
The SKI Combinator Calculus
a universal formal system

The ceremony

alphabet The alphabet for the combinator calculus is the set

Σ = {S,K, I, (, )}

terms The set T of terms is defined recursively as follows

1. S, K, and I are terms.

2. If τ1 and τ2 are terms, then (τ1τ2) is also a term.

3. Nothing is a term unless required to be by rules 1 and 2.

derivations A derivation is a finite sequence of terms satisfying the following
rules.

1. If ∆ is a derivation ending in the term α((Kβ)γ)ι, where the
parentheses shown form matching pairs, then ∆ followed by αβι
is also a derivation.

2. If ∆ is a derivation ending in the term α(Iβ)ι, where the paren-
theses shown form a matching pair, then ∆ followed by αβι is also
a derivation.

3. If ∆ is a derivation ending in the term α(((Sβ)γ)δ)ι, where
the parentheses shown form matching pairs, then ∆ followed by
α((βδ)(γδ)) is also a derivation.

1



What the ceremony tells us

The ceremony above captures much of the conventional style in which logi-
cians present the combinator calculus. But the conventional ceremony de-
scribing the combinator calculus does not match the natural structure of the
formal system as well as the conventional ceremony for binary incrementing
matched its underlying system.

The terms of the combinator calculus are certain finite linear sequences
of symbols from its alphabet, restricted by the requirement that parentheses
are well balanced, and that there are never more than 2 S, K, or I symbols in
a row without an intervening parenthesis. The formal system can in fact be
understood correctly by conceiving terms as sequences. But it is much more
natural to understand the calculus as operating on binary tree-structured
terms with the symbols S, K, I at the leaves. The parentheses are in some
sense only there to indicate the tree structure, and shouldn’t be regarded as
part of the abstract alphabet. On the other hand, perhaps there should be a
symbol to associate with the nonleaf elements in the trees, in the same way
that there is an implicit symbol for multiplication in the numerical term 2πt.

Even those who insist on understanding combinatory terms as linear se-
quences get irritated with all of the parentheses. So, they introduce con-
ventions for leaving out parentheses on the left, and write ((αβ)γ) as αβγ,
but retain the parentheses in α(βγ). This is very similar to the omission of
parentheses in numerical terms. If you’re familiar with it, you won’t need an
explanation. If you’re not, skip over it for now, since it’s a minor side-issue.
Really conventional presentations of the combinator calculus introduce the
omission of parentheses as an abbreviation even before they get to the defini-
tion of derivation. Figure 1 shows an example of the same combinatory term
presented with full parentheses, minimal parentheses, and as a tree diagram.
The abstract form of the term is the same no matter which presentation we
use, although the sameness is a bit subtle, since it depends on the power of
parenthesized linear sequences to represent trees.

The view of derivations as linear sequences is natural enough, so we won’t
consider varying that. The rules for derivations are shown graphically in
Figure 2. The English description of the rules is too long and tangled to be
worth inspecting here. The pictures should be clear enough, as long as we
understand that

• The system deals entirely with finite binary branching tree diagrams,

2



Minimal parentheses Full parentheses Tree diagram

1. ISK ((IS)K)

2. I(SK) (I(SK))

3. SKISKI (((((SK)I)S)K)I)

4. S(KI)(SK)I ((S((KI)(SK))I)

5. S(K(I(S(KI)))) (S(K(I(S(KI)))))

In the forms with minimal parentheses, not every subsequence of symbols is
well formed (i.e., has balanced implicit parentheses). In 1, notice that SK
is not a balanced subterm, and does not correspond to a subtree in the tree
diagram. If 3 arose in a derivation, we could not apply Rule 2 to the form
KIS, because that is not a well-formed portion, nor could we apply Rule 1
to the form IS. Similarly in 4, (KI)(SK) and (SK)I are not well formed.

Figure 1: Terms with minimal parentheses, full parentheses, and as tree
diagrams

Figure 2: Derivation rules for the Combinator Calculus

3



This derivation takes two steps with Rule 2 to derive a tree with two Ss.
Intuitively, the leftmost two Ks select the red S from the surrounding Ks.
The five-sided dashed figures are not part of the derivation: they just show
where the rules are applied.

Figure 3: A derivation in the Combinator Calculus

where the end of each path is labelled with exactly one of the symbols
S, K, or I. Such a tree diagram is called a term.

• You may start with any term.

• In Figure 2, the x, y, and z in dashed triangles may be replaced by any
terms, as long as in each application of a rule, each of the x triangles
is replaced by a copy of the same combinator, similarly for each of the
y triangles and each of the z triangles.

• When a structure of the form given by the left-hand side of one of the
two rules in Figure 2 appears anywhere within a term, you may replace
that structure by the corresponding structure on the right-hand side of
the same rule.

Compare this (I think clearer) presentation of the rules of derivation with
the more ceremonial one, and convince yourself that they are two different
descriptions of the same abstract notion of derivation. Notice how the meta-
symbols β, γ, and δ in the ceremonial version serve the same function as the
metasymbols x, y, and z in the second version—they act as variables ranging
over terms. The metasymbols α and ι in the ceremonial version correspond to
the explanation that we may replace a structure “anywhere within a term.”

In the formal system of the Combinator Calculus, we may replace a cer-
tain combination of four ‘K’s and two ‘S’s by the combination of the two
‘S’s, using the derivation in Figure 3. Writing terms as linear sequences, this
derivation is described as

KKKSKS, KSKS, SS

In an interesting formal system, such as the combinator calculus, we usu-
ally get bored with doing one derivation at a time. We notice that derivations

4



This schematic derivation takes two steps, first with Rule 3 and then with
Rule 2, to reach the schematic tree at the bottom. Intuitively, the combina-
tion of one S and two Ks above acts as an identity operator applied to the
tree that fills in for a.
The five-sided dashed figures are not part of the derivation: they just show
where the rules are applied.

Figure 4: A schematic derivation in the Combinator Calculus

often manipulate only certain portions of the terms in them, and other por-
tions just come along for the ride. By carefully sorting out the manipulated
portions and the inert portions, we generate schematic derivations, repre-
senting an infinite number of possibilites in a compact form. Figure 4 shows
an interesting schematic derivation. This schematic derivation shows that
SKK behaves like I. Writing terms as linear sequences, it looks like

SKKαβ, Kα(Kα)β, αβ

Make sure that you understand precisely why I needed parentheses in the
second term, but not in the first or third. Notice that the symbols α and β
are not part of any derivation. Rather, we can replace α and β by any terms
that we choose, and the results are all derivations.

Here are some more derivations and schematic derivations, written with
terms as minimally parenthesized linear sequences. In each term, I underlined
the portion that is about to be replaced by one of the rules, and I overlined
the portion that was created by application of a rule to the previous term.
As an exercise, you should fill in the missing parentheses, and draw the tree
diagrams.

SIIα, Iα(Iα), α(Iα), αα (1)

SII(SII), I(SII)(I(SII)), I(SII)(SII), SII(SII) (2)

S(K(SI))(S(KK)I)αβ, K(SI)α(S(KK)Iα)β, SI(S(KK)Iα)β,

SI(KKα(Iα)β, SI(K(Iα))β, SI(Kα)β, Iβ(Kαβ), β(Kαβ), βα

(3)

5



Derivation 1 shows that SII behaves as a sort of repeat or self-apply op-
eration. Derivation 2 shows the circularity in repeating repeat, or self-
applying self-apply. Derivation 3 is rather challenging to follow. It shows
that S(K(SI))(S(KK)I) behaves as a sort of reversal operation. Try to see
how the Ss serve to shuffle copies of α and β into different parts of the term.
K(SI) acts as a sort of filter to throw away the α and catch the β; conversely
S(KK)I acts as a sort of filter to catch the α and throw away the β.

Because the rules for derivations all depend on the appearance of a par-
ticular symbol at the left, we often call the form αβ “α applied to β,” and
in general we call αβ1 . . . βn “α applied to β1, . . . , βn.”

The universal qualities of SKIing

The combinator calculus was designed precisely to be universal in the sense
that it can accomplish every conceivable rearrangement of subterms just by
means of applying terms to them. That is, given a rule for rearranging n
things into the shape of a term (allowing copying and deleting of individual
things), there is a term that can be applied to each choice of n things so that
several derivation steps will accomplish that rearrangement. The examples
of SII as a repeater and S(K(SI))(S(KK)I) as a reverser suggest how this
works. That particular quality of a formal system is called combinatory
completeness. Every formal system that contains something acting like S
and something acting like K is combinatorily complete (SKK acts like I, so
we can actually do without I, but interesting terms get even harder to read).
Combinatory completeness can itself be defined formally in a sense that we
explore further in the section on reflection.

Rearrangements arise in formal systems whenever we substitute things
for variables. The combinator calculus was designed specifically to sow that
substitution for variables can be reduced to more primitive looking opera-
tions.

By accident, the combinator calculus turns out to be universal in a much
more powerful sense than combinatory completeness. The combinator cal-
culus is a universal programming system—its derivations can accomplish ev-
erything that can be accomplished by computation. That is, terms can be
understood as programs, and every program that we can write in every pro-
gramming language can be written also as a term in the combinator calculus.
Since formal systems are the same thing as computing systems, every formal

6



system can be described as an interpretation of the terms in the combinator
calculus. When we suggest all of the ways that formal systems can be applied
to one another in the sections on mathematical formalism and on reflection,
this should look pretty impressive for a system with such trivial rules.

The universality of the combinator calculus in this sense cannot be de-
fined perfectly formally. It is essentially a nonformal observation, called the
Church-Turing thesis (often just Church’s thesis). For every particular com-
puting system that anyone has conceived of so far, we have precise formal
knowledge that the combinator calculus can accomplish the same computa-
tions. There are some very strong arguments, particularly by Alan Turing,
that some of these computing systems have captured the ability to do every-
thing that can conceivably be regarded as a computation. But every attempt
to formalize that observation begs the question whether the formalization of
formalization is complete. Nonetheless, everybody that I know who studies
such things finds the thesis convincing.

Based on the primitive quality of the operations in the combinator calcu-
lus, and its ability (given the Church-Turing thesis) to describe all possible
formal systems, I like to think of the combinator calculus as the machine
language of mathematics.

7


