Misc.

- Shannon vs. Nyquist
- Class participation grade
Data Link Layer

• Unacknowledged connectionless service
• Acknowledged connectionless service
• Acknowledged connection-oriented service
Framing

- Character Count
- Starting and ending character, with stuffing
- Starting and ending flags with bit stuffing
- Physical Layer coding violations
Error correcting codes

• N bits form a codeword
 • XOR two codewords for Hamming distance
 • Hamming distance equals number of bit errors
 • Required to turn one code into another

• Complete Code
 • Not all codes are possible
 • Find closest Hamming distance

• Detecting n errors, you need n+1 Hamming distance
• Correcting n errors, requires 2n+1 Hamming distance
 • Original code must be closest
Error detecting code example

- Parity bit
 - Single parity bit
 - Hamming distance of 2
 - Can detect single errors
 - Can not correct any errors
4 word code with 10 bits

- Hamming distance of 5
 - Can detect up to 4 bits of error
 - Can only correct up to 2 bits
Better Error detection

- Easier to detect errors and resend
- Matrix
 - Build matrix from block of data
 - Parity bit for every column
 - Check all bits on receipt
 - For matrix N bits wide
 - Can detect static burst of N
 - Static burst N+1 not detected
 - Probability of detection is 2^{-N}
Polynomial

- Cyclic redundancy code (CRC)
 - k bits represented as coefficients for x^{k-1} polynomial
 - Choose generator polynomial
 - Leading and ending coefficients are 1
 - Divide message poly by generator
 - Remainder is checksum
 - Error will be detected unless divisible by $G(x)$
Base 2 arithmetic

- No odd poly is divisible by $x+1$
 - Substitute 1, $E(x)$ will always be 1
 - Catch all odd bit errors with $x+1$
Common Generator Polynomials

- CRC-12: \(x^{12} + x^{11} + x^{3} + x^{2} + x^{1} + 1 \)
 - 6 bit characters
- CRC-16 = \(x^{16} + x^{15} + x^{2} + 1 \)
- CRC-CCITT = \(x^{16} + x^{12} + x^{5} + 1 \)
 - Both used for 8-bit chars
 - Usually computed in hardware
16 Bit CRC calculation

• Will catch the following errors
 • All single and double errors
 • All errors with an odd number of bits
 • All burst errors of length equal or less than 16
 • 99.997% of 17 bit errors
 • 99.998% of 18 bit and longer bursts
Protocol 1

- sender()
 - while (true) {
 - from_net_layer(&buf);
 - sbuf = buf;
 - to_phys_layer(&sbuf); }

- Receiver()
 - while (true) {
 - wait_for_event(&event)
 - from_physical_layer(&rbuf)
 - to_network_layer(&rbuf) }
Protocol 2

- **sender()**
 - while (true) {
 - from_net_layer(&buf);
 - sbuf = buf;
 - to_phys_layer(&sbuf);
 - wait_for_event(&event);
 }

- **Receiver()**
 - while (true) {
 - wait_for_event(&event);
 - from_physical_layer(&rbuf);
 - to_network_layer(&rbuf);
 - to_physical_layer(&sbuf); }

- from_net_layer
- to_net_layer
- from_phys_layer
- to_phys_layer
- wait_for_event
Protocol 3

- sender3()
 - while (true) {
 - s.info = buffer; /*construct frame to send
 - s.seq = next_frame;
 - to_physical_layer(&s);
 - start_timer(s.seq);
 - wait_for_event(&event);
 - if (event == frame_arrival) {
 - from_physical_layer(&s);
 - if (s.ack == next_frame_to_send) {
 - from_network_layer(&buffer)
 - inc(next_frame_to_send); } } } /*max=1
Protocol 3 (cont.)

• receiver3()
 • while (true) {
 • wait_for_event(&event);
 • if (r.seq==frame_arrival) {
 • from_physical(&r);
 • if (r.seq == frame_expected) {
 • to_network(&r.info);
 • inc(frame_expected); } }
 • s.ack = 1 - frame_expected;
 • to_physical_layer(&s) }
 • } }
Protocol 4

- Sliding Window, Bi-Directional
 - 1-bit
 - A times out too fast
 - A sends repeated frames, B keeps sending
 seq=ack=0
 - Simultaneous sending
 - (seq, ack, packet #)
Protocol 5

- Pipelining
 - Transmit up to Max_SEQ
 - Allows multiple outstanding frames
 - Retransmits everything after error
 - Does poorly with a lot of errors
Protocol 6

- Pipeline, non-sequential errors
 - Transmit up to Max_SEQ
 - Allows multiple outstanding frames
 - Selective Retransmit
 - NAK--negative acknowledgement
Protocol Specifications

• Finite State Machine Models
 • Protocol machine is a specific state at any one time
 • For software, means all possible variable values
 • Example: Protocol 3
 • Positive Ack with Retransmission
 • State triplet:({0,1}.{0,1},{0,1,A,-})
 • Transmit packet number
 • Expected Receive packet number
 • Channel state
 • One cycle is 4 states+error conditions
Verification

- With 1 bit sequence numbers
 - Receiver should not deliver 2 odd or even packets
 - No transition double 1 transition
 - Without a 3 transition
 - Deadlock
 - There should exist no subset of states such that
 - No transition out of the subset
 - No transition in the subset that causes progress
Sample Protocols

- SLIP
 - IP packets with flag at beginning and end
 - 0xC0, quote with 0xDB
- PPP
Midterm

- Second half of class
- Questions
 - Tanenbaum Chapter 1-3
 - Questions like the homework
 - Review homework
 - Review other questions in Tanenbaum
 - Systems Admin
 - Lecture Notes
Midterm

- Programming question
 - Real World Example
 - Write finite state diagram
 - Write Pseudo code
 - Think high level!
 - Write high level steps
 - Ignore details until the end.
 - Land and Hold Short Example