Medium Access Sublayer
Medium Access Sublayer

- Switching
- 802.x
- Bridges
- FastEther, GigEther, etc.
- Routing
Switching

- Traffic isolation
 - Collision domains
- Buffering
802.4 Token Bus

- Logical ring on broadcast media
 - Pushed by real-time proponents
 - More complex than 802.3
 - Dozens of state variables
- No collisions
 - New station discovery
 - Neighbor discovery
 - Four priority levels
 - Highest has guaranteed bandwidth
802.4 Ring Maintenance

- Solicit_Successor
 - Resolve_Contention if collision
 - Binary Count down
 - Stations use 2 random delay bits
- Leaving the Ring
 - Set_Successor
- Idle Ring
 - Claim_Token
- Lost Token
 - Retransmit Token, Who_Follows
 - Claim_Token, Multiple Tokens
802.5 Token Ring

- Ring of point-to-point connections
- 3 Byte Token circulates in ring
 - Each bit is copied by each node
 - 1 bit delay per node
 - 3 Byte Token is modified into data preamble
- Token must fit on Network.
 - Bit delay plus propagation delay
- Sender removes bits it transmitted
 - Regenerates token
802.5 Token Ring MAC

- Transform Token and transmit
 - For duration of token-holding time
 - Start and end have non-data signal
- Frame Status
 - 0,0 no destination
 - 1,0 destination did not accept frame
 - 1,1 frame accepted
- Token has priority bits
802.5 Ring Maintenance

- Monitor station oversees ring
 - Startup: Claim_Token
 - Drain orphan frames
 - Monitors for token every max time interval
 - Drains ring, generates new token
 - If Ring gets to be less than 24 bits long
 - Inserts extra delay bits

- Ring Breaks
 - Breacon Frame
 - Address of dead node
802.3 Ethernet

- Manchester Encoding
 - detect bit transition in middle of signal
- Preamble 10101010
- Start of frame 10101011
- 6 Byte address
 - Individual addresses
 - Group addresses-Multicast
 - Broadcast -- all 1s
- Global Addresses
802.3 Ethernet

- source address
- 2 byte length of data
- 0-1500 bytes of data
- 0-46 padding
- 4 byte checksum
Bridges

- Connect different Data Link Protocols
 - Different Frame and checksums
 - Different data rates
 - Different timers
 - Different packet sizes
- Transparent Bridge
 - Initial Flooding
 - Watch traffic, build table
 - Backward Learning
 - Time stamp
 - Purge entries more than a few minutes old
Bridge Routing Procedure

- Same Lan, Different, Unknown
- Spanning Tree
 - Build Tree, ignoring some links
- Source Routing Bridges
 - Senders know about Network topology
 - Bridges only forward flagged packets
 - Flag includes bridge number
 - Host chooses among equivalent bridges
 - Implement: software, hybrid, hardware
Switches

• Switch fabrics
 • Fully Connected
 • Batcher-Banyan switch
• Deploying switches
 • Cisco switches
 • VLans
 • Switching vs. Routing
FDDI, FastEthernet

- FDDI
- Fast Ethernet
 - 100Base-T4, 100 M, Cat3, 4 pairs
 - 100Base-TX, 100 M, Cat5 full duplex
 - 100Base-FX, 2000m, fiber, full duplex
Gigabit Ethernet

• 802.3z
 • 1000Base-{SX, LX, TX}
 • Fiber Review
 • Flux budget
Gigabit Ethernet

- Slot time Problem
 - 2 km reduced to 200 m with 100 Mb Enet
 - 1000 Mb Enet would be 20 meters!
- Slot Time to 512 bytes
 - 4096 bits
 - 64 bit packet size kept for compat
 - Extended carrier symbols
 - Not much gain for small packets
Gigabit Ethernet

- Frame Bursting
 - 512 bit packet $\Rightarrow 12\%$
- With Frame Bursting
 - 512 bit packet $\Rightarrow 76\%$