnable; then the first element of the vector II would be 1 and all other
elements would be 0. In other words, the probability that the learner is at
the target in the limit is 1 and the probability that the learner is at some
other state (non-target) in the limit is correspondingly 0.

Rate of Convergence

We are interested in bounding the rate at which II; converges to II. We see
that this rate depends on the rate at which T* converges to Tw, (Eq. 4.2)
which in turn depends upon the rates at which the Af’s converge to 0 by
Lemma 3 (for ¢ > 1). As we have discussed, A\; = 1. Consequently, we
can bound the rate of convergence by the rate at which the second largest
eigenvalue converges to 0. Thus we can state the following theorem.

Theorem 11 Let the transition matriz characterizing the behavior of the

memoryless learner be T. Further, let T have the eigenvalues, A\1,... , A\m,
and m linearly independent left eigenvectors, x!,... ,x,, and m right eigen-
vectors yi,-.. ,Ymi; A1 = 1 Then, the distance between the learner’s state

after k examples and its state in the limit is given by:

n n
1L — IL[I=I] Y N Toyax [|< moax {[Ail*} 3 [| Toy;a; |
i=2 == j=2

Let us first apply this theorem to the illustrative example of this section.
Example (contd.) We have already solved for the eigenvalues of 7' and
constructed the matrices L and L~!. The rows of L are the row vectors
x} and the columns of L~! are the column vectors y;. Assuming that the
learner is three times as likely to start in state 1 as compared to state 2, i.e.,
Ip = (3, 1), we can show that :

1\F 1
Ime-1< (3) )
Thus the rate at which the learner converges to the limiting distribution
over the state space is of the order of (%)’C Note that % is the second largest
eigenvalue of the transition matrix. [
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Transition Matrix Recipes:

The above discussion allows us to see how one could extract useful learn-
ability properties of the memoryless learner from the transition matrix char-
acterizing the behavior of that learner on the finite parameter space. As a
matter of fact, we can now outline a procedure whereby one could check for
the learnability and sample complexity of learning in such parameter spaces.

1. Construct the transition matrix 7" for the memoryless learner according
to the arguments developed earlier. Such a matrix has 2" states if there
are n boolean valued parameters in the grammatical theory.

2. Compute the eigenvalues of the matrix 7'

3. If the multiplicity of the eigenvalue A = 1 is more than one, then there
are additional closed classes and by the learnability theorem, the target
grammar is not Gold-learnable.

4. If the target is Gold-learnable, and the eigenvectors are linearly inde-
pendent, then use Theorem 11 to bound the rate of convergence. If
the eigenvectors are not linearly independent, then one will need to
project into the appropriate subspace of lower dimension and compute
the rates in the subspace. See Isaacson and Madsen (1976) for gen-
eral details and Rivin and Komarova (2003) for specific calculations
pertaining to these kinds of learning algorithms.

Using such a procedure, we can bound the rate of convergence of each of
the following learning scenarios for the three parameter syntactic subsystem
we have examined in some detail in previous examples. In each case, the
target is the language L. The learning algorithm is the TLA with different
sentence distributions (parameterized by a with b, c,d chosen to make sen-
tences outside of A equally likely; see next section). We also considered the
Random Walk Algorithm (no greediness, no single value; see next section)
with a uniform sentence distribution. The rate of convergence is denoted as
a function of the number of examples.

4.2 Exploring Other Points

We have developed, by now, a complete set of tools to characterize learn-
ability and sample complexity of memoryless algorithms working on finite
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Learning scenario | Rate of Convergence
TLA (uniform) 0(0.94%)
TLA(a = 0.99) O((1 — 1074)¥)

TLA(a = 0.9999) O((1 — 10=6)%)
Random Walk 0(0.89%)

Table 4.2: Bounds on the rate of convergence to the target for TLA under
different distributional assumptions and the Random Walk Algorithm. & is
the number of examples. We see how the second eigenvalue changes for each
of these cases.

parameter spaces. We applied these tools to a specific learning problem
which corresponded to a single point in our 5-dimensional space — a point
previously investigated by Gibson and Wexler. We also provided an account
of how our new analysis revised some of their conclusions and had possible
applications to linguistic theory. Here we now explore some other points in
the space. In the next section, we consider varying the learning algorithm,
while keeping other assumptions about the learning problem identical to that
before. Later, we vary the distribution of the data.

4.2.1 Changing the Algorithm

As one example of the power of this approach, we can compare the conver-
gence time of TLA to other algorithms. TLA observes the single value and
greediness constraints. We consider the following three simple variants by
dropping either or both of the Single Value and Greediness constraints:

Random walk with neither greediness nor single value constraints:
We have already seen this example before. Suppose the learner is in a par-
ticular state. Upon receiving a new sentence, it remains in that state if the
sentence is analyzable. If not, the learner moves uniformly at random to
any of the other states and stays there waiting for the next sentence. This
is done without regard to whether the new state allows the sentence to be
analyzed.

Random walk with no greediness but with single value constraint:
The learner remains in its original state if the new sentence is analyzable.
Otherwise, the learner chooses one of the parameters uniformly at random
and flips it thereby moving to an adjacent state in the Markov structure.
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Figure 4.2: Convergence rates for different learning algorithms when L1 is the
target language. The curve with the slowest rate (large dashes) represents
the TLA. The curve with the fastest rate (small dashes) is the Random Walk
(RWA) with no greediness or single value constraints. Random walks with
exactly one of the greediness and single value constraints have performances
in between these two and are very close to each other.

Again this is done without regard to whether the new state allows the sen-
tence to be analyzed. However since only one parameter is changed at a
time, the learner can only move to neighboring states at any given time.

Random walk with no single value constraint but with greediness:
The learner remains in its original state if the new sentence is analyzable.
Otherwise the learner moves uniformly at random to any of the other states
and stays there iff the sentence can be analyzed. If the sentence cannot be
analyzed in the new state the learner remains in its original state.

Fig. 4.2 shows the convergence times for these three algorithms when
L is the target language. Interestingly, all three perform better than the
TLA for this task (learning the language Li). More generally, it is found
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that the variants converge faster than the TLA for every target language.
Further, they do not suffer from local maxima problems. In other words,
the class of languages is not learnable by the TLA, but is by its variants.
This is another striking consequence of our analysis. The TLA seems to be
the “most preferred algorithm” by psychologists. The failure of the TLA
to learn the 3-parameter space was used to argue for maturational theories,
alternate parameterizations, and parameter ordering.

In view of the fact that the failure of the TLA can be corrected by
fairly simple alterations?, one should examine the conceptual support (from
psychologists) for the TLA more closely before drawing any serious linguistic
implications. This remains yet another example of how the computational
perspective can allow us to rethink cognitive assumptions. Of course, it
may be that the TLA has empirical support, in the sense of independent
evidence that children do use this procedure (given by the pattern of their
errors, etc.).

4.2.2 Distributional Assumptions

In an earlier section we assumed that the example data was generated ac-
cording to a uniform distribution on the sentences of the target language. We
computed the transition matrix for a particular target language and showed
that convergence times were of the order of 100-200 samples. In this section
we show that the convergence times depend crucially upon the distribution.
In particular we can choose a distribution that will make the convergence
time as large as we want. Thus the distribution-free convergence time for
the 3-parameter system is infinite.

As before, we consider the situation where the target language is L;.
There are no local maxima problems for this choice. We begin by letting the
distribution be parameterized by the variables a, b, ¢, d where

a = P(A={AdvVS})
P(B={AdvV OS, Adv Aux V S})
= P(C={AdvV 010285, Adv AuxV O S,
Adv Aux V 01 02 S})
d = P(D={VS}

Thus each of the sets A, B,C and D contain different degree-0 sentences of
L;. Clearly the probability of the set L1 \{AUBUCUD} is 1—(a+b+c+d).

3Note that we have barely scraped the tip of the iceberg as far as exploring the space
of possible algorithms is concerned.
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L, Ly L3 Ly Ly Lg Ly Lg
Ly 1
L2 lzagb;c 2+a+b+c s b

3 atd—
L3 3 c ?i 3—§—d
Ly 3 3 3
Ls 1 2—a a

3 3 3
LG b+c 3—b—c
3 a+d 3 3—2a—d a

Lq 50 ) 3 3,
Lsg 3 En

Table 4.3: Transition matrix corresponding to a parameterized choice for
the distribution on the target strings. In this case the target is L; and the
distribution is parameterized according to Section 4.7.2

The elements of each defined subset of Ly are equally likely with respect to
each other. Setting positive values for a, b, ¢, d such that a+b+c+d < 1 now
defines a unique probability for each degree(0) sentence in L;. For example,
the probability of (Adv V O S) is b/2, the probability of (Adv Aux V O S)
is ¢/3, that of (VO S)is (1 —(a+b+c+d))/6 and so on.

We can now obtain the transition matrix corresponding to this distribu-
tion. This is shown in Table 4.3.

Compare this matrix with that obtained with a uniform distribution on
the sentences of L in the earlier section. This matrix has non-zero elements
(transition probabilities) exactly where the earlier matrix had non-zero ele-
ments. However, the value of each transition probability now depends upon
a,b,c, and d. In particular if we choose a = 1/12,b = 2/12,¢ = 3/12,d =
1/12 (this is equivalent to assuming a uniform distribution) we obtain the
appropriate transition matrix corresponding to a uniform distribution. Look-
ing more closely at the general transition matrix, we see that the transition
probability from state 2 to state 1 is (1 — (a + b+ ¢))/3. Clearly if we make
a arbitrarily close to 1, then this transition probability is arbitrarily close to
0 so that the number of samples needed to converge can be made arbitrarily
large. Thus choosing large values for a and small values for b will result in
large convergence times.

This means that the sample complexity cannot be bounded in a distribution-
free sense, because by choosing a highly unfavorable distribution the sample
complexity can be made as high as possible. For example, we now give the
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convergence curves calculated for different choices of a,b,c,d. We see that
for a uniform distribution the convergence occurs within 200 samples. By
choosing a distribution with ¢ = 0.9999 and b = ¢ = d = 0.000001, the
convergence time can be pushed up to as much as 50 million samples. (Of
course, this distribution is presumably not psychologically realistic.) For
a = 0.99,b = ¢ = d = 0.0001, the sample complexity is on the order of
100, 000 positive examples.

4.2.3 Natural Distributions—CHILDES CORPUS

Given the distribution of the sample complexity upon distributional assump-
tions, it is of interest to examine the fidelity of the model using real language
distributions. For this purpose we carried out some preliminary experiments
using the CHILDES database (Macwhinney, 1991). We have carried out
preliminary direct experiments using the CHILDES caretaker English input
to “Nina” and German input to “Katrin”; these consist of 43,612 and 632
sentences each, respectively. We note, following well-known results by psy-
cholinguists, that both corpora contain a much higher percentage of aux-
inversion and wh-questions than “ordinary” text (e.g., the LOB): 25,890
questions, and 11, 775 wh-questions; 201 and 99 in the German corpus; but
only 2,506 questions or 3.7% out of 53,495 LOB sentences.

To test convergence, an implemented system using a newer version of de
Marcken’s partial parser (see de Marcken, 1990) analyzed each degree-0 or
degree-1 sentence as falling into one of the input patterns SVO, S Aux V,
etc., as appropriate for the target language. Sentences not parsable into these
patterns were discarded (presumably “too complex” in some sense following
a tradition established by many other researchers; see Wexler and Culicover
(1980) for details). Some examples of caretaker inputs follow:

this is a book ? what do you see in the book ?
how many rabbits 7

what is the rabbit doing 7 (...)

is he hopping 7 oh . and what is he playing with 7
red mir doch nicht alles nach !

ja , die schwitzen auch immer alles nach (...)
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Figure 4.3: Rates of convergence for TLA with L; as the target language
for different distributions. The y-axis plots the probability of converging to
the target after m samples and the z-axis is on a log scale, i.e., it shows
log(m) as m varies. The solid line denotes the choice of an “unfavorable”
distribution characterized by a = 0.9999;b = ¢ = d = 0.000001. The dotted
line denotes the choice of a = 0.99;b = ¢ = d = 0.0001 and the dashed line is
the convergence curve for a uniform distribution, the same curve as plotted

in the earlier figure.
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When run through the TLA, we discover that convergence falls roughly
along the TLA convergence time displayed in Fig. 4.1-roughly 100 examples
to asymptote. Thus, the feasibility of the basic model is confirmed by actual
caretaker input, at least in this simple case, for both English and German.
One may explore this model with other languages and distributional assump-
tions. However, there is one very important new complication that must be
taken into account: we have found that one must (obviously) add patterns
to cover the predominance of auxiliary inversions and wh-questions. How-
ever, that largely begs the question of whether the language is verb-second
or not. Thus, as far as we can tell, we have not yet arrived at a satisfactory
parameter-setting account for V2 acquisition.

4.3 Batch Learning Upper and Lower Bounds: An
Aside

So far we have discussed a memoryless learner moving from state to state
in parameter space and hopefully converging to the correct target in finite
time. As we saw this was well-modeled by our Markov formulation. In
this section however we step back and consider upper and lower bounds for
learning finite language families if the learner was allowed to remember all
the strings encountered and optimize over them. Needless to say this might
not be a psychologically plausible assumption, but it can shed light on the
information-theoretic complexity of the learning problem.

Consider a situation where there are n languages L1, Lo, ... L, over an
alphabet Y. Each language can be represented as a subset of ¥* i.e.

L,’ = {wﬂ,wig, .. };wij =3

The learner is provided with positive data (strings that belong to the lan-
guage) drawn according to distribution P on the strings of a particular target
language. The learner is to identify the target. It is quite possible that the
learner receives strings that are in more than one language. In such a case
the learner will not be able to uniquely identify the target. However, as more
and more data becomes available, the probability of having received only am-
bigious strings becomes smaller and smaller and eventually the learner will
be able to identify the target uniquely. An interesting question to ask then is
how many samples does the learner need to see so that with high confidence
it is able to identify the target, i.e. the probability that after seeing that
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many samples, the learner is still ambigious about the target is less than 4.
The following theorem provides a lower bound.

Theorem 12 The learner needs to draw at least M = max m In(1/6)

samples (where p; = P(Ly N Lj)) in order to be able to identify the target
with confidence greater than 1 —§.

Proof: Suppose the learner draws m (less than M) samples. Let k =
arg max;; pj. This means (1) M = m In(1/6) and (2) that with prob-
ability pi the learner receives a string which is in both L and L;. Hence
it will be unable to discriminate between the target and the kth language.
After drawing m samples, the probability that all of them belong to the set
LiN Ly is (px)™. In such a case even after seeing m samples, the learner will
be in an ambiguous state. Now (px)™ > (px)M since m < M and p;, < 1.
Finally since M In(1/p;) = In((1/px)™) = In(1/5), we see that (pg)™ > 4.
Thus the probability of being ambiguous after m examples is greater than §
which means that the confidence of being able to identify the target is less
than 1 — 4. m

This simple result allows us to assess the number of samples we need to
draw in order to be confident of correctly identifying the target. Note that
if the distribution of the data is very unfavorable, that is, the probability
of receiving ambiguous strings is quite high, then the number of samples
needed can actually be quite large. While the previous theorem provides the
number of samples necessary to identify the target, the following theorem
provides an upper bound for the number of samples that are sufficient to
guarantee identification with high confidence.

Theorem 13 If the learner draws more than M = mln((N —1)/6)
samples, then it will identify the target with confidence greater than 1 — 6.
(Here by = max;,; P(L; N Lj)) and N is the total number of languages in
the family.)

Proof: Let the target be L;. We can define A; to be the event that L; and L;
are not distinguishable after n events. The probability of event A; (denoted
by P(A;)) is pj" where p; = P(L; N L;). Thus A; occurs if all n example
sentences belong to both L; and L;. Now, the probability that at least one
of the events A; occurs is given by P(U;x.A;). Using the union bound, we
have P(Uj4;) < 30,4 P(A4;) < (N = 1)b}. For this to be smaller than 4,

we need (1/b)" > (N—1)/dorn> M = mln((N—l)/é). Thus, if more
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than M examples are drawn, the probability of being unable to distinguish
the target language from any one of the other languages is made small. =

To summarize, this section provides a simple upper and lower bound on
the sample complexity of exact identification of the target language from
positive data. The § parameter that measures the confidence of the learner
of being able to identify the target is suggestive of a PAC (Valiant, 1984)
formulation. However there are two crucial differences. In the PAC formu-
lation, one is interested in an e-approximation to the target language with
at least 1 — ¢ confidence. In our case, this is not so. Since we are not al-
lowed to approximate the target, the sample complexity shoots up with the
choice of unfavorable distributions. Second, the learner has to make do with
only positive data. In the classical PAC setting, the learner has access to
both positive and negative examples. Recalling our discussion of the PAC
framework from an earlier chapter, it is worthwhile to note that any finite
family of languages is PAC learnable and upper and lower bounds on the
sample complexity for learning such families are easily derived following the
usual analysis (Vapnik, 1998). We do not explore these sorts of questions
any further in the rest of the book.

4.4 Generalizations and Variations

The previous sections introduced and analyzed the Markov chain framework
for analyzing the learnability of grammars in the Principles and Parameters
(P&P) tradition. We now show that this framework has general applicability
well beyond the scope of P&P and the Triggering Learning Algorithm.

4.4.1 Markov Chains and Learning Algorithms

Consider a learning algorithm A specified by a mapping from
D—H

where as before D is the set of all finite length data streams and H is a class of
hypothesis grammars (languages). The learning algorithm is conceptualized
as an on line procedure that develops grammatical hypotheses after each
new example sentence. Suppose the learner has an initial hypothesis hy.
After each new sentence has been received, it updates its hypothesis. Let us
denote its hypothesis after n examples as h,,. One can then reasonably ask
— what is the probability with which the following event happens:

Event: h, = g;hpy1 = f
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The probability of this event is simply given by the measure of the set
Ang N Anyrp = {t € T|A(tn) = g} N {t € T|A(tn11) = f}

Here T is the set of all texts and ¢ is a generic element of this set, i.e.,
it is a particular text. In accordance with the notation introduced in the
earlier chapter, t, refers to the first n sentences in the text ¢ and there-
fore t, € D. We discussed the natural measure puo on 7' that exists by
the Kolmogorov extension theorem and thus both sets A, 4 and A, ; are
measurable. Therefore, one may define

Hoo (An+1,f N An,g)
Noo(An,g)

provided that pi(Ang) > 0. If po(Ang) = 0, this means that after n
examples have been received, the probability with which the learner will
conjecture g at this stage is exactly 0.

We can now naturally define an inhomogeneous Markov Chain. The state
space corresponds to the set of possible grammars in H — for each grammar
g € H we have a state in the chain. At each point in time, the learner has
a particular grammatical hypothesis and therefore the chain is in the state
corresponding to that grammar. At the nth time step (after n examples
have been received), the transition matrix of the chain is given by

IP)[hn—f—l = f|h‘n = g] =

_ //'(An—}—l,f N An,g)

T0(9, f) = Plhnt1 = flhn = g] = Plg — f] fioo(An 9) (4.3)

Since T),(g, f) as defined by Eq. 4.3 can be evaluated only for those g for
which oo (An,g) > 0, we need to specify the values of T;, for other choices of
g- To do this it is enough to choose a set of positive numbers a4 such that
> gen @ = 1. Therefore, we can define

Tn(g, f) =op &= Uoo(An,g) =0 (4'4)

It is easy to check that
Vg, Y Tulg, f) =1

fer

It is similarly easy to also check that

P[hn-l—l = f] = Noo(An+1,f) = Z ]P[hn = g]Tn(gaf)
gEH
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The transition matrix 77, is time dependent and characterizes the evolution
of the learner’s hypothesis from example sentence to example sentence.
Thus we make the following observations:

1. Let H be a class of possible target grammars.
2. Let g € H be the target grammar.

3. Let p be a probability measure on L, C X* according to which sen-
tences are presented to the learner.

4. By the Kolmogorov extension theorem, a unique measure p, exists on
the set of all possible texts T' as discussed.

5. Any arbitrary learner A : D — H may be exactly characterized by an
inhomogeneous Markov chain with as many states as there are gram-
mars in A4 and whose transition matrix 7, (after n steps) is given by
Eq. 4.3 and 4.4 respectively.

Wee have thus proved

Theorem 14 Any deterministic learning algorithm may be characterized by
an inhomogeneous Markov chain. The behavior of the chain depends upon
the learning algorithm A, the target grammar g € H and the probability
measure p on Ly € ¥*. The target grammar g is learnable (with measure
1) if and only if the chain settles in the state corresponding to the target
grammar.

Thus learnability of grammars is related to the convergence of non-
stationary Markov chains. In general, such an inhomogeneous chain con-
verges to its limiting distribution if the chain is ergodic. Conditions for the
ergodicity of inhomogeneous chains may be expressed in a variety of ways,
most notably utilizing the notion of the ergodic coefficient. This, in turn,
might allow us to obtain learnability conditions expressed in the language
of Markov chains rather than recursion theory. Thus, for example, if the
learning algorithm A is such that (i) the associated Markov chain is ergodic
(ii) for each n, T, is such that all closed sets contain the target state, then
the hypothesis generated by A will converge to the target grammar in the
limit. It is worthwhile to note, however, that ergodicity is not necessary
for learnability since the chain need not converge to the target state from
all initial distributions. A more involved discussion of the relationship be-
tween the learnability of grammars and the convergence of the corresponding
inhomogeneous chains is beyond the scope of this book.
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We turn now to the consideration of the class of memoryless learning
algorithms which are characterized by stationary chains. The conditions for
the convergence of such chains are obtained from the analysis of the TLA
provided earlier.

4.4.2 Memoryless Learners

Memoryless algorithms may be regarded as those that have no recollection
of previous data, or previous inferences made about the target function.
At any point in time, the only information upon which such an algorithm
acts is the current data, and the current hypothesis (state). A memoryless
algorithm may then be characterized as an effective procedure mapping this
information to a new hypothesis. In general, given a particular hypothesis
state (h in H, the hypothesis space), and a new datum (sentence, s in X*),
such a memoryless algorithm will map onto a new hypothesis (g € H). Of
course, g could be the same as h or it could be different depending upon the
specifics of the algorithm and the datum.

Formally, therefore, the algorithm A must be such that for all n and for
all texts t € T', we have

Altny1) = a(A(tn), t(n + 1))

where @ is a mapping from H x ¥* to H.
Following our previous discussion, the behavior of such an algorithm is
also characterized by a Markov chain. It is easy to see that

Tn(g, f) = Problhni1 = flhy = g] = p({s € *|a(g,s) = f})

where as before we have assumed that the text is generated by sampling
in i.i.d. fashion according to a probability measure y on 3*. Clearly T;, is
independent of n and the resulting Markov chain is a stationary one.

4.4.3 The Power of Memoryless Learners

Pure memoryless learners belong to the more general class of memory limited
learners. Memory limited learners develop grammatical hypothesis based
on a finite memory of sentences they have heard over their lifetime. The
following definition provides a useful formalization of the notion:

Definition 17 (Wexler and Culicover, 1980) For any finite data stream
u € D, let u~ be the data stream consisting of all but the last sentence of u.
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Thus if n = lh(u) and u = $1,82,... ,8n, then u~ = 81,82,... ,8,—1. Let
u~k be the data stream consisting of the last k elements of u. Thus if n > k
then u™k € D s such that u"k = S;_(k—1),Sn—(k—2)s--- »Sn- A learning

algorithm A is said to be k-memory limited if for all u,v € D, such that (i)
u k =v k, and (ii) A(u~) = A(v™), we have A(u) = A(v).

To put it differently, .A(u) depends only upon the previous grammatical
hypothesis (A(u")) and the last k£ sentences heard (v k). Using this, it is
easy to develop the notion of a memory limited learner. This is given by

Definition 18 A learning algorithm A is memory limited if there exists
some integer m such that A is m-memory limited.

Thus, in general, a memory limited learner is required only to have a
finite memory. No bound is set on the size of the memory it is required to
have. From a cognitive point of view, such memory limited learners have
great appeal since it seems like a natural way to characterize the fact that
learning children are unlikely to have arbitrary unbounded memory of their
data.

One might think that the class of languages learnable by memory limited
learners is larger than that learnable by memoryless learners. This, however,
turns out not to be the case.

Theorem 15 If a class of grammars H is learnable in the limit by a k-
memory limited learning algorithm Ay, then there exists some memoryless
learning algorithm that is also able to learn it.

Proof: Omitted. [

In the last two chapters, we have implicitly adopted a probabilistic model
of learning where the learner is required to converge to the target with
probability one. It is worthwhile to make the following additional observation

Theorem 16 If a class of grammars H is learnable in the limit (in the clas-
sical Gold sense), then it is learnable with measure one by some memoryless
learner.

Proof: The proof has been relegated to the appendix for continuity of
ideas. [

Thus, the class of memoryless learners is quite general. Consequently,
the characterization of memoryless learners by first order Markov chains
takes on a general significance that far exceeds the original context of the
Triggering Learning Algorithm.
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4.5 Other Kinds of Learning Algorithms

We have examined in some detail the problem of language acquisition in
the P&P framework with particular attention to models surrounding the
Triggering Learning Algorithm of Gibson and Wexler (1994). By this time,
it should be clear, however, that the basic framework that has been applied
for a more penetrating analysis of the TLA is considerably more general in
its scope. It is therefore timely for us to note that there has been significant
computational activity in the area of language acquisition in a variety of
linguistic and cognitive traditions. Let us consider a few different organizing
strands for this kind of research.

1. In Optimality Theory (Prince and Smolensky, 1993 ), grammatical
variation is treated via constraints rather than rules. Surface expres-
sions, be they phonological forms or syntactic forms are deemed ac-
ceptable if they violate the least number of constraints. In many in-
stantiations of this theory, one begins with a finite number of con-
straints C4,... ,C,. In the grammar of a particular language, these
constraints are ordered in importance and determine the ranking and
relative importance of constraint violations for candidate surface forms.
Thus there are in principle n! different grammars possible. The task
of the learning child is conceptualized as determining the appropriate
ordering for the target grammar given example sentences they hear.
An extensive treatment of the learning algorithms appropriate for this
framework is provided in Tesar and Smolensky (2000). Iterative strate-
gies utilizing error-driven constraint demotion are online and memo-
ryless and may be exactly characterized by a random walk on a state
space of n! possible grammars.

2. Algorithms for learning grammars in different linguistic traditions have
been considered by Briscoe (2000) in an LFG framework, Yang (2000)
in a GB framework, Stabler in a minimalist framework with movement
(1998), Fodor (1994,1998), Sakas (2000), Bertolo (2000), Clark and
Roberts (1993) in P&P frameworks, Neumann and Flickinger (1999)
in an HPSG framework. They present interesting variations, consider
subtleties involved in learning complex grammar families, and investi-
gate issues when one models natural languages as composed of multiple
grammars.

3. An important thread in computational studies of language acquisition



154 CHAPTER 4. LANGUAGE ACQUISITION - LINGUISTICS I1

attempts to clarify the manner in which semantic considerations en-
ter the process of acquiring a language. Learning procedures rely on
semantic feedback to acquire formal structures in a more function-
alist perspective on language acquisition. See Feldman etal (1996),
Regier (1996), or Siskind (1992) for computational exploration of these
themes.

4. Other probabilistic accounts of language acquisition attempt to encode
prior knowledge of language to varying degrees of specificity in a min-
imum description length framework as in Brent (1999) , Goldsmith
(2001), DeMarcken (1996).

5. Connectionist and other data driven approaches to language acquisi-
tion may also be characterized formally within the frameworks pro-
vided in this chapter and the previous one. Examples of such ap-
proaches are Daelemans (1996), Gupta and Touretzky (1994), Char-
niak (1993), MacWhinney (1987, 2004) and so on.

Most of these approaches to language acquisition attempt to characterize
in computational terms the procedures of language learning in a variety
of cognitive settings with varying degrees of preconceived notions. All of
these are ultimately analyzable within the general computational framework
considered over the last three chapters.

4.6 Conclusions

In this chapter we have continued our investigation of language acquisition
within the P&P framework with central attention to the kinds of models
inspired by the TLA. The problem of learning parameterized families of
grammars has several different dimensions as we have emphasized earlier.
One needs to investigate the learnability for a variety of algorithms, dis-
tributional assumptions, parameterizations, and so on. In this chapter, we
have emphasized that it is not enough to merely check for learnability in the
limit (as previous research within an inductive inference Gold framework has
tended to doj; see, for example, Jain et al, 1998); one also needs to quantify
the sample complexity of the learning problem, i.e., how many examples
does the learning algorithm need to see in order to be able to identify the
target grammar with high confidence.

In order to get a handle on this question, we take our Markov analy-
sis to the next logical stage — that of characterizing convergence times. A
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rich literature exists on characterizing the invariant distributions of Markov
chains and the rate at which the chain converges to it. We have provided
in this chapter a brief survey of some of the important techniques that are
involved in this analysis. We saw the dependence of the convergence rates
upon the probability distribution according to which example sentences were
presented to the learner. We considered pathological distributions that sig-
nificantly increased convergence times as well as more natural distributions
obtained from the CHILDES corpus.

Although much of the analysis was inspired by the TLA, it is important
to recognize that the general framework is considerably broader in scope.
Any learning algorithm on any enumerable class of grammars may be char-
acterized as an inhomogeneous Markov chain. Any memory-limited learning
algorithm (as biological learning algorithms must be) is ultimately a first or-
der Markov chain. Much of the cognitively motivated computational work on
language acquisition — reviewed briefly in Sec. 4.5 — may then be analyzed
satisfactorily within this framework.

How a child acquires its native language presents one of the deepest
scientific problems in cognitive science today. While we are still quite far
from a complete understanding of the process, much research in linguistics,
psychology, and artificial intelligence has been conducted with this problem
in mind.

Because a natural language with its phonetic distinctions, morpholog-
ical patterns, and syntactic forms has a certain kind of formal structure,
computational modeling has played an important role in helping us reason
through various explanatory possibilities for how such a formal system may
be acquired. Chapters 2 through 4 of this book present many variations of
the basic computational framework and an overview of the central insights
that must inform us as we search for a solution.

Throughout these past few chapters, language acquisition is framed in
a conventional setting as an idealized parent child interaction with a sin-
gle homogeneous target grammar (language) that must be attained over the
course of this interaction. We use this as a building block for the more
natural setting of learners immersed in linguistically heterogeneous popula-
tions. By doing so, the problems of language change and evolution on the
one hand, and language acquisition on the other, become irrevocably linked.
We elaborate on this theme in the rest of the book.
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4.7 Appendix: Proofs for Memoryless Algorithms

The power of memoryless algorithms comes from the fact that it is possible
for an algorithm to code the data set it has received so far into its current
conjecture. This is a consequence of two important and well known facts
that we state without proof.

Proposition 1 There is a mapping f : Nx N — N that is one-to-one, onto,
and therefore invertible.

Therefore, any pair of natural numbers i, j can be coded as k = f(4,j) such
that from knowing the value of k, one is able to decode it by f~1(k) = (4, ).
By applying this recursively, one may code any finite number of natural
numbers. For example, if one were to code three numbers i, 7, k then one may
do this by f(f(i,7),k). Applying f ! twice to this number would recover
the three original numbers. To make this idea work in general, one will also
need to code the total number of numbers being coded. This will indicate to
the receiver how many times the f~! operation needs to be applied to the
coded number to recover the original numbers. Thus the true code for the
numbers 4, j, k would be given by I = £(3, f(f(4,5),k)). Upon applying f~*
once to [, one recovers 3 (the total number of natural numbers being coded).
This indicates that f~' needs to be applied two more times to recover the
three original numbers. The extension to coding a finite number of natural
numbers is clear.

This means that the current data set may be coded as a natural number.
Enumerate the elements of ¥* as s1,59,53,...,. Let ¢ be a text presented
to the learner. Let 41,19,... ,%, be the indices of the first n sentences in the
text. Thus s;, = t(1),s;, = t(2),..., and so on. Then at stage n, the learner
will have encountered ¢, = s;,S;, ... S;,. The learner may encode this data
by encoding the n integers 41,... ,%,. Let us denote this coding procedure
as | = code(ty).

A second fact is a consequence of the s — m — n theorem. Let g1, go, ...
be an enumeration of phrase structure grammars (equivalent to the r.e. sets)

in an acceptable programming system. Let Li, La,... correspond to their
respective languages. As is well known, for any r.e. set L, there are an
infinite number of indices ji, j2,... , such that L; = L. Further, an infinite

number of such indices may be enumerated by the padding function as the
following theorem indicates.
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Theorem 17 There exists a one-to-one, onto, computable function
pad: N x N — N

such that

L

pad(ij) = Li

for alli,j and pad(i, j) is an increasing function of j for each i.

Now recall the basic learning-theoretic setting. Consider an acceptable
enumeration of grammars. Then grammars may be specified by specifying
their index in this enumeration. Consider A C N. Then this specifies G =
{gili € A} and £ = {L;|i € A}. Any learning algorithm is a map from data
to grammars.

Counsider learning according to a prespecified 0 — 1 valued metric d such
that d(gi,g;) = 0 & L; = L;. This is the same as requiring extensional
(behavioral) convergence.

Theorem 18 If a family of grammars G (correspondingly a family of lan-
guages L) is identifiable (on all texts and with an extensional norm) in the
limit by an algorithm A, then it is identifiable (on all texts and with an
extensional) in the limit by some memoryless algorithm.

Proof: The memoryless algorithm A,,emoryiess Works by coding the data,
calling A as a subroutine on this data and padding the output of A.

More formally, consider text ¢ = s;,8;,... as input to the learning al-
gorithm. The initial guess of the learning algorithm before seeing any data
is g1. After seeing the first data point s; the learner calls A to obtain
gm = A(si1)- It codes the data as k = code(t1). It uses the padding function
to obtain p = pad(m, k). The learner outputs gj,.

At stage n, let the learner’s hypothesis be g;. Let (i, k) = pad1(j). Then
L; = Lj and uncode(k) = s;, ...s;,. Oninput s;, , the learner recovers ¢,
by appending it to uncode(k). Thus it has effectively created t,.

It calls A to obtain g, = A(tp+1). Let | = code(t,+1). Finally let
p = pad(m,l). The learner outputs g,,.

It is clear that at each stage n, if gm, = Amemoryless(tn) and g, = A(t,)
then L, = L;,. Therefore if the target language is grammar is g (language
)

lim_d(g,9m,) = lim d(g,91,) =0

n—o0



158 CHAPTER 4. LANGUAGE ACQUISITION - LINGUISTICS I1

In the above theorem, we see that while the memoryless learner converges
extensionally to the right set, it need not stabilize on any grammar. One
may be interested in a stronger notion of convergence in which on each text
t the learner stabilizes on a grammar g; such that d(g;,g) = 0 (here g is
the target grammar). An algorithm A is said to stabilize on a grammar g,
on text ¢ if there exists a point in time n such that for all m > n, we have
that A(t,,) = g, i.e., after seeing n sentences, the learner’s grammatical
hypothesis is always g;.

It turns out that while it is not possible to construct a memoryless algo-
rithm that converges in this strong sense on every single text, it is possible
to construct one that converges on almost all texts. In other words, the
following theorem is true.

Theorem 19 If a family of grammars G (correspondingly languages L) is
identifiable in the limit (by stabilizing on an appropriate grammar on all texts
) by some learning algorithm, it is identifiable with measure one (by stabi-
lizing to an appropriate grammar on almost all texts) by some memoryless
learning algorithm.

Proof: Let L € L be the target language and let j be the least index for
it, i.e., j is the least index such that L; = L.

Let t = 4,84, ... be a text from the target obtained by sampling accord-
ing to y in i.i.d. fashion. Note that y has support on L. We first begin by
making the following two observations.

(1) Suppose the text ¢ is such that each element of L occurs infinitely
often in £. We call such a text a rich text. Then by the laws of probability,
it is possible to show that (here pq, is the product measure on all texts by
Kolmogorov Extension Theorem in the standard way).

Koo({t|t is a rich text of L}) =1

We will now construct a memoryless learning algorithm that can identify L
on all rich texts.

(2) Since L is identifiable in the limit, by the necessary and sufficient
conditions for identifiablity discussed in Chapter 2, we know that for every
L € L, there exists a Dy, such that if any L' contains Dy, then L' ¢ L.

The description of the memoryless learning algorithm follows. The learner’s
hypothesis after n examples have been processed will be denoted by the num-
ber h(n). h(n) is the index of the grammar (gp(,)) or language (Lj(,)) that
is hypothesized after n examples.
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The learner will maintain a small evidentiary set S composed of example
sentences and a counter ¢ that counts how many times it enters cases 3 and
4 of the algorithm below. Note that the evidentiary set S may be coded as
a natural number.

Now consider the following learning algorithm. At stage 0, i.e., after 0
examples have been seen, the algorithm is initialized by having S = 0, ¢ = 0.
The learner’s initial guess is h(0) = pad(M, f(code(S),c)) where M is the
smallest index k such that Ly € L.

At stage n, i.e., after n examples have been seen, the learner updates its
hypothesis in the following way. Note that from h(n) it can recover S and ¢
uniquely.

if (D) € SU{si,} C Lag))

then

if (C S ’in+1)
then [Case 1]
h(n+1) = h(n)
else [Case 2]
S=8U{sin.}
p = f(code(S5), )
if (S and p don’t change)

then h(n + 1) = h(n)
else h(n + 1) = pad(h(n), p)

endif

endif

else

c=c+1

S=5U {Sin+1}

p = f(code(S),c)

if (3 smallest I <n s.t. L € L and Dy, CS C L)
then [Case J]
h(n+1) = pad(l,p)
else [Case /]
h(n+1) = pad(M,p)

endif

endif

First, we must agree that this is memoryless. To see this, simply notice
that the new hypothesis depends only upon the previous hypothesis and
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the current data. This is because from the previous hypothesis, both the
hypothesized language and the evidentiary set S may be recovered. Second,
notice that at all stages, the algorithm outputs a hypothesis that is in the
family L.

Next, we prove that if the algorithm stabilizes on a grammar, it stabilizes
on one that generates the target language L. Assume that the algorithm
converges on index k, i.e., h(n) = k for all n large enough. Since cases
3 and 4 result in change of hypotheses, it must be in case 1 or 2 after a
finite number of examples have been seen. From this stage on, it is clear
that Dy, C SU {t(n)} C Ly for all n. Since every element of L occurs
infinitely often in ¢, we see that every element of L must be contained in
Ly, ie., L C Li. On the other hand, Dy, C SU{t(n)} C L. Therefore by
the definition of Dy, and the learnability of £ we have that L cannot be a
proper subset of L. Therefore it must be that Ly = L.

Finally, we show that it must converge (stabilize). The proof is by con-
tradiction. Suppose not. This means that it changes its hypothesis infinitely
often. Therefore cases 2,3,4 must occur infinitely often.

Let us argue that cases 3,4 can occur only a finite number of times. We
will prove this by contradiction. Assume it occurs an infinite number of
times. Therefore c increases without bound. Consider an arbitrary s; € L.
We know that s; occurs infinitely often in ¢. If on any of the instances it
occurs, the algorithm enters case 3 or 4, then s; will be included in S after
that point. On the other hand, if on each occasion, it enters case 1 or 2, then
the moment ¢ > 7 (and this moment must come since ¢ increases without
bound), the algorithm will enter case 2 at that stage and s; will be included
in § after that point. Thus every s; € L will get included in S eventually.
Now consider the elements of Dy. Since Dy, is a finite set, there is a finite
time (stage N) such that after N examples have been received, all elements
of Dy, have been included in S so that Dy, C S.

Let k = max(N, j). Consider the case where the learner enters case 3 or
4 after stage k. Since L; = L, we have that (i) Dy, € S C Lj. Consider
any 7 < j. We will now argue that the learning algorithm can hypothesize
L; only a finite number of times after this. Suppose not. Then it must be
the case that (ii) Dy, C S C L; an infinite number of times. Since every
element of L = L; eventually gets included in S, this means that L; C L;.
Yet, by the learnability of £, if D, C S C Lj, it cannot be that L; is a
proper subset of L;. Therefore, it must be that L; = L;. Yet we know that
J is the smallest index for L; = L leading to a contradiction.
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Thus, every hypothesis L; where 7 < j will be eventually discarded when
the learner enters case 3 or 4 after stage k. Therefore, the learner will
eventually hypothesize L; if it enters case 3 or 4 after stage k. Having done
this, it is clear that it will never enter case 4 or case 3 ever after. This leads
to a contradiction in our assumption that the algorithm enters case 3 or 4
an infinite number of times. Therefore cases 3 and 4 must occur only a finite
number of times and there is a maximum number C' which ¢ achieves after
which it never grows.

Thus eventually, the learner will only enter case 1 or 2. Now we will
argue that the learner’s grammatical hypothesis can change only a finite
number of times after this. First we note that there are only a finite number
of sentences s; € L such that ¢ < C. The algorithm can enter case 2 only
when one of these s;’s occurs in the text. Each of these s;’s will eventually
get included in S when the algorithm enters case 2. After this point whether
the algorithm is in case 1 or 2, the set S does not change and ¢ = C does not
change. Therefore, h(n) does not change with n and the learner converges
on a fixed index.

|
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