IP Mobility

- Host addressing
 - DHCP and NAT
 - Ok for client, not server
 - Provides nomadicty
 - Not mobility
 - Change IP address, but not hostname
 - DNS system can’t handle it now
 - Could be fixed
 - TCP servers can’t handle IP addr change
 - All connections must terminate
Mobile IP

- RFC 2002-2006
 - Mobile note
 - Home Agent
 - Foreign Agent
Mobile IP

- Home/Foreign agents broadcast advertisements
- Mobile host determines location and registers
- Home agent advertises mobile node reachability
- Tunnels packets to foreign agents
- Reply packets are routed directly
Admission Control

- Choke Packet
 - voluntary host reduction
- Fair queuing
 - Individual queues
- Weighted fair queueing
- Load Shedding
 - wine and milk
- Fragmentation
 - Reassembly (attacks)
Hardware flow control

- RTS/CTS
- 802.X
 - Pause control
- VLANs
 - VLAN tags
 - 4 bytes between Eth Source and type/length
 - user priority 3 bits
 - Canonical Format Indicator 2
 - VID 12 bits
Other Wireless Solutions

- Wireless Application Protocol (WAP)
 - TCP developed mostly over wired connections
 - Argued that other protocols are needed
 - When bandwidth is expensive
 - TCP is too chatty
WAP stack elements

- WDP - Wireless Datagram Protocol-like UDP
- WTLS - W Transport Layer Security
 - Similar to RFC-2246
- WTP - wireless Transport Protocol
 - non-reliable one-way, reliable one-way, reliable two way
- WSP - Wireless Session Protocol
 - Datagram and VC
- WAE - Wireless Application Environment
Cell Phones and WAP

- XML
- WML an XML derivative
 - `<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”`
- Java Servlet (JSDK)
- WML script
 - Client, e.g. phone, execution
WML hello world

• <wml>
 • <card>
 • <p> Hello World. </p>
 • </card>
• </wml>
 • Softkeys
ARP

- IP addr to Ethernet address mapping
 - ARP request
 - Proxy ARP
 - Static ARP
 - Reverse ARP
Domain Name System (DNS)

- Replaced “hosts.txt” file
- Name-number-name mapping
 - Hierarchy
 - Full specification or default host
 - Caching
 - Reverse lookups
Transport Layer

• Provides reliable, efficient, data server to application layer
 • End point of the efforts of the other layers
 • Applications can use standard set of interfaces
 • Underlying layers can be unreliable.
 • Some duplication of error handling of network layer
 • Better efficiency if network layer handles problems
 • But better to duplicate in Transport layer than having every application implement reliability features
Implementing Quality of Service (QoS)

- QoS Parameters
 - Connection initiation delay
 - Connection initiation failure probability
 - Throughput
 - Transit delay
 - Error ratio
 - Protection
 - Priority
 - Resilience
Transport Layer Primitives

- Listen - wait for connection
- Connect -- establish connection
- Send -- send data
- Receive -- receive data
- Disconnect -- end connection
Berkeley Sockets

- Socket--create socket
- Bind--attach local address to socket
- Listen--accept connections, Q size
- Accept--block until data received
- Connect--establish connection
- Send--send data
- Receive--receive data
- Close
Establishing connections

- Sounds simple
 - Request, ack, ack
- Problems
 - Lost packets are not bad
 - Delayed duplicate packets are bad
 - Restrict subnet to time out packets
 - Set a low hop count limit
 - Timestamp each packet
Aside: ICMP Trace Route

- Sets incremental hop count limits
- Provides path of each packet by collecting ICMP errors as packet hop counts expire.
- Valuable tool for Internet problems
 - Available for all platforms
Tomlinson packet lifetime bounding

- Consider sequence numbers which track clock
 - Can’t send packets faster than clock
 - Sending too slow also causes problems.
 - Resynchronize sequence numbers
Establishing Connections

- Three way connect handshake
- Syn attacks
 - Spoofed address
 - Router defenses
 - TCP-Intercept mode
 - tcp-watch mode
 - tcp intercept watch mode
 - tcp intercept watch-timeout
 - Default 30 seconds
 - After 1100 incomplete connections
 - Aggressive mode 15 seconds
Aside: Connection Hijacking

- Initial Sequence number attacks
 - First Sequence number should be random
 - Blind Spoofing attack
 - Computer random numbers are predictable
 - Can not try all 2^{32}
 - John Morris, 1985, weakness in Berkeley ISNs
- RFC 1948
 - Use IP addr, ports, plus secret key
- Interesting phase space analysis of ISNs
 - razor.bindview.com/publish/papers/tcpseq.html
Closing Connections

• Again, sounds simple
 • Two army problem
• Easily proven that no protocol exists that works
 • Proof by contradiction
• Accept some risk and use three way handshake
 • Timers release connection after no answer
Disconnect

- Disconnect Request
 - timer
- Dis. Response
 - timer
- Release
 - send ack
 - release
TCP Header Segment

- source port, dest port
- seq number
- ack number
- header len & flags, window size
 - urgent flag
 - ack valid flag
 - push, rst, syn, fin
- checksum, urgent pointer
 - checksum includes addresses, proto, segment len
- options (variable number of words)
- data
TCP Header Options

- Window size negotiation-RFC1323
 - left shift 16 window size
 - allow 14 bit shift, hence 2^{30} bytes
- Selective repeat
 - use of NAK
TCP state management

- Closed
- listen
- Syn Rec--request arrived
- Syn sent--open started
- Established
- Fin Wait 1--app finished
- Fin Wait 2--other side agreed
- Timed wait--wait for packets to die
- closing--both sides closing
- close wait--other side initiated
- last ack--wait for packets to die
Tomlinson packet lifetime bounding

- Consider sequence numbers which track clock
 - Can’t send packets faster than clock
 - Sending too slow also causes problems.
 - Resynchronize sequence numbers
TCP Implementation

- TCP Tuning
 - Retransmission timer and backoff
 - Window based flow control
 - Max segment size
 - Congestion Avoidance
 - Round Trip Estimate
Retransmission Timer and backoff

- RTT for each connection
 - RTT = RTT + x*error
 - Use mean deviation
 - Adjust fast to varying conditions
- Karn’s algorithm
 - Don’t measure RTT of retrans.
 - TCP_Maxretries
 - Double time-out for small value
Window Management

- Advertise window size
 - Piggyback on acks
 - Otherwise 40 bytes of header wasted on each
 - Nagel’s algorithm.
 - send one byte and buffer the rest
 - On zero
 - Urgent data still sent
- Silly window syndrome
 - Persist state
Segment size

- Want as big as possible, without fragmentation
 - Local connections
 - Use data link level size
 - Gateway connections
 - Use min gateway size 536 octets
 - advertise in Syn packet
TCP Adaptive Retransmission

- Multiplicative decrease
 - Reduce congestion window on each retrans
 - Trans min of congestion window or recipients window
- Slow start on new connections
 - Send one MSS
 - Add one more MSS to window for each success
- Slow after threshold
 - Add smaller increments, one MSS per window