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Part I: Matrix Completion Problem



Matrix Completion

• Matrix Completion: Let Ω be a set of entries 
sampled at random. Given the entries 
{𝑀𝑎𝑏: 𝑎, 𝑏 ∈ Ω} from a matrix 𝑀, can we 
determine the remaining entries of 𝑀?

• Impossible in general, tractable if 𝑀 is low rank 
i.e. 𝑀 = σ𝑖=1

𝑟 𝜆𝑖𝑢𝑖𝑣𝑖
𝑇 where 𝑟 is not too large.



Netflix Challenge

• Canonical example of matrix completion: 
Netflix Challenge

• Can we predict users’ preferences on other 
movies from their previous ratings?
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Solving Matrix Completion

• Current best method in practice: Alternating 
minimization

• Idea: Write 𝑀 = σ𝑖=1
𝑟 𝑢𝑖 𝑣𝑖

𝑇, alternate 
between optimizing {𝑢𝑖} and {𝑣𝑖}

• Best known theoretical guarantees: Nuclear 
norm minimization

• This lecture: We’ll describe nuclear norm 
minimization and how it generalizes to tensor 
completion via SOS.



Part II: Nuclear Norm Minimization



Theorem Statement

• Theorem [Rec11]: If 𝑀 = σ𝑖=1
𝑟 𝜆𝑖 𝑢𝑖𝑣𝑖

𝑇 is an 
𝑛 × 𝑛 matrix then nuclear norm minimization 
requires 𝑂(𝑛𝑟𝜇0 𝑙𝑜𝑔𝑛 2) random samples to 
complete 𝑀 with high probability

• Note: 𝜇0 is a parameter related to how 
coherent the {𝑢𝑖} and the {𝑣𝑖} (see appendix 
for the definition)

• Example of why this is needed: If 𝑢𝑖 = 𝑒𝑗 then 
𝑢𝑖𝑣𝑖

𝑇 = 𝑒𝑗𝑣𝑖
𝑇 can only be fully detected by 

sampling all of row 𝑗, which requires sampling 
almost everything!



Nuclear Norm

• Recall the singular value decomposition (SVD) 
of a matrix 𝑀

•𝑀 = σ𝑖=1
𝑟 𝜆𝑖𝑢𝑖 𝑣𝑖

𝑇 where the {𝑢𝑖} are 
orthonormal, the {𝑣𝑖} are orthonormal, and 
𝜆𝑖 ≥ 0 for all 𝑖.

• The nuclear norm of 𝑀 is 𝑀 ∗ = σ𝑖=1
𝑟 𝜆𝑖



Nuclear Norm Minimization

• Matrix completion problem: Recover 𝑀 given 
randomly sampled entries {𝑀𝑎𝑏: 𝑎, 𝑏 ∈ Ω}

• Nuclear norm minimization: Find the matrix 
𝑋 which minimizes 𝑋 ∗ while satisfying 
𝑋𝑎𝑏 = 𝑀𝑎𝑏 whenever 𝑎, 𝑏 ∈ Ω.

• How do we minimize 𝑋 ∗?



Semidefinite Program

• We can implement nuclear norm minimization 
with the following semidefinite program:

• Minimize the trace of 
𝑈 𝑋
𝑋𝑇 𝑉

≽ 0 where 

𝑋𝑎𝑏 = 𝑀𝑎𝑏 whenever 𝑎, 𝑏 ∈ Ω

• Why does this work? We’ll first show that the 
true solution is a good solution. We’ll then 
describe how to show the true solution is the 
optimal solution



True Solution

• Program: Minimize the trace of 
𝑈 𝑋
𝑋𝑇 𝑉

≽ 0

where 𝑋𝑎𝑏 = 𝑀𝑎𝑏 whenever 𝑎, 𝑏 ∈ Ω

• True solution: 
𝑈 𝑋
𝑋𝑇 𝑉

= σ𝑖 𝜆𝑖
𝑢𝑖
𝑣𝑖

𝑢𝑖
𝑇 𝑣𝑖

𝑇

(recall that 𝑀 = σ𝑖 𝜆𝑖 𝑢𝑖𝑣𝑖
𝑇)

• Since for all 𝑖, 𝑡𝑟 𝑢𝑖𝑢𝑖
𝑇 = 𝑡𝑟 𝑣𝑖𝑣𝑖

𝑇 = 1, 

𝑡𝑟
𝑈 𝑋
𝑋𝑇 𝑉

= 2σ𝑖 𝜆𝑖



Dual Certificate

• Program: Minimize the trace of 
𝑈 𝑋
𝑋𝑇 𝑉

≽ 0

where 𝑋𝑎𝑏 = 𝑀𝑎𝑏 whenever 𝑎, 𝑏 ∈ Ω

• Dual Certificate: 
𝐼𝑑 −𝐴
−𝐴𝑇 𝐼𝑑

≽ 0

• Recall that if 𝑀1, 𝑀2 ≽ 0 then 𝑀1⦁𝑀2 ≥ 0
(where ⦁ is the entry-wise dot product)

•
𝐼𝑑 −𝐴
−𝐴𝑇 𝐼𝑑

⦁
𝑈 𝑋
𝑋𝑇 𝑉

≥ 0

• If 𝐴𝑎𝑏 = 0 whenever 𝑎, 𝑏 ∉ Ω, this lower 
bounds the trace. 



True Solution Optimality

• Dual Certificate: 
𝐼𝑑 −𝐴
−𝐴𝑇 𝐼𝑑

≽ 0 where 𝐴𝑎𝑏 =

0 whenever 𝑎, 𝑏 ∉ Ω

• True solution 
𝑈 𝑋
𝑋𝑇 𝑉

= σ𝑖 𝜆𝑖
𝑢𝑖
𝑣𝑖

𝑢𝑖
𝑇 𝑣𝑖

𝑇

is optimal if 
𝐼𝑑 −𝐴
−𝐴𝑇 𝐼𝑑

⦁
𝑈 𝑋
𝑋𝑇 𝑉

= 0

• This occurs if 
𝐼𝑑 −𝐴
−𝐴𝑇 𝐼𝑑

𝑢𝑖
𝑣𝑖

= 0 for all 𝑖



Conditions on 𝐴

• We want  𝐴 such that 
𝐼𝑑 −𝐴
−𝐴𝑇 𝐼𝑑

≽ 0, 𝐴𝑎𝑏 =

0 whenever 𝑎, 𝑏 ∉ Ω, and 
𝐼𝑑 −𝐴
−𝐴𝑇 𝐼𝑑

𝑢𝑖
𝑣𝑖

= 0 for all 𝑖

• Necessary and sufficient conditions on 𝐴:
1. 𝐴 ≤ 1

2. 𝐴𝑎𝑏 = 0 whenever 𝑎, 𝑏 ∉ Ω

3. 𝐴𝑣𝑖 = 𝑢𝑖 for all 𝑖

4. 𝐴𝑇𝑢𝑖 = 𝑣𝑖 for all 𝑖



Dual Certificate with all entries

• Necessary and sufficient conditions on 𝐴:
1. 𝐴 ≤ 1
2. 𝐴𝑎𝑏 = 0 whenever 𝑎, 𝑏 ∉ Ω
3. 𝐴𝑣𝑖 = 𝑢𝑖 for all 𝑖
4. 𝐴𝑇𝑢𝑖 = 𝑣𝑖 for all 𝑖

• If we have all entries (so we can ignore 
condition 2), we can take 𝐴 = σ𝑖 𝑢𝑖𝑣𝑖

𝑇

• Challenge: Find 𝐴 when we don’t have all 
entries

• Remark: This explains why the semidefinite 
program minimizes the nuclear norm.



Part III: Generalization to Tensor 
Completion



Tensor Completion

Tensor Completion: Let • Ω be a set of entries 
sampled at random. Given the entries 
{𝑇𝑎𝑏𝑐: 𝑎, 𝑏, 𝑐 ∈ Ω} from a tensor 𝑇, can we 
determine the remaining entries of 𝑇?

More difficult problem: tensor rank is much •
more complicated



Exact Tensor Completion Theorem

• Theorem [PS17]: If 𝑇 = σ𝑖=1
𝑟 𝜆𝑖𝑢𝑖 ⊗𝑣𝑖 ⊗𝑤𝑖, 

the {𝑢𝑖} are orthogonal, the {𝑣𝑖} are 
orthogonal, and the {𝑤𝑖} are orthogonal then 
with high probability we can recover 𝑇 with 

𝑂(𝑟𝜇𝑛
3

2𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛)) random samples

• First algorithm to obtain exact tensor 
completion

• Remark: The orthogonality condition is very 
restrictive but this result can likely be extended.

• See appendix for the definition of 𝜇.



Semidefinite Program: First Attempt

• Won’t quite work, but we’ll fix it later.

• Minimize the trace of 
𝑈 𝑋
𝑋𝑇 𝑉𝑊

≽ 0 where 

𝑋𝑎𝑏𝑐 = 𝑇𝑎𝑏𝑐 whenever 𝑎, 𝑏, 𝑐 ∈ Ω

• Here the top and left blocks are indexed by 𝑎
and the bottom and right blocks are indexed 
by 𝑏, 𝑐.



True Solution

Program: Minimize trace of •
𝑈 𝑋
𝑋𝑇 𝑉𝑊

≽ 0

where 𝑋𝑎𝑏𝑐 = 𝑇𝑎𝑏𝑐 whenever 𝑎, 𝑏, 𝑐 ∈ Ω

True solution: •
𝑈 𝑋
𝑋𝑇 𝑉𝑊

=

σ𝑖 𝜆𝑖
𝑢𝑖

𝑣𝑖 ⊗𝑤𝑖
𝑢𝑖
𝑇 𝑣𝑖 ⊗𝑤𝑖

𝑇

(recall that T = σ𝑖 𝜆𝑖 𝑢𝑖 𝑣𝑖 ⊗𝑤𝑖
𝑇)

𝑡𝑟•
𝑈 𝑋
𝑋𝑇 𝑉𝑊

= 2σ𝑖 𝜆𝑖



Dual Certificate: First Attempt

Program: Minimize trace of •
𝑈 𝑋
𝑋𝑇 𝑉𝑊

≽ 0

where 𝑋𝑎𝑏𝑐 = 𝑇𝑎𝑏𝑐 whenever 𝑎, 𝑏, 𝑐 ∈ Ω

Dual Certificate: •
𝐼𝑑 −𝐴
−𝐴𝑇 𝐼𝑑

≽ 0 where 

𝐴𝑎𝑏𝑐 = 0 whenever 𝑎, 𝑏, 𝑐 ∉ Ω

We want •
𝐼𝑑 −𝐴
−𝐴𝑇 𝐼𝑑

𝑢𝑖
𝑣𝑖 ⊗𝑤𝑖

= 0 for all 𝑖



Conditions on 𝐴

• We want  𝐴 such that 
𝐼𝑑 −𝐴
−𝐴𝑇 𝐼𝑑

≽ 0, 𝐴𝑎𝑏𝑐 =

0 whenever 𝑎, 𝑏, 𝑐 ∉ Ω, and 
𝐼𝑑 −𝐴
−𝐴𝑇 𝐼𝑑

𝑢𝑖
𝑣𝑖 ⊗𝑤𝑖

= 0 for all 𝑖

• Necessary and sufficient conditions on 𝐴:
1. 𝐴 ≤ 1

2. 𝐴𝑎𝑏𝑐 = 0 whenever 𝑎, 𝑏, 𝑐 ∉ Ω

3. 𝐴(𝑣𝑖 ⊗𝑤𝑖) = 𝑢𝑖 for all 𝑖

4. 𝐴𝑇𝑢𝑖 = 𝑣𝑖 ⊗𝑤𝑖 for all 𝑖 TOO STRONG, requires 
Ω(𝑛2) samples!



Part IV: SOS-symmetry to the 
Rescue



SOS Program

• Minimize the trace of 
𝑈 𝑋
𝑋𝑇 𝑉𝑊

≽ 0 where 

𝑋𝑎𝑏𝑐 = 𝑇𝑎𝑏𝑐 whenever 𝑎, 𝑏, 𝑐 ∈ Ω and 𝑉𝑊 is 
SOS-symmetric (i.e. 𝑉𝑊𝑏𝑐𝑏′𝑐′ = 𝑉𝑊𝑏′𝑐𝑏𝑐′ for 
all 𝑏, 𝑐, 𝑏′, 𝑐′)



Review: Matrix Polynomial 𝑞(𝑄)

• Definition: Given a symmetric matrix 𝑄
indexed by monomials, define

q 𝑄 = σ𝐾(σ𝐼,𝐽:𝐾=𝐼∪𝐽(𝑎𝑠 𝑚𝑢𝑙𝑡𝑖𝑠𝑒𝑡𝑠)𝑄𝐼𝐽)𝑥𝐾

• Idea: M ∙ 𝑄 = ෨𝐸[𝑞(𝑄)]



Dual Certificate

• Program: Minimize trace of 
𝑈 𝑋
𝑋𝑇 𝑉𝑊

≽ 0

where 𝑋𝑎𝑏𝑐 = 𝑇𝑎𝑏𝑐 whenever 𝑎, 𝑏, 𝑐 ∈ Ω and 
𝑉𝑊 is SOS-symmetric

• Dual Certificate: 
𝐼𝑑 −𝐴
−𝐴𝑇 𝐵

≽ 0 where 

𝐴𝑎𝑏𝑐 = 0 whenever 𝑎, 𝑏, 𝑐 ∉ Ω and q 𝐵 =
𝑞(𝐼𝑑)

• We want 
𝐼𝑑 −𝐴
−𝐴𝑇 𝐵

𝑢𝑖
𝑣𝑖 ⊗𝑤𝑖

= 0 for all 𝑖



Dual Certificate Tightness Condition

• Write 𝐵 = 𝐴𝑇𝐴 + 𝐼𝑑 − 𝑅

• Dual Certificate: 
𝐼𝑑 −𝐴
−𝐴𝑇 𝐴𝑇𝐴 + 𝐼𝑑 − 𝑅

≽ 0

where 𝐴𝑎𝑏𝑐 = 0 whenever 𝑎, 𝑏, 𝑐 ∉ Ω and 
q 𝐵 = 𝑞(𝐼𝑑)

• This dual certificate is tight for the true solution 
if

𝐼𝑑 −𝐴
−𝐴𝑇 𝐴𝑇𝐴 + 𝐼𝑑 − 𝑅

𝑢𝑖
𝑣𝑖 ⊗𝑤𝑖

= 0 for all 𝑖



Dual Certificate Conditions

• This gives us the following conditions on 𝐴, 𝑅
1. 𝐴𝑎𝑏𝑐 = 0 whenever 𝑎, 𝑏, 𝑐 ∉ Ω
2. ∀𝑖, 𝐴(𝑣𝑖⊗𝑤𝑖) = 𝑢𝑖
3. 𝑅 ≤ 1
4. ∀𝑖, 𝑅(𝑣𝑖⊗𝑤𝑖) = 𝑣𝑖 ⊗𝑤𝑖

5. 𝑞 𝑅 = 𝑞(𝐴𝑇𝐴) (so that 𝑞 𝐵 = 𝑞 𝐼𝑑 =
σ𝑏,𝑐 𝑦𝑏

2𝑧𝑐
2)

• Remark: These conditions are sufficient even if 
𝑇 is not orthogonal. We only prove the theorem 
for orthogonal tensors because that’s what our 
current analysis can handle.



Part V: Finding Dual Certificate 
for Matrix Completion



Conditions on 𝐴

Necessary and sufficient conditions on • 𝐴:
1. 𝐴 ≤ 1

2. 𝐴𝑎𝑏 = 0 whenever 𝑎, 𝑏 ∉ Ω

3. 𝐴𝑣𝑖 = 𝑢𝑖 for all 𝑖

4. 𝐴𝑇𝑢𝑖 = 𝑣𝑖 for all 𝑖

How can we find such an • 𝐴?

Idea:• Alternate between satisfying condition 2
and conditions 3,4, converging to a final 
solution.



Definition of PU, PV, PT

• Define 𝑃𝑈 to be the projection to 𝑠𝑝𝑎𝑛 𝑢𝑖 . 
The equation for this is 𝑃𝑈 𝑥 = σ𝑖 𝑥 ⋅ 𝑢𝑖 𝑢𝑖

• Define 𝑃𝑉 to be the projection to 𝑠𝑝𝑎𝑛 𝑣𝑖 . 
The equation for this is 𝑃𝑉 𝑦 = σ𝑖 𝑦 ⋅ 𝑣𝑖 𝑣𝑖

• Define 𝑃𝑇 to be the projection (on the space of 
matrices) to 𝑠𝑝𝑎𝑛{𝑥𝑣𝑖

𝑇 , 𝑢𝑖
𝑇𝑦} (for arbitrary 

𝑥, 𝑦). The equation for this is

𝑃𝑇𝑀 = 𝑃𝑈𝑀 + 𝑃𝑉𝑀 − 𝑃𝑈𝑀𝑃𝑉



Restatement of Conditions 3,4

• Necessary and sufficient conditions on 𝐴:
1. 𝐴 ≤ 1

2. 𝐴𝑎𝑏 = 0 whenever 𝑎, 𝑏 ∉ Ω

3. 𝐴𝑣𝑖 = 𝑢𝑖 for all 𝑖

4. 𝐴𝑇𝑢𝑖 = 𝑣𝑖 for all 𝑖

• Without loss of generality, assume 𝑀 =
σ𝑖 𝑢𝑖𝑣𝑖

𝑇 (the values of the 𝜆𝑖 don’t affect the 
dual certificate)

• Assuming 𝑀 = σ𝑖 𝑢𝑖𝑣𝑖
𝑇, conditions 3,4 are 

equivalent to 𝑃𝑇𝐴 = 𝑀



Definition of 𝑅Ω and ത𝑅Ω

Definition: Define 𝑅Ω(𝑋) =
𝑛1𝑛2𝑛3

𝑚
𝑋𝑎𝑏𝑐 if •

𝑎, 𝑏, 𝑐 ∈ Ω and 0 otherwise where 𝑛1 × 𝑛2 ×
𝑛3 are the dimensions of the tensor and each 
entry is sampled indepently with probability 

𝑚

𝑛1𝑛2𝑛3
.

Define• ത𝑅Ω(𝑋) =
𝑛1𝑛2𝑛3

𝑚
− 1 𝑋𝑎𝑏𝑐 if 

𝑎, 𝑏, 𝑐 ∈ Ω and −𝑋𝑎𝑏𝑐 if 𝑎, 𝑏, 𝑐 ∉ Ω

• 𝑅Ω 𝑋 𝑎𝑏𝑐 = 0 whenever 𝑎, 𝑏, 𝑐 ∉ Ω

𝐸• ത𝑅Ω 𝑋 = 0 (over the choice of Ω)



First Iteration

Start with • 𝑀. PT𝑀 = 𝑀 but 𝑀 has nonzero 
entries outside the sampled entries

• 𝑅Ω(𝑀) is zero outside the sampled entries, 
but 𝑃𝑇𝑅Ω 𝑀 ≠ 𝑀

We take • A1 = 𝑅Ω(𝑀) as the first 
approximation, we’ll need to correct for the 
difference

𝑃𝑇𝑅Ω𝑀 −𝑀 = 𝑃𝑇 ത𝑅Ω𝑀



Technical Note

• For the analysis, actually need to resample 
independently for each iteration, obtaining 
sets of samples Ω1, Ω2, …. This is the source of 
the 𝑙𝑜𝑔𝑛 2 in the upper bound (the lower 
bound only has log 𝑛 (reference to be added))



Iterative Equation

• Take

𝐴𝑘 = σ𝑗=0
𝑘−1 −1 𝑗𝑅Ω𝑗+1

(𝑃𝑇 ത𝑅Ω𝑗
)… (𝑃𝑇 ത𝑅Ω1

)𝑀

• Claim:

𝑃𝑇𝐴
𝑘 = 𝑀 + −1 𝑘−1(𝑃𝑇 ത𝑅Ω𝑘

)… (𝑃𝑇 ത𝑅Ω1
)𝑀

• Proof idea: Use the facts that 𝑅Ω = 1 + ത𝑅Ω, 
𝑃𝑇
2 = 𝑃𝑇, and 𝑃𝑇𝑀 = 𝑀.



Convergence and Final Step

Take•

𝐴𝑘 = σ𝑗=0
𝑘−1 −1 𝑗𝑅Ω𝑗+1

(𝑃𝑇 ത𝑅Ω𝑗
)… (𝑃𝑇 ത𝑅Ω1

)𝑀

Claim:•

𝑃𝑇𝐴
𝑘 = 𝑀 + −1 𝑘−1(𝑃𝑇 ത𝑅Ω𝑘

)… (𝑃𝑇 ത𝑅Ω1
)𝑀

To show that • 𝑃𝑇𝐴
𝑘 converges to 𝑀 w.h.p., it is 

sufficient to show that the 𝑃𝑇 ത𝑅Ω operation 
makes matrices “smaller” with high probability.

Once• the error is small enough, we then take
one final step to satisfy all conditions 
simultaneously. For details, see [Rec11].



Part VI: Open Problems



Open Problems

• For which tensors 𝑇 can we show that SOS 
gives exact tensor completion? We’ve shown it 
when 𝑇 is orthogonal, but this can very likely 
be extended.

• Important subproblem: When can we find 𝐴
such that 𝐴 𝑣𝑖 ⊗𝑤𝑖 = 𝑢𝑖 for all 𝑖 and 
|𝐴 𝑢, 𝑣, 𝑤 | ≤ 1 for all unit 𝑢, 𝑣, 𝑤?

• Barak and Moitra [BM16] show that SOS solves 
the approximate tensor completion problem in 
a somewhat broader setting with a different 
analysis. Can these analyses assist each other?
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Appendix: 𝜇0 and 𝜇 Definitions



𝜇0 and 𝜇 Definitions

Definition:•

𝜇0 =
𝑛

𝑟
⋅ max{max𝑎 𝑃𝑈𝑒𝑎

2 , max
𝑏

𝑃𝑉𝑒𝑏
2}

Definition:•

𝜇 = n ⋅ max{max𝑖,𝑎 𝑢𝑖𝑎
2 , max

𝑗,𝑏
𝑣𝑗𝑏
2 , max

𝑘,𝑐
𝑤𝑘𝑐
2 }


