Lecture 4: Goemans-Williamson Algorithm for MAX-CUT

Lecture Outline

- Part I: Analyzing semidefinite programs
- Part II: Analyzing Goemans-Williamson
- Part III: Tight examples for Goemans-Williamson
- Part IV: Impressiveness of Goemans-Williamson and open problems

Part I: Analyzing semidefinite programs

Goemans-Williamson Program

- Recall Goemans-Williamson program: Maximize $\sum_{i, j: i<j,(i, j) \in E(G)} \frac{1-M_{i j}}{2}$ subject to $\mathrm{M} \succcurlyeq 0$ where $M \succcurlyeq 0$ and $\forall i, M_{i i}=1$
- Theorem: Goemans-Williamson gives a . 878 approximation for MAX-CUT
- How do we analyze Goemans-Williamson and other semidefinite programs?

Vector Solutions

- Want: matrix M such that $M_{i j}=x_{i} x_{j}$ where $\left\{x_{i}\right\}$ are the problem variables.
- Semidefinite program: Assigns a vector v_{i} to each x_{i}, gives the matrix M where $M_{i j}=v_{i} \cdot v_{j}$
- Note: This is a relaxation of the problem. To obtain an actual solution, we need a rounding algorithm to round this vector solution into an actual solution.

Vector Solution Justification

- Theorem: $M \succcurlyeq 0$ if and only if there are vectors $\left\{v_{i}\right\}$ such that $M_{i j}=v_{i} \cdot v_{j}$
- Example: $M=\left[\begin{array}{ccc}1 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right], \begin{gathered}v_{1}=\langle 1,0,0\rangle \\ v_{2}=\langle-1,1,0\rangle \\ v_{3}=\langle 1,0,1\rangle\end{gathered}$
- One way to see this: take a "square root" of M
- Second way to see this: Cholesky decomposition

Square Root of a PSD Matrix

- If there are vectors $\left\{v_{i}\right\}$ such that $M_{i j}=v_{i} \cdot v_{j}$, take V to be the matrix with rows v_{1}, \cdots, v_{n}. $M=V V^{T} \succcurlyeq 0$
- Conversely, if $M \succcurlyeq 0$ then $M=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{T}$ where $\lambda_{i} \geq 0$ for all i. Taking V to be the matrix with columns $\sqrt{\lambda_{i}} u_{i}, V V^{T}=M$. Taking v_{i} to be the ith row of $V, M_{i j}=v_{i} \cdot v_{j}$

Cholesky Decomposition

- Cholesky decomposition: $M=C C^{T}$ where C is a lower triangular matrix.
- $v_{i}=\sum_{a} C_{i a} e_{a}$ is the ith row of C
- We can find the entries of C one by one.

Cholesky Decomposition Example

- Example: $M=\left[\begin{array}{ccc}1 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$
- $v_{1}=\langle 1,0,0\rangle$
- Need $C_{21}=-1$ so that $v_{2} \cdot v_{1}=-1 . v_{2}=$ $\left\langle-1, C_{22}, 0\right\rangle$
- Taking $C_{22}=1, v_{2} \cdot v_{2}=2$. $v_{2}=\langle-1,1,0\rangle$
- Need $C_{31}=1$ and $C_{32}=0$ so that $v_{3} \cdot v_{1}=$ $1, v_{3} \cdot v_{2}=-1 . v_{3}=\left\langle 1,0, C_{33}\right\rangle$.
- Taking $C_{33}=1, v_{3} \cdot v_{3}=1 . v_{3}=\langle 1,0,1\rangle$

Cholesky Decomposition Example

$\cdot\left[\begin{array}{ccc}1 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

- $v_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], v_{2}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right], v_{3}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$

Cholesky Decomposition Formulas

- $\forall i<k$, take $C_{k i}=\frac{M_{i k}-\sum_{a=1}^{i-1} C_{k a} C_{i a}}{c_{i i}}$
- Take $C_{k i}=0$ if $M_{i k}-\sum_{a=1}^{i-1} C_{k a} C_{i a}=C_{i i}=0$
- Note that $v_{k} \cdot v_{i}=\sum_{a=1}^{i-1} C_{k a} C_{i a}+C_{k i} C_{i i}=M_{i k}$
- $\forall k$, take $C_{k k}=\sqrt{M_{k k}-\sum_{a=1}^{k-1} C_{k a}^{2}}$
- These formulas are the basis for the CholeskyBanachiewicz algorithm and the Cholesky-Crout algorithm (these algorithms only differ in the order the entries are evaluated)

Cholesky Decomposition Failure

1. $\forall i<k, C_{k i}=\frac{M_{i k}-\sum_{a=1}^{i-1} C_{k a} C_{i a}}{C_{i i}}$
2. $\forall k, C_{k k}=\sqrt{M_{k k}-\sum_{a=1}^{k-1} C_{k a}^{2}}$

- If the Cholesky decomposition succeeds, it gives
us vectors $\left\{v_{i}\right\}$ such that $M_{i j}=v_{i} \cdot v_{j}$
- The formulas can fail in two ways:

1. $M_{k k}-\sum_{a=1}^{k-1} C_{k a}^{2}<0$ for some k
2. $C_{i i}=0$ and $M_{i k}-\sum_{a=1}^{i-1} C_{k a} C_{i a} \neq 0$ for some i, k

- Failure implies M is not PSD (see problem set)

Part II: Analyzing GoemansWilliamson

Vectors for Goemans-Williamson

- Goemans-Williamson: Maximize $\sum_{i, j: i<j,(i, j) \in E(G)} \frac{1-M_{i j}}{2}$ subject to $\mathrm{M} \succcurlyeq 0$ where $M \succcurlyeq 0$ and $\forall i, M_{i i}=1$
- Semidefinite program gives us vectors $\left\{v_{i}\right\}$ where $v_{i} \cdot v_{j}=M_{i j}$

Rounding Vectors

- Beautiful idea: Map each vector v_{i} to ± 1 by taking a random vector w and setting $x_{i}=1$ if $w \cdot v_{i}>0$ and setting $x_{i}=-1$ if $w \cdot v_{i}<0$
- Example:

$$
x_{1}=x_{4}=1, x_{2}=x_{3}=x_{5}=-1
$$

Expected Cut Value

- Consider $E\left[\sum_{i, j: i<j,(i, j) \in E(G)} \frac{1-x_{i} x_{j}}{2}\right]$
- For each i, j such that $i<j, i, j \in E(G)$, $E\left[\frac{1-x_{i} x_{j}}{2}\right]=\frac{\Theta}{\pi}$ where $\Theta \in[0, \pi]$ is the angle between v_{i} and v_{j}
- On the other hand $\frac{1-M_{i j}}{2}=\frac{1-\cos \Theta}{2}$

Approximation Factor

- Goemens-Williamson gives a cut with expected value at least

$$
\left(\min _{\Theta} \frac{\left(\frac{\Theta}{\pi}\right)}{\left(\frac{1-\cos \Theta}{2}\right)}\right) \sum_{i, j: i<j,(i, j) \in E(G)} \frac{1-E_{i j}}{2}
$$

- The first term is $\approx .878$ at $\Theta_{\text {crit }} \approx 134^{\circ}$ $\sum_{i, j: i<j,(i, j) \in E(G)} \frac{1-E_{i j}}{2}$ is an upper bound on the max cut size, so we have a . 878 approximation.

Part III: Tight Examples

Showing Tightness

- How can we show this analysis is tight?
- We give two examples where we obtain a cut of value $\approx .878 \sum_{i, j: i<j,(i, j) \in E(G)} \frac{1-E_{i j}}{2}$
- In one example, $\sum_{i, j: i<j,(i, j) \in E(G)} \frac{1-E_{i j}}{2}$ is the value of the maximum cut. In the other example, $.878 \sum_{i, j: i<j,(i, j) \in E(G)} \frac{1-E_{i j}}{2}$ is the value of the maximum cut.

Example 1: Hypercube

- Have one vertex for each point $x_{i} \in\{ \pm 1\}^{n}$
- We have an edge between x_{i} and x_{j} in G if

$$
\left|\cos ^{-1}\left(\frac{x_{i} \cdot x_{j}}{n}\right)-\Theta_{c r i t}\right|<\delta
$$

for an arbitrarily small $\delta>0$

- Goemans-Williamson value $\approx \frac{1-\cos \left(\Theta_{\text {crit }}\right)}{2} E(G)$
- This is achieved by the coordinate cuts.
- Goemans-Williamson rounds to a random cut which gives value $\approx \frac{\Theta_{c r i t}}{\pi} E(G)$

Example 2: Sphere

- Take a large number of random points $\left\{x_{i}\right\}$ on the unit sphere
- We have an edge between x_{i} and x_{j} in G if

$$
\left|\cos ^{-1}\left(x_{i} \cdot x_{j}\right)-\Theta_{c r i t}\right|<\delta
$$

for an arbitrarily small $\delta>0$

- Goemans-Williamson value $\approx \frac{1-\cos \left(\Theta_{c r i t}\right)}{2} E(G)$
- A random hyperplane cut gives value \approx $\frac{\Theta_{\text {crit }}}{\pi} E(G)$ and this is essentially optimal.

Proof requirements

- How can we prove the above examples behave as claimed?
- For the hypercube, have to upper bound the value of the Goemans-Williamson program.
- This can be done by determining the eigenvalues of the hypercube graph and using this to analyze the dual (see problem set)
- For the sphere, have to prove that no cut does better than a random hyperplane cut (this is hard, see Feige-Schechtman [FSO2])

Part IV: Impressiveness of GoemansWilliamson and Open Problems

Failure of Linear Programming

- Trivial algorithm: Randomly guess which side of the cut each vertex is on.
- Gives approximation factor $\frac{1}{2}$
- Linear programming doesn't do any better, not even polynomial sized linear programming extensions [CLRS13]!

Hardness of beating GW

- Only know NP-hardness for a $\frac{16}{17}$ approximation [Hås01], [TSSW00]
- Unique-Games hard to beat GoemansWilliamson on MAX-CUT [KKMOO7]

Open problems

- Can we find a subexponential time algorithm beating Goemans-Williamson on max cut?
- Can we prove constant degree SOS lower bounds for obtaining a better approximation than Goemans-Williamson?

References

- [CLRS13] S. Chan, J. Lee, P. Raghavendra, and D. Steurer. Approximate constraint satisfaction requires large Ip relaxations. FOCS 2013.
- [FSO2] U. Feige and G. Schechtman. On the optimality of the random hyperplane rounding technique for max cut. Random Structures \& Algorithms - Probabilistic methods in combinatorial optimization, 20 (3), p. 403-440. 2002
- [GW95] M. X. Goemans and D. P. Williamson. Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming. J. ACM, 42(6):1115-1145, 1995.
- [Hås01] J. Håstad. Some optimal inapproximability results. JACM 48: p.798-869, 2001.
- [KKMO07] S. Khot, G. Kindler, E. Mossell, R. O'Donnell. Optimal Inapproximability Results for MAX-CUT and Other 2-Variable CSPs? SIAM Journal on Computing, 37 (1): p. 319-357, 2007.
- [TSSW00] L. Trevisan, G. Sorkin, M. Sudan, and D. Williamson. Gadgets, approximation, and linear programming. SIAM Journal on Computing, 29(6): p. 2074-2097, 2000.

