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Abstract

The monotonicity property of inference in conventional formal sys-
tems of logic (SF A and S C T implies T = A) appears to prohibit
certain crucial steps in practical intuitive reasoning. For example, rea-
soning by default (using assertions that are assumed to hold until ex-
plicitly contradicted) appears to be impossible in monotonic systems.
Many crucial steps in practical reasoning certainly require nonmono-
tonic behaviors in inference procedures. But, I argue that it is highly
misleading to describe these nonmonotonic behaviors in terms of non-
monotonic inference relations . Rather, inference procedures should
use metatheoretic operators, with conventionally monotonic inference
relations, to support nonmonotonic behavior.

1 Defeasible Reasoning Requires Nonmono-
tonicity

Most formal systems for logical reasoning are essentially definitions of a re-
lation -, called logical inference. When T is a set of propositions expressed
in the language used by such a formal system, and A is another such propo-
sition, T H A means that the formal system allows A to be inferred from
hypotheses in T. In the vast majority of formal systems studied by logicians,
the relation F is required to be monotonic in its left argument.
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Definition 1 A logical inference relation F is monotonic if and only if, for
all sets of propositions S and T, and for all propositions A, if SF A and
SCT, then THF A.

Certain practical considerations appear to argue in favor of formal systems
with nonmonotonic logical inference relations. I will sketch these practical
considerations, but argue nonetheless that they are best accommodated by
logical inference relations that are conventionally monotonic.

Practical reasoning often involves defeasible [?] (retractable) steps. In
particular, there are often default assumptions [?] about typical cases, that
are accepted until specific reasons to reject them are found. The example of
concluding that a given bird flies until learning that the bird is a penguin
has achieved chestnut status.

Example 1 (Penguins [?]) Consider a formal language with formulae ex-
pressing at least the following six propositions

{ Typical birds fly, Penguins do not fly,
George is a bird, George is a penguin,
George flies, George does not fly }
Given knowledge of the set of three propositions

T, = { Typical birds fly, Penguins do not fly, George is a bird}

it seems quite rational to suppose that George is in fact a typical bird, and
conclude that George flies. That relation between a set of propositions and
another proposition is often expressed as

T+ George flies

But, given the additional knowledge that George is a penguin, it seems irra-
tional to conclude that George flies. Letting

Ty = T U{George is a penguin}
this relation 1s expressed as

Ty - George flies



But
T, C T,

so the appropriate formal system of logic in which to perform practical rea-
soning about birds, penguins, and ability to fly seems to be nonmonotonic.

The desire to have a reasoning procedure that assumes typical conditions
until finding evidence of a special case seems to prohibit monotonicity in the
penguin example above. But, a closer analysis reveals more than one formal
site for the nonmonotonicity of the procedure.

2 Two Formal Sites for Nonmonotonic Be-
havior

I believe that the penguin example, and many similar examples, provide a
strong case for nonmonotonic behavior in a reasoning procedure. That is,
there are certainly cases in practice where the discovery of new knowledge
requires a retraction of old assertions. But, the explication of this nonmono-
tonic behavior can be attached to at least two different sites in a formal
system of reasoning: the inference relation -, and the formulae themselves.
I will argue for the latter choice, but first I will reject some particular forms
for doing so, in spite of their initial appeal.

In principle, nonmonotonic behavior of procedures using a monotonic
inference relation may be explained by weakening the conclusions of inference.
For example, instead of T - George flies, we might have

T, F George is a typical case = George flies

or
T, F Special case V George flies

Nonmonotonic behavior is produced by introducing a large or even infinite
set of propositions, such as George is a typical case, as default assumptions,
then removing them as soon as counterevidence appears. The extra clauses in
conclusions serve as switches to enable or disable the real conclusions, such as
George flies, by respectively including or excluding the default assumptions.

The basic idea of weakening conclusions to maintain monotonicity may be
refined [?], but I believe that most reasoners rightly reject this complication
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of the form of final conclusions. Since the normal mode of assertion of a
proposition A in everyday life implicitly means something like, “As well as
can be determined, A holds,” it seems inappropriate to introduce explicit
formal disclaimers into every proposition. The best known formal systems for
mathematical reasoning (the Classical First-Order Predicate Calculus heads
the list, but the same holds for higher-order classical logics, set theories, and
formalizations of intuitionistic or constructive reasoning) all treat the formal
assertion of a proposition A as meaning something like, “A is absolutely
true, with no possibility of error.” But, nowhere in popular usage, not even
in mathematical journals, is that formal notion actually practiced. If it were,
Russell’s antinomy would have been a catastrophe rather than a stimulus
to further research. So, I reject the weakening of conclusions by explicit
formal disclaimers, since it forces a detailed accounting for assumptions that
are made uniformly and universally in the practice of language, and thereby
obscures the natural structure of practical assertions of propositions.

Rather than explaining nonmonotonic behavior by weakening the state-
ments of the conclusions of inference, we need to strengthen the hypotheses.
An obvious possibility is to add the same sorts of propositions that are used
to weaken the conclusions, yielding

T, U {George is a typical case} = George flies
or the more transparent
T, U {George is not a flightless bird} = George flies

The trouble is that assertions of typicality, such as George is a typical case,
do not represent direct intuitive judgements, but rather are themselves the
results of sophisticated epistemological reasoning. Instead of begging the
question of how one decides to assume George is a typical case, we should
reduce that judgement to concepts that can be referred more directly to
observations and intuition. The use of George is not a flightless bird avoids
the explicit reference to typicality, but even more obviously begs the question
of how we establish the hypothesis that George is not a flightless bird, which
is essentially as hard as the final conclusion George flies.

Another way of augmenting the hypotheses is to use a formal operator
Search, where for propositions A and sets T of propositions, Search(A, T)



means that a reasonably diligent search for known propositions relevant to A
yields only T. Then, the inference that George flies is represented by

Search(George flies, T1) F George flies

while
T, f George flies

This approach captures the idea that the information in T; alone does not
allow us to conclude rationally that George flies; rather, the fact that a
diligent search for knowledge bearing on George flies came up with nothing
more than T is required to support the conclusion. Search is unusual in that
it asserts something about the very inference procedure that is considering
propositions built up from Search, so the operator is metatheoretic and re-
flective [?], in some ways analogous to the negation as failure used in certain
implementations of Prolog [7].

Search can trigger nonmonotonic behavior, since the addition of new in-
formation to the knowledge base, or even the discovery of more information
that was already in it, can change Search(A, T) from true to false. In the pen-
guin example, once we discover the proposition George is a penguin among
our knowledge, the metatheoretic proposition Search(George flies, T1) be-
comes false, and the conclusion George flies can no longer be drawn, because
the hypothesis required to infer it does not hold. Search(George flies, Ts) be-
comes true at this point, but it does not support the inference that George flies.

Further refinement of these ideas may show how to avoid the annoying
repetition of George flies on both sides of -, or may reveal that search keys
have a different type than propositions, with some useful relations deter-
mining which search keys are relevant to inferring which propositions. One
natural operator to consider is the consistency operator Consistent [?]. When
T is a set of propositions, Consistent(T) asserts that T is internally consis-
tent (noncontradictory). Using Consistent, we might approach the penguin
problem by allowing

T, U { Consistent(T, U { George flies})} = George flies
In a reasonable system,

Consistent(T; U { George flies})



holds, but
Consistent(Ty U { George flies})

may not hold. In spite of the attractive conceptual simplicity of reasoning us-
ing Consistent, the huge cost of testing consistency, and the lack of apparent
flexibility for dealing with conflicting defaults, suggest that we need an oper-
ator that refers somehow to the results of the limited searches for knowledge
carried out by practical inference procedures, rather than the more abstract
notion of consistency in a logical system. On the other hand, some sort of
resource-limited test of consistency might be the right basis for introducing
nonmonotonicity. Much further thought is required to determine whether
expressions describing resource limitations need to be included as arguments
to the operator, or whether they may be fixed or quantified out in a standard
way.

In the next two sections, I argue that the use of a nonmonotonic logi-
cal inference relation F is highly misleading, and not the appropriate way
to support nonmonotonic behavior in a procedure for reasoning. Rather,
I argue that nonmonotonic behavior should be supported by including, in
the hypotheses of a logical inference, an explicit formal representation of the
metatheoretic fact that certain propositions contain all of the knowledge rel-
evant to a given problem discovered by a reasonably diligent search. I use the
form Search(A,T), where A is a proposition and T is a finite set of proposi-
tions, to represent such metatheoretic assertions. I do not believe that this
form is exactly the right one in practice, but it has enough of the essential
elements to serve for the current comparative argument.

3 Two Interpretations of the Logical Infer-
ence Relation

The crux of my argument depends on choosing between two interpretations
of the logical inference relation denoted by -, one of which allows the relation
to be nonmonotonic, and the other of which demands monotonicity. Roughly,
T F A means that, given knowledge of the propositions in T, it is rational to
infer A as well. Two different ways of making this rough idea more precise
yield radically different results for practical reasoning.



Definition 2 Let A be a proposition, and T be a set of propositions.
TH, A

means that, whenever an agent knows each of the propositions in T, the
agent may rationally conclude that A holds as well (the subscript L stands
mnemonically for “local”).

TrHc A

means that, whenever an agent knows each of the propositions in T, and the
agent knows that T includes at least all the results of some reasonably diligent
search for all available information relevant to judging the correctness of A,
then the agent may rationally conclude that A holds as well (the subscript G
stands for “global”).

The only distinction between F; and ¢ relevant to my discussion is in the
different modes of asserting T—as merely some set of known propositions
in one case, or a set containing all known relevant propositions in the other
case. The use of propositions rather than formulae, and sets T rather than
some other structures of propositions or formulae, makes no difference to the
present discussion. By “knowledge” I mean reasonably reliable information
that is relatively easily accessible to an agent. In particular, I do not assume
that all knowledge is true. Some readers may wish to substitute “rational
and informed belief” for “knowledge.”

Since knowing each of the formulae in a set T implies knowing each
of the formulae in every subset of T, F; must be monotonic. g is typi-
cally nonmonotonic, since as we make the set T [arger, the information that
T contains all available relevant knowledge becomes weaker, and therefore
supports fewer inferences. In principle, logicians may choose to study any
interesting relation between propositions and sets of propositions that they
please. But, by focusing attention on an infelicitously chosen relation, and
referring to it as “logical inference,” we may mislead those who are trying to
apply formalisms to practical problems. An intuitively well grounded focus
of attention may clarify thinking. In the next section, I analyze the concrete
operations performed by a reasoning agent, and argue that F is a useful
relation for studying such agents, while F4 is not.



4 The Case for Monotonic Logical Inference,
with Nonmonotonic Procedures

The choice of an inference relation such as 1 or ¢ as the basis for studying
practical reasoning should depend on the following properties of a typical
useful reasoning agent.

1. The agent has access to a huge set of propositions representing knowl-
edge about the world, through some combination of queries to an inter-
nal database, observations of the world, and receipt of communications
from other agents.

2. Access to available knowledge takes time, and consumes valuable re-
sources, in a manner that is generally monotonic in some reasonable
measure of the size of the set of propositions accessed.

3. The agent must do essentially all of its reasoning from small subsets of
propositions selected from the available knowledge.

4. The agent must often interleave inference and access to knowledge—
that is, an inference from knowledge accessed so far will often be re-
quired in order to determine how to search for further useful knowledge.

From these properties of a reasoning agent, it follows that the individual
steps by which inferred propositions are added to current knowledge are of
the form

e from some subset T of current knowledge, find a proposition A such
that T - A, and add A to current knowledge.

Property 4 requires -, here, instead of ¢, since some inferences must be
made before a reasonably diligent search is completed. g essentially forces
a reasoner into a two-phase procedure of search followed by inference.

In principle, propositions might be stratified hierarchically, so that when-
ever a judgement about the truth of A is required for a reasonably diligent
search for all information relevant to B, then no judgement about B is re-
quired for a reasonably diligent search for all information relevant to A. Then
¢ might conceivably work, if we require T to include all the propositions
found by the latest search. That is, the two-phase procedure using g may
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be repeated to simulate interleaving of search and inference. But, experience
doesn’t suggest such a natural stratification, and it seems pointlessly expen-
sive to require completion of a reasonably diligent search in the large number
of cases where the inference does not require it semantically.

Certainly, k¢ is an interesting relation, and it is normally a stronger
inference tool (not a logically stronger relation), in the sense that there are
normally T and A such that T ¢ A, but T }~; A, while the reverse will not
happen with conventional modes of assertion. So, in those cases where an
appropriate search has been completed, and all of its results included in T,
an agent should be allowed to add A such that T 5 A. But, the agent must
notice the fact that a diligent search is complete (this is necessary even if all
inference steps use ¢, since the agent must decide when to stop gathering
members of T, and start applying ), so it seems natural to encode the act
of noticing completion of the search as a metatheoretical proposition added
to current knowledge. This leads to the encoding of

Thg A

in a form such as

Search(A, T) Fp A

Certainly, the syntactic form for representing the proposition Search(A,T)
can be refined to be compatible with some useful data structure for notic-
ing search completion, so this encoding need not reduce the efficiency of a
reasoning procedure originally based directly on .

So, it appears that the information carried by F is essential in the de-
sign of practical reasoning procedures, and that the information in - may be
encoded into - by adding appropriate metatheoretic operators, which con-
struct assertions that certain sets of propositions contain all of the results of
certain searches, to our formal language. On the other hand, I doubt that
k1 can be defined efficiently and naturally from k5. An obvious candidate
definition is

e TH; Aifand only if TV g A for all T D T.

A naive application of this definition leads to an outrageously expensive
implementation of F. It seems unlikely that there is an efficient general
implementation. Furthermore, it is not even clear that the definition is ex-
tensionally correct in practically interesting formal systems of logic. The
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only if part probably holds in most reasonable systems. Monotonicity of -,
requires that TV F;, A. When T’ -, A we normally expect that T' 5 A as
well, since the in the second case the hypothesis carries the information given
directly by propositions in T as well as the information that T’ contains all
results of some appropriate search. But, the if part seems to depend in a del-
icate way on the range of quantification of extended sets T’ of propositions,
which varies depending on the generality of the formal language in use.

I do not claim that the particular syntactic form of Search(A,T) is the
right one for practical reasoning. But, this form illustrates some of the crucial
properties of the right solution.

1. Inferences using default reasoning must have metatheoretic hypotheses,
since the basis for using a default assumption is the inability to dis-
cover a counterargument, rather than some direct observation about
the world outside of a reasoning agent.

2. Some sort of search parameter must be involved in such metatheoretic
hypotheses, since all practical searches are guided by some description
of a goal, and the results of search depend critically on this descrip-
tion. The A in Search(A,T) is a very naive presentation of this search
parameter.

3. Some sort of description of the results of search must be involved in such
metatheoretic hypotheses, since it is the absence of a counterindication
in those results that enables the default assumption. The T is a very
naive presentation of the results of the search.

4. Although the extensional contents of the knowledge base available to a
reasoning agent determines the truth or falsehood of such metatheoretic
hypotheses, the contents of that knowledge base must not be mentioned
explicitly in the formal presentation of the hypotheses, since it is too
big. The whole point of a formal logical language is to represent the
information actually manipulated by a reasoning agent, which should
normally be much smaller than the world about which the agent is
reasoning. For comparative discussion of the results of reasoning from
different knowledge bases, some description of the knowledge base may
be treated as an additional parameter to the logical inference relation
-, but it must be understood that the reasoning agent has no direct
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access to it, only to the formal propositions that result from searching
it. In particular, useful definitions of - must not depend on qualities of
the knowledge base other than those derived by the search procedures
used by the reasoning agent. If several different knowledge bases are
available simultaneously to a single agent, the name of a knowledge
base to be searched may be modelled as part of the search parameter
mentioned in item 2, but the contents of the knowledge base must not
be an explicit parameter.

5 The Hard Problem Remains

Of course, arguments of the sort advanced above do not solve any hard tech-
nical problems. The hard problem to solve in automating practical reasoning
is the problem of reacting to updates (changes in knowledge) [?]. That prob-
lem is essentially the same at a technical level, whether we use a monotonic
inference relation -y or a nonmonotonic . In conventional monotonic sys-
tems, without metatheoretic operators, the addition of new knowledge leads
only to the addition of new inferences. The hard part of the update problem
is how to handle retraction of previously accepted knowledge. There is no
clear consensus even on the proper form in which to express retractions.

Both nonmonotonic inference relations, such as g, and metatheoretic
operators, such as Search, seem to add a complication to the problem of
changing knowledge, since they both lead to cases where added knowledge
requires conclusions to be retracted. 1 conjecture, though, that once the
basic problem of managing retraction of knowledge is solved, the extra in-
teraction of additions and retractions introduced by nonmonotonicity will
become much clearer. I propose that, by representing nonmonotonic rea-
soning behavior through metatheoretic operators, such as Search, with the
monotonic inference relation Fy, we can improve the flexibility and trans-
parency by which future breakthroughs in the update problem are applied
to a wide range of interesting domains of reasoning.

While the 4 properties of useful reasoning agents mentioned in Section 4
support the use of formal systems that are conventional to the extent of being
monotonic, they by no means support the particular choices of classical or
intuitionistic reasoning. In fact, an additional property of reasoning agents
argues strongly against such choices:
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5. Some of the knowledge provided to the agent is wrong, and possibly
even contradictory.

Both classical and intuitionistic logic trivialize in the presence of contradic-
tory information—everything follows logically from any contradiction, and
the mere fact that classically or intuitionistically T F A does not make it
safe for a reasoning agent to conclude A given knowledge of each proposition
in T. Even in the absence of contradiction, classical and intuitionistic logic
seem to be too sensitive to errors, due to their conceptual foundation on
the assertion of absolute truth rather than of rational belief based on fallible
information, although I can find no rigorous discussion of this sensitivity in
the literature.

An obvious fix is to have the agent test the consistency of T before ap-
plying logical inference. Unfortunately, consistency checking ranges from in-
tractably expensive to fundamentally impossible, so the time and resource for
consistency checking would dominate that for real reasoning steps. Rather,
property 5 requires the use of paraconsistent formal systems [?], such as rel-
evance logics [?] instead of classical or intuitionistic formal systems. Further
research is required to illuminate the choice of a particular paraconsistent
formal system for a particular reasoning agent. The right paraconsistent for-
mal system can reduce the harm done by errors and contradictions in the
hypotheses used by a reasoning agent, allowing useful reasoning to go on
during the typically long time between the introduction of an error or con-
tradiction and its detection. But, they still do not address the hard problem
of retracting information when an error is finally detected.
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