Lecture 11: Graph Matrices

Adapted from the talk at RANDOM 2016

Lecture Outline

- Part I: Graph Matrix Definitions and Examples
- Part II: Rough Norm Bounds on Graph Matrices
- Part III: Open Problems

Part I: Graph Matrix Definitions and Examples

Motivation

- Graph matrices appear naturally when analyzing SOS at degree $d \geq 4$
- I have found understanding graph matrices to be very useful in analyzing SOS.

Example Matrix: 4-clique Indicator

- M has rows and columns indexed by pairs of vertices of an input graph G
- $M\left(\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}\right\}\right)=1$ if $x_{1}, x_{2}, x_{3}, x_{4}$ are all distinct and are a clique in $G, 0$ otherwise

0 otherwise

Clique Indicator Properties

- Matrix from previous slide: $M\left(\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}\right\}\right)=1$ if $x_{1}, x_{2}, x_{3}, x_{4}$ are all distinct and are a clique, 0 otherwise
- Entries are random but not independent.
- That said, the entries can be described in terms of a small graph.
- Moreover, the matrix is symmetric under permutations of $[1, n]$ (as a function of the input graph)
- In this lecture, we analyze such matrices.

Fourier Characters χ_{E}

- Definition: Given a set E of possible edges of G, define $\chi_{E}(G)=-1^{|E \backslash E(G)|}$

Example: If $E=\left\{\left(x_{1}, x_{2}\right),\left(x_{1}, x_{3}\right),\left(x_{1}, x_{4}\right)\right\}$ then $\chi_{E}(G)=-1$ as $|E \backslash E(G)|=1$

Structure of R_{H}

- For each graph H with distinguished ordered sets of vertices U, V, we will define a matrix R_{H}.
- The rows of R_{H} are indexed by ordered tuples A of $|U|$ vertices and the columns of R_{H} are indexed by ordered tuples B of $|V|$ vertices.
- H determines how $R_{H}(A, B)$ depends on G

Should A, B be in Ascending Order?

- Subtle question: Should we require A and B to be in ascending order?
- Benefit of this requirement: If M is indexed by monomials, we only have one A or B for each monomial, which is simpler.
- Example: $x_{1} x_{3}$ only corresponds to $\mathrm{A}=\{1,3\}$ if A must be in ascending order. Without this requirement, $x_{1} x_{3}$ corresponds to $A=\{1,3\}$ and $A=\{3,1\}$.

Should A, B be in Ascending Order?

- Should we require A and B to be in ascending order?
- Not requiring A, B to be in ascending order makes the combinatorics more complicated but has its own benefits.
- This lecture: A, B need not be in ascending order.

Definition of R_{H} (no middle vertices)

- We start with the case when $V(H)=U \cup V$
- Definition: If $V(H)=U \cup V$ then define $R_{H}(A, B)=\chi_{\sigma(E(H))}$ where $\sigma: \mathrm{V}(\mathrm{H}) \rightarrow V(G)$ is the injective map satisfying $\sigma(U)=A, \sigma(V)=B$ and preserving the ordering of U, V.

R_{H} example (no middle vertices)

- Recall: $R_{H}(A, B)=\chi_{\sigma(E(H))}$

Example:

$R_{H}\left(\left\{x_{2}, x_{8}\right\},\left\{x_{7}, x_{3}\right\}\right)=\chi_{\left\{\left(x_{2}, x_{7}\right),\left(x_{7}, x_{8}\right),\left(x_{3}, x_{8}\right)\right\}}$

Examples:

Example 1: All 1s matrix with 0s on the diagonal

Example 2: Symmetric ± 1 random matrix with Os on the diagonal

Example: 4-clique indicator

- $M=\frac{1}{2^{6}} \sum_{H: V(H)=\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\}} R_{H}$
- If $x_{1}, x_{2}, x_{3}, x_{4}$ form a clique, $R_{H}\left(\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}\right\}\right)=1$ for all of the H
- If any edge e between $x_{1}, x_{2}, x_{3}, x_{4}$ is missing, there is perfect cancellation between H where $e \in E(H)$ and H where $e \notin E(H)$.
- Thus, $M\left(\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}\right\}\right)=1$ if $x_{1}, x_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}$ form a clique and is 0 otherwise.

In class exercises Part I

- Express the following matrices which are indexed by pairs of vertices $\left(x_{i}, x_{j}\right)$ in terms of the matrices R_{H} :

1. $M\left(\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}\right\}\right)=\#$ of edges between the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ if $x_{1}, x_{2}, x_{3}, x_{4}$ are distinct and 0 otherwise
2. $M\left(\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}\right\}\right)=1$ if there are at least 5 edges between the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ and 0 otherwise.

Answers

- $M\left(\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}\right\}\right)=\#$ of edges between the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ if $x_{1}, x_{2}, x_{3}, x_{4}$ are distinct and 0 otherwise:
- Answer: $M=\sum_{e} \frac{1}{2} \sum_{H: E(H) \subseteq\{e\}} R_{H}$
- The H with 0 edges has coefficient 3 , the Hs with one edge have coefficient $\frac{1}{2}$, and all other coefficients are equal.

Answers

- $M\left(\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}\right\}\right)=1$ if there are at least 5 edges between the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ and 0 otherwise.
- Answer: $M=\sum_{e} \frac{1}{32}\left(\sum_{H: e \notin E(H)} R_{H}\right)-\frac{5}{64} \sum_{H} R_{H}$
- If H has m edges, H appears with coefficient $\frac{7-2 m}{64}$.

Discrete Fourier Analysis Equations

- The Fourier character of $M(A, B)$ on a set of edges E is $E_{G \sim G\left(n, \frac{1}{2}\right)}\left[M(A, B)(G) \chi_{E}(G)\right]$
- $M(A, B)=\sum_{E} E_{G \sim G\left(n, \frac{1}{2}\right)}\left[M(A, B)(G) \chi_{E}(G)\right] \chi_{E}$
- Can use this find the decomposition of M into R_{H}.

Definition of R_{H} with middle vertices

- So far: $M(A, B)$ depended only on edges within $A \cup B$.
- Can also have dependence on the rest of G if H has middle vertices not in U or V
- Definition (up to a symmetry related constant): Define $R_{H}(A, B)=\sum_{\sigma} \chi_{\sigma(E(H))}$ where we sum over all injective maps $\sigma: \mathrm{V}(\mathrm{H}) \rightarrow V(G)$ satisfying $\sigma(U)=A, \sigma(V)=$ B and preserving the ordering of U, V.
- See appendix for an alternate definition.

R_{H} example with middle vertices

- Recall: $R_{H}(A, B)=\sum_{\sigma} \chi_{\sigma(E(H))}$

Example:

Example: Counting 5-cliques

- $M=\frac{1}{2^{10}} \sum_{H: V(H)=\left\{u_{1}, u_{2}, v_{1}, v_{2}, w_{1}\right\}} R_{H}$
- $M\left(\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}\right\}\right)=\#$ of 5 -cliques containing $x_{1}, x_{2}, x_{3}, x_{4}$.

Intersection of U and V

- Thus far, we've only considered examples where U and V are disjoint.
- In general, U and V can intersect arbitrarily, this determines how the indices A and B must intersect in non-zero terms.
- Example: The $n \times n$ identity matrix is

In class exercises Part 2

- Express the following matrices in terms of the matrices R_{H} :

1. $\quad M\left(\left\{x_{1}\right\},\left\{x_{2}\right\}\right)=\#$ of paths of length 2 between x_{1} and x_{2} if x_{1}, x_{2} are distinct and 0 otherwise.
2. $M\left(\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}\right\}\right)=1$ for all $x_{1}, x_{2}, x_{3}, x_{4}$.

Answers

- $M\left(\left\{x_{1}\right\},\left\{x_{2}\right\}\right)=\#$ of paths of length 2 between x_{1} and x_{2} if x_{1}, x_{2} are distinct and 0 otherwise.
- Answer: M is the sum of $\frac{1}{4}$ times the following R_{H}

Answers

- $M\left(\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}\right\}\right)=1$ for all $x_{1}, x_{2}, x_{3}, x_{4}$
- Answer: M is the sum of the following R_{H} (continued on next page)

Answers

- $M\left(\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}\right\}\right)=1$ for all $x_{1}, x_{2}, x_{3}, x_{4}$ - Answer continued:

R_{H} as a basis

- Claim: The matrices R_{H} where H has no isolated vertices outside of U, V are a basis for matrices which are symmetric with respect to permutations of $[1, n]$
- Remark: This is one advantage of not requiring that A, B are in ascending order.
- Good exercise: What is the basis if we do require A, B to be in ascending order?

Part II: Norm Bounds

Rough Norm Bound

- Theorem [MP16]: If H has no isolated vertices then with high probability, $\left\|R_{H}\right\|$ is $\tilde{O}\left(n^{\left(|V(H)|-s_{H}\right) / 2}\right)$ where s_{H} is the minimal size of a vertex separator between U and V (S is a vertex separator of U and V if every path from U to V intersects S)
- Note: The \tilde{O} contains polylog factors and constants related to the size of H.

Techniques

- Use the trace power method:

$$
\|M\|^{2 q} \leq \operatorname{tr}\left(\left(M M^{T}\right)^{q}\right)
$$

- Bound number of terms in $\operatorname{tr}\left(\left(M M^{T}\right)^{q}\right)$ with nonzero expected value, use this to bound $E\left[\operatorname{tr}\left(\left(M M^{T}\right)^{q}\right)\right]$.
- Use Markov's inequality $\operatorname{Pr}[X \geq a] \leq \frac{E[x]}{a}$ (if X is always non-negative) to probabilistically bound $\operatorname{tr}\left(\left(M M^{T}\right)^{q}\right)$ and thus $\|M\|$.

Graphs for Matrix Powers

- $\operatorname{tr}\left(\left(M M^{T}\right)^{q}\right)=$
$\sum_{A_{1}, B_{1}, \ldots A_{q}, B_{q}} \prod_{i=1}^{q} M\left(A_{i}, B_{i}\right) M^{T}\left(B_{i} A_{i+1}\right)$ where $A_{q+1}=A_{1}$
- Useful to draw graphs for these terms

Example: $q=4$

Bounding \# of non-zero terms

- Key idea: A given term has zero expected value unless every edge appears an even number of times.
- Key question: For a term with non-zero expected value, what is the maximum possible number of distinct indices?

Cycle Lemma

- Lemma: For a cycle of length $2 q$, have at most $q+1$ distinct indices
- Proof: By induction. Base case $q \leq 1$ is immediate.
- If no index is unique, $\leq q$ distinct indices
- If index x_{i} is unique, its two neighbors must be the same. Contract its two neighbors together and delete x_{i}, reducing the number of indices by 1 and the cycle length by 2.

Cycle Lemma Picture \#1

Case 1: No unique indices

Cycle Lemma Picture \#2

± 1 Random Matrix Norm Bound

- $E\left[\operatorname{tr}\left(\left(R_{H} R_{H}^{T}\right)^{q}\right)\right]$ is $O\left(n^{q+1}\right)$ (constant depends on q)
- With high probability, $\left\|R_{H}\right\|$ is $O\left(n^{(q+1) / 2 q}\right)$
- Taking q to be sufficiently large, w.h.p. $\left\|R_{H}\right\|$ is $\widetilde{O}(\sqrt{n})$
- Not as precise as Wigner's semicircle law [Wig55,Wig58], but relatively easy to generalize.

Technical Step: Matrix Preprocessing

- Technical step: For general H, instead of analyzing R_{H}, we analyze submatrices R_{H}^{\prime} where each vertex of H maps into a different subset of $[1, n]$ and these subsets are disjoint
- This allows us to assume that we only have equalities between copies of the same vertex in H, making it easier to prove norm bounds on R_{H}^{\prime}
- We then use probabilistic norm bounds on R_{H}^{\prime} to prove a probabilistic norm bound on R_{H}

\# of Unique Indices: Upper Bound

- Key idea: If we are analyzing $\left(R_{H}^{\prime}\left(R_{H}^{\prime}\right)^{T}\right)^{q}$, there are at most q distinct values for any vertex x of H.
- Case 1: If $x \in U$ or $x \in V$ then there are only q copies of x to begin with.
- Case 2: If $x \notin U$ and $x \notin V$, then since x is not isolated, each copy of x must be equal to some other copy of x as otherwise any edge incident to this copy of x would only appear once.

Cycles

- Each path in H from U to V of length l creates a cycle of length $2 q l$.
- Prior bound: There are $l+1$ distinct vertices of H, each of which could have q distinct values.
- Cycle lemma bound: At most $q l+1$ distinct values.
- Each disjoint path in H from U to V lowers our bound by $q-1$

Final Upper Bound

- Maximum \# of disjoint paths $=s_{H}$ (the size of the minimal vertex separator between U and V)
- Final upper bound on \# of distinct indices: $q|V(H)|-s_{H}(q-1)=q\left(|V(H)|-s_{H}\right)+s_{H}$
- Choosing q appropriately, we can prove our probabilistic norm bound.

Achieving the Upper Bound

- Upper bound is tight
- Can be obtained by choosing a minimal vertex separator, making all copies of the separator the same, and pairing up all remaining vertices which are not in an A or B appropriately.

Part III: Open Problems

Open Problems

- With more careful analysis, can we tighten the norm bounds and remove the logarithmic factors?
- More ambitiously, can we determine the spectrum of these matrices?

References

- [MP16] D. Medarametla, A. Potechin. Bounds on the Norms of Uniform Low Degree Graph Matrices. RANDOM 2016. https://arxiv.org/abs/1604.03423
- [Wig55] E. Wigner. Characteristic Vectors of Bordered Matrices with Infinite Dimensions. Ann. of Math. 62, p. 548-564. 1955
- [Wig58] E. Wigner. On the Distribution of the Roots of Certain Symmetric Matrices. Ann. of Math. 67, p. 325-328, 1958.

Appendix: Definition of R_{H} with Correct Constant

Definition of R_{H} with Correct Constant

- Define

$$
R_{H}(A, B)=\sum_{G^{\prime}: \exists \sigma: V(H) \rightarrow V(G): \sigma(H)=G^{\prime}} \chi_{E\left(G^{\prime}\right)}
$$

where G^{\prime} is a graph on a subset of the vertices of
G and we require that σ is injective, $\sigma(U)=A$, $\sigma(V)=B$, and σ respects the orderings on U, A, V, B.

- Remark: This definition avoids counting the same Fourier character multiple times for a given matrix entry $R_{H}(A, B)$.

