
Lecture 4: Goemans-Williamson 
Algorithm for MAX-CUT



Lecture Outline

• Part I: Analyzing semidefinite programs

• Part II: Analyzing Goemans-Williamson

• Part III: Tight examples for Goemans-Williamson

• Part IV: Impressiveness of Goemans-Williamson 
and open problems



Part I: Analyzing semidefinite 
programs



Goemans-Williamson Program

• Recall Goemans-Williamson program: Maximize 

σ𝑖,𝑗:𝑖<𝑗, 𝑖,𝑗 ∈𝐸(𝐺)

1−𝑀𝑖𝑗

2
subject to M ≽ 0 where 

𝑀 ≽ 0 and ∀𝑖,𝑀𝑖𝑖 = 1

• Theorem: Goemans-Williamson gives a .878 
approximation for MAX-CUT

• How do we analyze Goemans-Williamson and 
other semidefinite programs?



Vector Solutions

• Want: matrix 𝑀 such that 𝑀𝑖𝑗 = 𝑥𝑖𝑥𝑗 where 

𝑥𝑖 are the problem variables.

• Semidefinite program: Assigns a vector 𝑣𝑖 to 
each 𝑥𝑖, gives the matrix 𝑀 where 𝑀𝑖𝑗 = 𝑣𝑖 ⋅ 𝑣𝑗

• Note: This is a relaxation of the problem. To 
obtain an actual solution, we need a rounding 
algorithm to round this vector solution into an 
actual solution.



Vector Solution Justification

• Theorem: 𝑀 ≽ 0 if and only if there are vectors 
𝑣𝑖 such that 𝑀𝑖𝑗 = 𝑣𝑖 ⋅ 𝑣𝑗

• Example: 𝑀 =
1 −1 1
−1 2 −1
1 −1 2

, 

𝑣1 = 1,0,0

𝑣2 = −1,1,0

𝑣3 = 1,0,1

• One way to see this: take a “square root” of 𝑀

• Second way to see this: Cholesky decomposition



Square Root of a PSD Matrix

• If there are vectors {𝑣𝑖} such that  𝑀𝑖𝑗 = 𝑣𝑖 ⋅ 𝑣𝑗 , 

take 𝑉 to be the matrix with rows 𝑣1, ⋯ , 𝑣𝑛. 
𝑀 = 𝑉𝑉𝑇 ≽ 0

• Conversely, if 𝑀 ≽ 0 then 𝑀 = σ𝑖=1
𝑛 𝜆𝑖𝑢𝑖𝑢𝑖

𝑇

where 𝜆𝑖 ≥ 0 for all 𝑖. Taking 𝑉 to be the matrix 

with columns 𝜆𝑖𝑢𝑖, 𝑉𝑉
𝑇 = 𝑀. Taking 𝑣𝑖 to be 

the ith row of 𝑉, 𝑀𝑖𝑗 = 𝑣𝑖 ⋅ 𝑣𝑗



Cholesky Decomposition

• Cholesky decomposition: 𝑀 = 𝐶𝐶𝑇 where 𝐶 is 
a lower triangular matrix.

• 𝑣𝑖 = σ𝑎 𝐶𝑖𝑎𝑒𝑎 is the ith row of 𝐶

• We can find the entries of 𝐶 one by one.



Cholesky Decomposition Example

• Example: 𝑀 =
1 −1 1
−1 2 −1
1 −1 2

• 𝑣1 = 1,0,0

• Need 𝐶21 = −1 so that 𝑣2 ⋅ 𝑣1 = −1. 𝑣2 =
−1, 𝐶22, 0

• Taking 𝐶22 = 1, 𝑣2 ⋅ 𝑣2 = 2. 𝑣2 = −1,1,0

• Need 𝐶31 = 1 and 𝐶32 = 0 so that 𝑣3 ⋅ 𝑣1 =
1, 𝑣3 ⋅ 𝑣2 = −1. 𝑣3 = 1,0, 𝐶33 .

• Taking 𝐶33 = 1, 𝑣3 ⋅ 𝑣3 = 1. 𝑣3 = 1,0,1



Cholesky Decomposition Example

•
1 −1 1
−1 2 −1
1 −1 2

=
1 0 0
−1 1 0
1 0 1

1 −1 1
0 1 0
0 0 1

• 𝑣1 =
1
0
0

, 𝑣2 =
−1
1
0

, 𝑣3 =
1
0
1



Cholesky Decomposition Formulas

• ∀𝑖 < 𝑘, take 𝐶𝑘𝑖 =
𝑀𝑖𝑘−σ𝑎=1

𝑖−1 𝐶𝑘𝑎𝐶𝑖𝑎

𝑐𝑖𝑖

• Take 𝐶𝑘𝑖 = 0 if 𝑀𝑖𝑘 − σ𝑎=1
𝑖−1 𝐶𝑘𝑎𝐶𝑖𝑎 = 𝐶𝑖𝑖 = 0

• Note that 𝑣𝑘 ⋅ 𝑣𝑖 = σ𝑎=1
𝑖−1 𝐶𝑘𝑎 𝐶𝑖𝑎 + 𝐶𝑘𝑖𝐶𝑖𝑖 = 𝑀𝑖𝑘

• ∀𝑘, take 𝐶𝑘𝑘 = 𝑀𝑘𝑘 − σ𝑎=1
𝑘−1𝐶𝑘𝑎

2

• These formulas are the basis for the Cholesky-
Banachiewicz algorithm and the Cholesky-Crout
algorithm (these algorithms only differ in the 
order the entries are evaluated)



Cholesky Decomposition Failure

1. ∀𝑖 < 𝑘, 𝐶𝑘𝑖 =
𝑀𝑖𝑘−σ𝑎=1

𝑖−1 𝐶𝑘𝑎𝐶𝑖𝑎

𝐶𝑖𝑖

2. ∀𝑘, 𝐶𝑘𝑘= 𝑀𝑘𝑘 − σ𝑎=1
𝑘−1 𝐶𝑘𝑎

2

• If the Cholesky decomposition succeeds, it gives 
us vectors 𝑣𝑖 such that 𝑀𝑖𝑗 = 𝑣𝑖 ⋅ 𝑣𝑗

• The formulas can fail in two ways:

1. 𝑀𝑘𝑘 −σ𝑎=1
𝑘−1𝐶𝑘𝑎

2 < 0 for some 𝑘

2. 𝐶𝑖𝑖 = 0 and 𝑀𝑖𝑘 − σ𝑎=1
𝑖−1 𝐶𝑘𝑎𝐶𝑖𝑎 ≠ 0 for some 𝑖, 𝑘

• Failure implies 𝑀 is not PSD (see problem set)



Part II: Analyzing Goemans-
Williamson



Vectors for Goemans-Williamson

• Goemans-Williamson: Maximize 

σ𝑖,𝑗:𝑖<𝑗, 𝑖,𝑗 ∈𝐸(𝐺)

1−𝑀𝑖𝑗

2
subject to M ≽ 0 where 

𝑀 ≽ 0 and ∀𝑖,𝑀𝑖𝑖 = 1

• Semidefinite program gives us vectors 𝑣𝑖
where 𝑣𝑖 ⋅ 𝑣𝑗 = 𝑀𝑖𝑗

4 3

1

5 2 𝑣1
𝑣4

𝑣2
𝑣5

𝑣3
G



Rounding Vectors

• Beautiful idea: Map each vector 𝑣𝑖 to ±1 by 
taking a random vector 𝑤 and setting 𝑥𝑖 = 1 if 
𝑤 ⋅ 𝑣𝑖 > 0 and setting 𝑥𝑖 = −1 if 𝑤 ⋅ 𝑣𝑖 < 0

• Example:

𝑣1
𝑣4

𝑣2
𝑣5

𝑣3

𝑤

𝑥1 = 𝑥4 = 1, 𝑥2 = 𝑥3 = 𝑥5 = −1

4 3

1

5 2
G



Expected Cut Value

• Consider 𝐸 σ𝑖,𝑗:𝑖<𝑗, 𝑖,𝑗 ∈𝐸 𝐺

1−𝑥𝑖𝑥𝑗

2

• For each 𝑖, 𝑗 such that 𝑖 < 𝑗, 𝑖, 𝑗 ∈ 𝐸(𝐺), 

𝐸
1−𝑥𝑖𝑥𝑗

2
=

Θ

𝜋
where Θ ∈ [0, 𝜋] is the angle 

between 𝑣𝑖 and 𝑣𝑗

• On the other hand 
1−𝑀𝑖𝑗

2
=

1−𝑐𝑜𝑠Θ

2



Approximation Factor

• Goemens-Williamson gives a cut with expected 
value at least

min
Θ

Θ

𝜋
1−𝑐𝑜𝑠Θ

2

σ𝑖,𝑗:𝑖<𝑗, 𝑖,𝑗 ∈𝐸 𝐺

1−𝐸𝑖𝑗

2

• The first term is ≈ .878 at Θ𝑐𝑟𝑖𝑡 ≈ 134°

σ𝑖,𝑗:𝑖<𝑗, 𝑖,𝑗 ∈𝐸 𝐺

1−𝐸𝑖𝑗

2
is an upper bound on the 

max cut size, so we have a .878 approximation.



Part III: Tight Examples



Showing Tightness

• How can we show this analysis is tight?

• We give two examples where we obtain a cut of 

value ≈ .878σ𝑖,𝑗:𝑖<𝑗, 𝑖,𝑗 ∈𝐸 𝐺

1−𝐸𝑖𝑗

2

• In one example, σ𝑖,𝑗:𝑖<𝑗, 𝑖,𝑗 ∈𝐸 𝐺

1−𝐸𝑖𝑗

2
is the 

value of the maximum cut. In the other 

example, .878σ𝑖,𝑗:𝑖<𝑗, 𝑖,𝑗 ∈𝐸 𝐺

1−𝐸𝑖𝑗

2
is the value 

of the maximum cut.



Example 1: Hypercube

• Have one vertex for each point 𝑥𝑖 ∈ {±1}𝑛

• We have an edge between 𝑥𝑖 and 𝑥𝑗 in 𝐺 if 

cos−1
𝑥𝑖⋅𝑥𝑗

𝑛
− Θ𝑐𝑟𝑖𝑡 < 𝛿

for an arbitrarily small 𝛿 > 0

• Goemans-Williamson value ≈
1−cos Θ𝑐𝑟𝑖𝑡

2
𝐸(𝐺)

• This is achieved by the coordinate cuts.

• Goemans-Williamson rounds to a random cut 

which gives value ≈
Θ𝑐𝑟𝑖𝑡

𝜋
𝐸(𝐺)



Example 2: Sphere

• Take a large number of random points {𝑥𝑖} on 
the unit sphere

• We have an edge between 𝑥𝑖 and 𝑥𝑗 in 𝐺 if 

cos−1 𝑥𝑖 ⋅ 𝑥𝑗 − Θ𝑐𝑟𝑖𝑡 < 𝛿

for an arbitrarily small 𝛿 > 0

• Goemans-Williamson value ≈
1−cos Θ𝑐𝑟𝑖𝑡

2
𝐸(𝐺)

• A random hyperplane cut gives value ≈
Θ𝑐𝑟𝑖𝑡

𝜋
𝐸(𝐺) and this is essentially optimal.



Proof requirements

• How can we prove the above examples behave 
as claimed?

• For the hypercube, have to upper bound the 
value of the Goemans-Williamson program.

• This can be done by determining the 
eigenvalues of the hypercube graph and using 
this to analyze the dual (see problem set)

• For the sphere, have to prove that no cut does 
better than a random hyperplane cut (this is 
hard, see Feige-Schechtman [FS02])



Part IV: Impressiveness of Goemans-
Williamson and Open Problems



Failure of Linear Programming

• Trivial algorithm: Randomly guess which side of 
the cut each vertex is on.

• Gives approximation factor 
1

2

• Linear programming doesn’t do any better, not 
even polynomial sized linear programming 
extensions [CLRS13]!



Hardness of beating GW

• Only know NP-hardness for a 
16

17
approximation 

[Hås01], [TSSW00] 

• Unique-Games hard to beat Goemans-
Williamson on MAX-CUT [KKMO07]



Open problems

• Can we find a subexponential time algorithm 
beating Goemans-Williamson on max cut?

• Can we prove constant degree SOS lower 
bounds for obtaining a better approximation 
than Goemans-Williamson?
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