# Lecture 15: Exact Tensor Completion 

Joint Work with David Steurer

## Lecture Outline

- Part I: Matrix Completion Problem
- Part II: Matrix Completion via Nuclear Norm Minimization
- Part III: Generalization to Tensor Completion
- Part IV: SOS-symmetry to the Rescue
- Part V: Finding Dual Certificate for Matrix Completion
- Part VI: Open Problems


## Part I: Matrix Completion Problem

## Matrix Completion

- Matrix Completion: Let $\Omega$ be a set of entries sampled at random. Given the entries $\left\{M_{a b}:(a, b) \in \Omega\right\}$ from a matrix $M$, can we determine the remaining entries of $M$ ?
- Impossible in general, tractable if $M$ is low rank i.e. $M=\sum_{i=1}^{r} \lambda_{i} u_{i} v_{i}^{T}$ where $r$ is not too large.


## Netflix Challenge

- Canonical example of matrix completion: Netflix Challenge
- Can we predict users' preferences on other movies from their previous ratings?


## Netflix Challenge



## Solving Matrix Completion

- Current best method in practice: Alternating minimization
- Idea: Write $M=\sum_{i=1}^{r} u_{i} v_{i}^{T}$, alternate between optimizing $\left\{u_{i}\right\}$ and $\left\{v_{i}\right\}$
- Best known theoretical guarantees: Nuclear norm minimization
- This lecture: We'll describe nuclear norm minimization and how it generalizes to tensor completion via SOS.


## Part II: Nuclear Norm Minimization

## Theorem Statement

- Theorem [Rec11]: If $M=\sum_{i=1}^{r} \lambda_{i} u_{i} v_{i}^{T}$ is an $n \times n$ matrix then nuclear norm minimization requires $O\left(n r \mu_{0}(\log n)^{2}\right)$ random samples to complete $M$ with high probability
- Note: $\mu_{0}$ is a parameter related to how coherent the $\left\{u_{i}\right\}$ and the $\left\{v_{i}\right\}$ (see appendix for the definition)
- Example of why this is needed: If $u_{i}=e_{j}$ then $u_{i} v_{i}^{T}=e_{j} v_{i}^{T}$ can only be fully detected by sampling all of row $j$, which requires sampling almost everything!


## Nuclear Norm

- Recall the singular value decomposition (SVD) of a matrix $M$
- $M=\sum_{i=1}^{r} \lambda_{i} u_{i} v_{i}^{T}$ where the $\left\{u_{i}\right\}$ are orthonormal, the $\left\{v_{i}\right\}$ are orthonormal, and $\lambda_{i} \geq 0$ for all $i$.
- The nuclear norm of $M$ is $\|M\|_{*}=\sum_{i=1}^{r} \lambda_{i}$


## Nuclear Norm Minimization

- Matrix completion problem: Recover $M$ given randomly sampled entries $\left\{M_{a b}:(a, b) \in \Omega\right\}$
- Nuclear norm minimization: Find the matrix $X$ which minimizes $\|X\|_{*}$ while satisfying $X_{a b}=M_{a b}$ whenever $(a, b) \in \Omega$.
- How do we minimize $\|X\|_{*}$ ?


## Semidefinite Program

- We can implement nuclear norm minimization with the following semidefinite program:
- Minimize the trace of $\left(\begin{array}{cc}U & X \\ X^{T} & V\end{array}\right) \succcurlyeq 0$ where $X_{a b}=M_{a b}$ whenever $(a, b) \in \Omega$
- Why does this work? We'll first show that the true solution is a good solution. We'll then describe how to show the true solution is the optimal solution


## True Solution

- Program: Minimize the trace of $\left(\begin{array}{cc}U & X \\ X^{T} & V\end{array}\right) \succcurlyeq 0$ where $X_{a b}=M_{a b}$ whenever $(a, b) \in \Omega$
- True solution: $\left(\begin{array}{cc}U & X \\ X^{T} & V\end{array}\right)=\sum_{i} \lambda_{i}\binom{u_{i}}{v_{i}}\left(\begin{array}{ll}u_{i}^{T} & v_{i}^{T}\end{array}\right)$ (recall that $M=\sum_{i} \lambda_{i} u_{i} v_{i}^{T}$ )
- Since for all $i, \operatorname{tr}\left(u_{i} u_{i}^{T}\right)=\operatorname{tr}\left(v_{i} v_{i}^{T}\right)=1$, $\operatorname{tr}\left(\begin{array}{cc}U & X \\ X^{T} & V\end{array}\right)=2 \sum_{i} \lambda_{i}$


## Dual Certificate

- Program: Minimize the trace of $\left(\begin{array}{cc}U & X \\ X^{T} & V\end{array}\right) \succcurlyeq 0$
where $X_{a b}=M_{a b}$ whenever $(a, b) \in \Omega$
- Dual Certificate: $\left(\begin{array}{cc}I d & -A \\ -A^{T} & I d\end{array}\right) \succcurlyeq 0$
- Recall that if $M_{1}, M_{2} \succcurlyeq 0$ then $M_{1} \bullet M_{2} \geq 0$ (where • is the entry-wise dot product)
$\cdot\left(\begin{array}{cc}I d & -A \\ -A^{T} & I d\end{array}\right) \cdot\left(\begin{array}{cc}U & X \\ X^{T} & V\end{array}\right) \geq 0$
- If $A_{a b}=0$ whenever $(a, b) \notin \Omega$, this lower bounds the trace.


## True Solution Optimality

- Dual Certificate: $\left(\begin{array}{cc}I d & -A \\ -A^{T} & I d\end{array}\right) \succcurlyeq 0$ where $A_{a b}=$ 0 whenever $(a, b) \notin \Omega$
- True solution $\left(\begin{array}{cc}U & X \\ X^{T} & V\end{array}\right)=\sum_{i} \lambda_{i}\binom{u_{i}}{v_{i}}\left(\begin{array}{ll}u_{i}^{T} & v_{i}^{T}\end{array}\right)$
is optimal if $\left(\begin{array}{cc}I d & -A \\ -A^{T} & I d\end{array}\right) \cdot\left(\begin{array}{cc}U & X \\ X^{T} & V\end{array}\right)=0$
- This occurs if $\left(\begin{array}{cc}I d & -A \\ -A^{T} & I d\end{array}\right)\binom{u_{i}}{v_{i}}=0$ for all $i$


## Conditions on $A$

- We want $A$ such that $\left(\begin{array}{cc}I d & -A \\ -A^{T} & I d\end{array}\right) \succcurlyeq 0, A_{a b}=$ 0 whenever $(a, b) \notin \Omega$, and $\left(\begin{array}{cc}I d & -A \\ -A^{T} & I d\end{array}\right)\binom{u_{i}}{v_{i}}=0$ for all $i$
- Necessary and sufficient conditions on $A$ :

1. $\|A\| \leq 1$
2. $A_{a b}=0$ whenever $(a, b) \notin \Omega$
3. $A v_{i}=u_{i}$ for all $i$
4. $A^{T} u_{i}=v_{i}$ for all $i$

## Dual Certificate with all entries

- Necessary and sufficient conditions on $A$ :

1. $\|A\| \leq 1$
2. $A_{a b}=0$ whenever $(a, b) \notin \Omega$
3. $A v_{i}=u_{i}$ for all $i$
4. $A^{T} u_{i}=v_{i}$ for all $i$

- If we have all entries (so we can ignore condition 2), we can take $A=\sum_{i} u_{i} v_{i}^{T}$
- Challenge: Find $A$ when we don't have all entries
- Remark: This explains why the semidefinite program minimizes the nuclear norm.

Part III: Generalization to Tensor Completion

## Tensor Completion

- Tensor Completion: Let $\Omega$ be a set of entries sampled at random. Given the entries $\left\{T_{a b c}:(a, b, c) \in \Omega\right\}$ from a tensor $T$, can we determine the remaining entries of $T$ ?
- More difficult problem: tensor rank is much more complicated


## Exact Tensor Completion Theorem

- Theorem [PS17]: If $T=\sum_{i=1}^{r} \lambda_{i} u_{i} \otimes v_{i} \otimes w_{i}$, the $\left\{u_{i}\right\}$ are orthogonal, the $\left\{v_{i}\right\}$ are orthogonal, and the $\left\{w_{i}\right\}$ are orthogonal then with high probability we can recover $T$ with $O\left(r \mu n^{\frac{3}{2}} p o l y \log (n)\right)$ random samples
- First algorithm to obtain exact tensor completion
- Remark: The orthogonality condition is very restrictive but this result can likely be extended.
- See appendix for the definition of $\mu$.


## Semidefinite Program: First Attempt

- Won't quite work, but we'll fix it later.
- Minimize the trace of $\left(\begin{array}{cc}U & X \\ X^{T} & V W\end{array}\right) \succcurlyeq 0$ where $X_{a b c}=T_{a b c}$ whenever $(a, b, c) \in \Omega$
- Here the top and left blocks are indexed by $a$ and the bottom and right blocks are indexed by $b, c$.


## True Solution

- Program: Minimize trace of $\left(\begin{array}{cc}U & X \\ X^{T} & V W\end{array}\right) \succcurlyeq 0$ where $X_{a b c}=T_{a b c}$ whenever $(a, b, c) \in \Omega$
- True solution: $\left(\begin{array}{cc}U & X \\ X^{T} & V W\end{array}\right)=$
$\sum_{i} \lambda_{i}\binom{u_{i}}{v_{i} \otimes w_{i}}\left(\begin{array}{ll}u_{i}^{T} & \left.\left(v_{i} \otimes w_{i}\right)^{T}\right)\end{array}\right.$
(recall that $\left.\mathrm{T}=\sum_{i} \lambda_{i} u_{i}\left(v_{i} \otimes w_{i}\right)^{T}\right)$
$\cdot \operatorname{tr}\left(\begin{array}{cc}U & X \\ X^{T} & V W\end{array}\right)=2 \sum_{i} \lambda_{i}$


## Dual Certificate: First Attempt

- Program: Minimize trace of $\left(\begin{array}{cc}U & X \\ X^{T} & V W\end{array}\right) \succcurlyeq 0$ where $X_{a b c}=T_{a b c}$ whenever $(a, b, c) \in \Omega$
- Dual Certificate: $\left(\begin{array}{cc}I d & -A \\ -A^{T} & I d\end{array}\right) \succcurlyeq 0$ where $A_{a b c}=0$ whenever $(a, b, c) \notin \Omega$
- We want $\left(\begin{array}{cc}I d & -A \\ -A^{T} & I d\end{array}\right)\binom{u_{i}}{v_{i} \otimes w_{i}}=0$ for all $i$


## Conditions on $A$

- We want $A$ such that $\left(\begin{array}{cc}I d & -A \\ -A^{T} & I d\end{array}\right) \succcurlyeq 0, A_{a b c}=$ 0 whenever $(a, b, c) \notin \Omega$, and $\left(\begin{array}{cc}I d & -A \\ -A^{T} & I d\end{array}\right)\binom{u_{i}}{v_{i} \otimes w_{i}}=0$ for all $i$
- Necessary and sufficient conditions on $A$ :

1. $\|A\| \leq 1$
2. $A_{a b c}=0$ whenever $(a, b, c) \notin \Omega$
3. $A\left(v_{i} \otimes w_{i}\right)=u_{i}$ for all $i$
4. $A^{T} u_{i}=v_{i} \otimes w_{i}$ for all $i$ TOO STRONG, requires $\Omega\left(n^{2}\right)$ samples!

Part IV: SOS-symmetry to the Rescue

## SOS Program

- Minimize the trace of $\left(\begin{array}{cc}U & X \\ X^{T} & V W\end{array}\right) \succcurlyeq 0$ where $X_{a b c}=T_{a b c}$ whenever $(a, b, c) \in \Omega$ and $V W$ is SOS-symmetric (i.e. $V W_{b c b^{\prime} c^{\prime}}=V W_{b^{\prime} c b c^{\prime}}$ for all $\left.b, c, b^{\prime}, c^{\prime}\right)$


## Review: Matrix Polynomial $q(Q)$

- Definition: Given a symmetric matrix $Q$ indexed by monomials, define

$$
\mathrm{q}(Q)=\sum_{K}\left(\sum_{I, J: K=I \cup J(\text { as multisets })} Q_{I J}\right) x_{K}
$$

- Idea: $\mathrm{M} \cdot Q=\tilde{E}[q(Q)]$


## Dual Certificate

- Program: Minimize trace of $\left(\begin{array}{cc}U & X \\ X^{T} & V W\end{array}\right) \succcurlyeq 0$ where $X_{a b c}=T_{a b c}$ whenever $(a, b, c) \in \Omega$ and $V W$ is SOS-symmetric
- Dual Certificate: $\left(\begin{array}{cc}I d & -A \\ -A^{T} & B\end{array}\right) \succcurlyeq 0$ where
$A_{a b c}=0$ whenever $(a, b, c) \notin \Omega$ and $\mathrm{q}(B)=$ $q(I d)$
- We want $\left(\begin{array}{cc}I d & -A \\ -A^{T} & B\end{array}\right)\binom{u_{i}}{v_{i} \otimes w_{i}}=0$ for all $i$


## Dual Certificate Tightness Condition

- Write $B=A^{T} A+I d-R$
- Dual Certificate: $\left(\begin{array}{cc}I d & -A \\ -A^{T} & A^{T} A+I d-R\end{array}\right) \geqslant 0$ where $A_{a b c}=0$ whenever $(a, b, c) \notin \Omega$ and $\mathrm{q}(B)=q(I d)$
- This dual certificate is tight for the true solution if
$\left(\begin{array}{cc}I d & -A \\ -A^{T} & A^{T} A+I d-R\end{array}\right)\binom{u_{i}}{v_{i} \otimes w_{i}}=0$ for all $i$


## Dual Certificate Conditions

- This gives us the following conditions on $A, R$

1. $\quad A_{a b c}=0$ whenever $(a, b, c) \notin \Omega$
2. $\forall i, A\left(v_{i} \otimes w_{i}\right)=u_{i}$
3. $\|R\| \leq 1$
4. $\forall i, R\left(v_{i} \otimes w_{i}\right)=v_{i} \otimes w_{i}$
5. $\underset{\sum_{b, c} y_{b}^{2} z_{c}^{2} \text { ) }}{q(R)}=q\left(A^{T} A\right)$ (so that $q(B)=q(I d)=$

- Remark: These conditions are sufficient even if $T$ is not orthogonal. We only prove the theorem for orthogonal tensors because that's what our current analysis can handle.

Part V: Finding Dual Certificate for Matrix Completion

## Conditions on $A$

- Necessary and sufficient conditions on $A$ :

$$
\begin{aligned}
& \text { 1. } \quad\|A\| \leq 1 \\
& \text { 2. } \\
& \text { 3. } \\
& \text { Aab }=0 \text { whenever }(a, b) \notin \Omega \\
& \text { 4. } \\
& A^{T} u_{i}=u_{i} \text { for all } i \\
& \text { for all } i
\end{aligned}
$$

- How can we find such an $A$ ?
- Idea: Alternate between satisfying condition 2 and conditions 3,4 , converging to a final solution.


## Definition of $\mathrm{P}_{\mathrm{U}}, \mathrm{P}_{\mathrm{V}}, \mathrm{P}_{\mathrm{T}}$

- Define $P_{U}$ to be the projection to $\operatorname{span}\left\{u_{i}\right\}$. The equation for this is $P_{U}(x)=\sum_{i}\left(x \cdot u_{i}\right) u_{i}$
- Define $P_{V}$ to be the projection to $\operatorname{span}\left\{v_{i}\right\}$. The equation for this is $P_{V}(y)=\sum_{i}\left(y \cdot v_{i}\right) v_{i}$
- Define $P_{T}$ to be the projection (on the space of matrices) to $\operatorname{span}\left\{x v_{i}^{T}, u_{i}^{T} y\right\}$ (for arbitrary $x, y)$. The equation for this is

$$
P_{T} M=P_{U} M+P_{V} M-P_{U} M P_{V}
$$

## Restatement of Conditions 3,4

- Necessary and sufficient conditions on $A$ :

1. $\|A\| \leq 1$
2. $A_{a b}=0$ whenever $(a, b) \notin \Omega$
3. $A v_{i}=u_{i}$ for all $i$
4. $A^{T} u_{i}=v_{i}$ for all $i$

- Without loss of generality, assume $M=$ $\sum_{i} u_{i} v_{i}^{T}$ (the values of the $\lambda_{i}$ don't affect the dual certificate)
- Assuming $M=\sum_{i} u_{i} v_{i}^{T}$, conditions 3,4 are equivalent to $P_{T} A=M$


## Definition of $R_{\Omega}$ and $\bar{R}_{\Omega}$

- Definition: Define $R_{\Omega}(X)=\frac{n_{1} n_{2} n_{3}}{m} X_{a b c}$ if ( $a, b, c$ ) $\in \Omega$ and 0 otherwise where $n_{1} \times n_{2} \times$ $n_{3}$ are the dimensions of the tensor and each entry is sampled indepently with probability $m$
$\overline{n_{1} n_{2} n_{3}}$.
- Define $\bar{R}_{\Omega}(X)=\left(\frac{n_{1} n_{2} n_{3}}{m}-1\right) X_{a b c}$ if $(a, b, c) \in \Omega$ and $-X_{a b c}^{m}$ if $(a, b, c) \notin \Omega$
- $R_{\Omega}(X)_{a b c}=0$ whenever $(a, b, c) \notin \Omega$
- $E\left[\bar{R}_{\Omega}(X)\right]=0$ (over the choice of $\Omega$ )


## First Iteration

- Start with $M . \mathrm{P}_{\mathrm{T}} M=M$ but $M$ has nonzero entries outside the sampled entries
- $R_{\Omega}(M)$ is zero outside the sampled entries, but $P_{T} R_{\Omega}(M) \neq M$
- We take $\mathrm{A}_{1}=R_{\Omega}(M)$ as the first approximation, we'll need to correct for the difference

$$
P_{T} R_{\Omega} M-M=P_{T} \bar{R}_{\Omega} M
$$

## Technical Note

- For the analysis, actually need to resample independently for each iteration, obtaining sets of samples $\Omega_{1}, \Omega_{2}, \ldots$. This is the source of the $(\log n)^{2}$ in the upper bound (the lower bound only has $\log n$ (reference to be added))


## Iterative Equation

- Take

$$
A^{k}=\sum_{j=0}^{k-1}(-1)^{j} R_{\Omega_{j+1}}\left(P_{T} \bar{R}_{\Omega_{j}}\right) \ldots\left(P_{T} \bar{R}_{\Omega_{1}}\right) M
$$

- Claim:

$$
P_{T} A^{k}=M+(-1)^{k-1}\left(P_{T} \bar{R}_{\Omega_{k}}\right) \ldots\left(P_{T} \bar{R}_{\Omega_{1}}\right) M
$$

- Proof idea: Use the facts that $R_{\Omega}=1+\bar{R}_{\Omega}$, $P_{T}^{2}=P_{T}$, and $P_{T} M=M$.


## Convergence and Final Step

- Take

$$
A^{k}=\sum_{j=0}^{k-1}(-1)^{j} R_{\Omega_{j+1}}\left(P_{T} \bar{R}_{\Omega_{j}}\right) \ldots\left(P_{T} \bar{R}_{\Omega_{1}}\right) M
$$

- Claim:

$$
P_{T} A^{k}=M+(-1)^{k-1}\left(P_{T} \bar{R}_{\Omega_{k}}\right) \ldots\left(P_{T} \bar{R}_{\Omega_{1}}\right) M
$$

- To show that $P_{T} A^{k}$ converges to $M$ w.h.p., it is sufficient to show that the $P_{T} \bar{R}_{\Omega}$ operation makes matrices "smaller" with high probability.
- Once the error is small enough, we then take one final step to satisfy all conditions simultaneously. For details, see [Rec11].


## Part VI: Open Problems

## Open Problems

- For which tensors $T$ can we show that SOS gives exact tensor completion? We've shown it when $T$ is orthogonal, but this can very likely be extended.
- Important subproblem: When can we find $A$ such that $A\left(v_{i} \otimes w_{i}\right)=u_{i}$ for all $i$ and $|A(u, v, w)| \leq 1$ for all unit $u, v, w$ ?
- Barak and Moitra [BM16] show that SOS solves the approximate tensor completion problem in a somewhat broader setting with a different analysis. Can these analyses assist each other?


## References

- [BM16] B. Barak and A. Moitra, Noisy tensor completion via the sum-of-squares hierarchy, COLT, JMLR Workshop and Conference Proceedings, vol. 49, JMLR.org p. 417-445, 2016
- [PS17] A. Potechin and D. Steurer. Exact tensor completion with sum-of-squares. COLT 2017
- [Rec11] B. Recht. A Simpler Approach to Matrix Completion. JMLR Volume 12, p. 3413-3430. 2011


## Appendix: $\mu_{0}$ and $\mu$ Definitions

## $\mu_{0}$ and $\mu$ Definitions

- Definition:

$$
\mu_{0}=\frac{n}{r} \cdot \max \left\{\max _{a}\left\|P_{U} e_{a}\right\|^{2}, \max _{b}\left\|P_{V} e_{b}\right\|^{2}\right\}
$$

- Definition:

$$
\mu=\mathrm{n} \cdot \max \left\{\max _{i, a} u_{i a}^{2}, \max _{j, b} v_{j b}^{2}, \max _{k, c} w_{k c}^{2}\right\}
$$

