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Part I: SOS Lower Bounds from 
Pseudo-expectation Values



• Recall: a degree d Positivstellensatz proof that 
constraints 𝑠1 𝑥1, … , 𝑥𝑛 = 0, 𝑠1 𝑥1, … , 𝑥𝑛 = 0, 
etc. are infeasible is an expression of the form 

− 1 = σ𝑖 𝑓𝑖𝑠𝑖 + σ𝑗 𝑔𝑗
2 where:

1. ∀𝑖, deg 𝑓𝑖 + deg 𝑠𝑖 ≤ 𝑑

2. ∀𝑗, deg 𝑔𝑗 ≤
𝑑

2

• How do we show that there is no degree d 
Positivstellensatz proof of infeasibility?

Positivstellensatz Proofs Review



• Recall: a degree d Positivstellensatz proof that 
ℎ(𝑥1, … , 𝑥𝑛) ≥ 𝑐 given constraints 
𝑠1 𝑥1, … , 𝑥𝑛 = 0, 𝑠1 𝑥1, … , 𝑥𝑛 = 0, etc. is an 

expression of the form ℎ = 𝑐 + σ𝑖 𝑓𝑖𝑠𝑖 + σ𝑗 𝑔𝑗
2

where:

1. ∀𝑖, deg 𝑓𝑖 + deg 𝑠𝑖 ≤ 𝑑

2. ∀𝑗, deg 𝑔𝑗 ≤
𝑑

2

• How do we show that there is no degree d 
Positivstellensatz proof that ℎ(𝑥1, … , 𝑥𝑛) ≥ 𝑐?

Positivstellensatz Proofs Review



• Recall: Given constraints 𝑠1 𝑥1, … , 𝑥𝑛 =
0, 𝑠1 𝑥1, … , 𝑥𝑛 = 0, etc., degree d Pseudo-
expectation values consist of a linear map ෨𝐸
from polynomials of degree ≤ 𝑑 to ℝ such that:
1. ෨𝐸 1 = 1

2. ∀𝑓, 𝑖, ෨𝐸 𝑓𝑠𝑖 = 0 whenever deg 𝑓𝑖 + deg 𝑠𝑖 ≤ 𝑑

3. ∀𝑔, ෨𝐸 𝑔2 ≥ 0 whenever deg 𝑔 ≤
𝑑

2

• The third condition is equivalent to 𝑀 ≽ 0
where 𝑀 is the moment matrix with entries 
𝑀𝑝𝑞 = ෨𝐸[𝑝𝑞]

Pseudo-expectation Values Review



• Recall: degree d pseudo-expectation values
imply there is no degree d Positivstellensatz 
proof of infeasibility

• Analogously, degree d pseudo-expectation 
values with ෨𝐸 ℎ < 𝑐 imply there is no degree d 
Positivstellensatz proof that ℎ ≥ 𝑐.

• Proof: can assume both exist and get the 
following contradiction:

c > ෩E[ℎ] = ෨𝐸[𝑐] + σ𝑖
෨𝐸[𝑓𝑖𝑠𝑖] + σ𝑗

෨𝐸 𝑔𝑗
2 ≥ 𝑐

SOS Lower Bound Strategy



• To prove an SOS lower bound, we generally do 
the following:

1. Come up with pseudo-expectation values ෨𝐸 which 
obey the required linear equations

2. Show that the moment matrix 𝑀 is PSD

• In the examples we’ll see, part 1 is relatively 
easy and the technical part is part 2.

• That said, for several very important problems, 
we’re stuck on part 1!

SOS Lower Bound Strategy



Part II: Random 3-XOR Equations 
and Pseudo-expectation Values



• Want each 𝑥𝑖 ∈ {−1,1}

• 3-XOR constraint: 𝑥𝑖𝑥𝑗𝑥𝑘 = 1 or 𝑥𝑖𝑥𝑗𝑥𝑘 = −1

• We will take 𝑚 3-XOR constraints at random

• Problem equations:

1. ∀𝑖, 𝑥𝑖
2 = 1

2. ∀𝑎 ∈ 1, 𝑚 , 𝑥𝑖𝑎
𝑥𝑗𝑎

𝑥𝑘𝑎
= 𝑐𝑎 where ∀𝑎 ∈ [1, 𝑚], 

𝑖𝑎, 𝑗𝑎 , 𝑘𝑎 ∈ [1, 𝑛] and 𝑐𝑎 ∈ {−1,1}

Equations for Random 3-XOR



• Problem equations:

1. ∀𝑖, 𝑥𝑖
2 = 1

2. ∀𝑎 ∈ 1, 𝑚 , 𝑥𝑖𝑎
𝑥𝑗𝑎

𝑥𝑘𝑎
= 𝑐𝑎 where ∀𝑎 ∈ [1, 𝑚], 

𝑖𝑎, 𝑗𝑎 , 𝑘𝑎 ∈ [1, 𝑛] and 𝑐𝑎 ∈ {−1,1}

• Theorem [Gri02], rediscovered by [Sch08]: If 

𝑚 ≤
𝑛

3
2−𝜖

𝑑
then w.h.p., degree d SOS does not 

refute these equations.

SOS Lower Bound for Random 3-XOR



How do we choose the pseudo• -expectation 
values?

Many choices are fixed.•

Example: If 𝑥1𝑥2𝑥3 = 1 and 𝑥1𝑥4𝑥5 = −1 then •

𝑥1
2𝑥2𝑥3𝑥4𝑥5 = 𝑥2𝑥3𝑥4𝑥5 = −1

However, we only want to make these •

deductions at low degrees…

Choosing Pseudo-expectation Values



• Def: Define 𝑥𝐼 = ς𝑖∈𝐼 𝑥𝑖

• Proposition: ∀𝐼, 𝐽, 𝑥𝐼𝑥𝐽 = 𝑥𝐼Δ𝐽 where 𝐼 Δ 𝐽 =

𝐼 ∪ 𝐽 ∖ (𝐼 ∩ 𝐽) is the disjoint union of 𝐼 and 𝐽.

• To decide which 𝑥𝐼 have fixed values:

1. Keep track of a collection of equations {𝑥𝐼 = 𝑐𝐼}
starting with the problem constraints.

2. If we have equations 𝑥𝐼 = 𝑐𝐼 and 𝑥𝐽 = 𝑐𝐽 where 

𝐼, J, and 𝐼 Δ 𝐽 all have size at most 𝑑, then we add 
the equation 𝑥𝐼Δ𝐽 = 𝑐𝐼𝑐𝐽 (if we don’t have it 

already)

Choosing Pseudo-expectation Values



• Set ෨𝐸 𝑥𝐼 = 𝑐𝐼 if our collection has 𝑥𝐼 = 𝑐𝐼

• What if we don’t have an equation for 𝑥𝐼?

• If we have no equation for 𝑥𝐼, set ෨𝐸 𝑥𝐼 = 0

• Set ෨𝐸 𝑥𝑖
2𝑓 = ෨𝐸[𝑓] for all 𝑓 of degree ≤ 𝑑 − 2

• These pseudo-expectation values are well-
defined as long as we never have both the 
equations 𝑥𝐼 = 1 and 𝑥𝐼 = −1.

Choosing Pseudo-expectation Values



Part III: Proving PSDness



• Here we assume that ෨𝐸 is well defined. We will 
analyze when this holds w.h.p. in the next 
section.

• Need to check linear equations. This follows 
from the definitions:
– Whenever we have a constraint 𝑥𝐼 = 𝑐𝐼, for all 𝐽 of 

size ≤ 𝑑 − 3, either ෨𝐸 𝑥𝐼𝑥𝐽 = 𝑐𝐼𝑐𝐽 = 𝑐𝐼
෨𝐸[𝑥𝐽] or 

෨𝐸 𝑥𝐼𝑥𝐽 = 𝑐𝐼
෨𝐸 𝑥𝐽 = 0

– ∀𝑖, 𝑓: deg 𝑓 ≤ 𝑑 − 2, ෨𝐸 𝑥𝑖
2𝑓 = ෨𝐸[𝑓]

• Need to check moment matrix is PSD.

To-Do List



• Observation: Whenever we have constraints 
𝑥𝑖

2 = 𝑥𝑖 or 𝑥𝑖
2 = 1, it is sufficient to consider the 

entries of 𝑀 indexed by multilinear monomials.

• Reason: Given any 𝑔 of degree ≤
𝑑

2
, ∃ multilinear 

g’ such that ෨𝐸 𝑔′2 = ෨𝐸[𝑔2]. 

• Proof idea: Any non-multilinear term 𝑥𝑖
2𝑓 in 𝑔

can be replaced by 𝑓.

• Corollary: ෨𝐸 𝑔2 ≥ 0 for all 𝑔 of degree ≤ 𝑑/2
⬄ ෨𝐸[𝑔2] for all multilinear 𝑔 of degree ≤ 𝑑/2. 

Restriction to Multilinear Indices



• Definition: For sets 𝐼, 𝐽 of size ≤
𝑑

2
, we say 

𝑥𝐼 ∼ 𝑥𝐽 if 𝑥𝐼𝑥𝐽 = 𝑥𝐼Δ𝐽 is determined

• Proposition: If 𝑥𝐼 ∼ 𝑥𝐽 and 𝑥𝐽 ∼ 𝑥𝐾 then 𝑥𝐼 ∼
𝑥𝐾.

• Proof: If 𝑥𝐼 ∼ 𝑥𝐽 and 𝑥𝐽 ∼ 𝑥𝐾 then 𝑥𝐼Δ𝐽 and 
𝑥𝐽Δ𝐾 are determined. Now 𝑥𝐼Δ𝐽𝑥𝐽Δ𝐾 =
𝑥𝐼𝑥𝐽

2𝑥𝐾 = 𝑥𝐼Δ𝐾 is determined. Thus, 𝑥𝐼 ∼ 𝑥𝐾

• Remark: We carefully chose which 
deductions to make so that this would work.

Key Idea: Equivalence Classes



• Proposition: ෨𝐸 𝑥𝐼𝑥𝐽 ≠ 0 if and only 𝐼 ∼ 𝐽.

• Choose a representative 𝐼𝐸 from every 
equivalence class 𝐸.

• Take 𝑣𝐸 𝑥𝐼 = ෨𝐸 𝑥𝐼𝑥𝐼𝐸

• 𝑣𝐸 𝑥𝐼 = 𝑐𝐼Δ𝐼𝐸
if 𝑥𝐼 ∈ 𝐸. Otherwise,

𝑣𝐸 𝑥𝐼 = 0

• 𝑣𝐸 𝑥𝐼 𝑣𝐸 𝑥𝐽 = 𝑐𝐼Δ𝐼𝐸
𝑐JΔ𝐼𝐸

= 𝑐𝐼Δ𝐽 if 𝐼, 𝐽 ∈ 𝐸. 

Otherwise, 𝑣𝐸 𝑥𝐼 𝑣𝐸 𝑥𝐽 = 0

PSD Decomposition



• 𝑣𝐸 𝑥𝐼 𝑣𝐸 𝑥𝐽 = 𝑐𝐼Δ𝐼𝐸
𝑐JΔ𝐼𝐸

= 𝑐𝐼Δ𝐽 if 𝐼, 𝐽 ∈ 𝐸. 

Otherwise, 𝑣𝐸 𝑥𝐼 𝑣𝐸 𝑥𝐽 = 0

• Corollary: ∀𝐼, 𝐽, σ𝐸 𝑣𝐸 𝑥𝐼 𝑣𝐸 𝑥𝐽 = ෨𝐸 𝑥𝐼𝑥𝐽

• Corollary: 𝑀 = σ𝐸 𝑣𝐸𝑣𝐸
𝑇 ≽ 0

PSD Decomposition



Part IV: Analyzing Parameter 
Regimes



• How large does 𝑚 have to be before the 
random 3-XOR constraints are unsatisifable
w.h.p.?

• For which 𝑚 will the pseudo-expectation 
values be well-defined w.h.p., giving us the 
SOS lower bound?

Parameter Regimes



• For any given possible solution (𝑥1, … , 𝑥𝑛), 
the probability it is valid if there are 𝑚
random 3-XOR constraints is 2−𝑚. 

• Using a union bound, 𝑃 ∃𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ≤ 2𝑛−𝑚

• Equations are unsatisfiable w.h.p. if 𝑚 ≫ 𝑛

• In fact, not hard to show that 

∀𝜖 > 0, ∃𝐶, 𝑛0 > 0: if 𝑚 ≥ 𝐶𝑛, 𝑛 ≥ 𝑛0 then 

w.h.p. there is no solution satisfying 
1

2
+ 𝜖 of 

the constraints

Unsatisfiability of 3-XOR Constraints



• If ෨𝐸 is not well-defined then we must be able 
to derive the contradiction −1 = 1 without 
going to degree higher than 2𝑑.

• Multiplying all of the constraints involved in 
such a contradiction, every variable appears 
an even number of times.

Local Consistency



Draw a triangle (𝑥𝑖𝑎
, 𝑥𝑗𝑎

, 𝑥𝑘𝑎
) for each constraint •

𝑥𝑖𝑎
𝑥𝑗𝑎

𝑥𝑘𝑎
= 𝑐𝑎 involved in the contradiction.

Every vertex is covered an even number of times•

Example: If we have the constraints 𝑥1𝑥2𝑥3 = 1,•

𝑥4𝑥5𝑥6 = 1, 𝑥1𝑥2𝑥4 = 1, 𝑥3𝑥5𝑥6 = 1, we get 
the following picture:

Local Contradiction Picture

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6



What is the probability that there is some •
contradiction involving 𝐷 vertices where each 
variable appears twice?

There are • 𝑛
𝐷

≤
𝑒𝑛

𝐷

𝐷
ways to choose the 𝐷

vertices.

Now choose the triangles one by one, starting at •
any vertex which has not yet been covered twice 
and choosing the other two vertices. This gives 

≤ 𝐷2 choices for each of the 
2𝐷

3
triangles.

Probabilistic Analysis



• We have ≤ 𝐷2
2𝐷

3 𝑒𝑛

𝐷

𝐷
choices for the 

structure of the constraints. For a given 

structure, the probability it appears is 
𝑚

𝑛3

2𝐷

3
. 

Thus, the probability of such a contradiction is at 

most 
𝑚𝐷2

𝑛3

2𝐷

3 𝑒𝑛

𝐷

𝐷
=

𝑚
2𝐷
3 𝐷

𝐷
3 𝑒𝐷

𝑛𝐷 = 𝑒
3

𝑚2𝐷/𝑛3

• This is much less than 1 if 𝑚 ≪
𝑛

3
2

𝐷

Probabilistic Analysis Continued



• Note: Can have 𝐷 > 𝑑 variables involved in a 
contradiction without going to degree more 
than 𝑑 (by ignoring vertices which have already 
been covered twice)

• However, must have a constraint graph on ≥
𝐷

3

vertices where at most 𝑑 vertices appear an odd 
number of times.

• Can take 𝐷 = 𝑂(𝑑) and show w.h.p. this does 
not happen.

Analysis Subtleties



• Note: Also have to consider the cases where 
variables appear more than twice in the clauses.

• These cases can be analyzed in a similar way.

Analysis Subtleties



Part V: Gaussian Elimination and 
SOS



• As stated, the 3-XOR problem is actually easy, 
it’s a system of linear of linear equations mod 2

• Map {−1,1} to {1,0} and multiplication to 
addition mod 2. Example: 𝑥𝑖𝑥𝑗𝑥𝑘 = −1

becomes 𝑥𝑖 + 𝑥𝑗 + 𝑥𝑘 = 1 𝑚𝑜𝑑 2

• Can use Gaussian elimination!

Disproving Perfect Completeness



• While disproving perfect completeness is easy, it 
is NP-hard to distinguish between the case 
when (1 − 𝜖) of the constraints can be satisfied 

and the case when at most 
1

2
+ 𝜖 of the 

constraints can be satisfied.

• Problem reformulation: Given constraints 
{𝑥𝑖𝑎

𝑥𝑗𝑎
𝑥𝑘𝑎

= 𝑐𝑎: 𝑎 ∈ [1, 𝑚]}, problem becomes: 

Maximize σ𝑎=1
𝑚 𝑐𝑎𝑥𝑖𝑎

𝑥𝑗𝑎
𝑥𝑘𝑎

subject to

1. ∀𝑖, 𝑥𝑖
2 = 1

Noise Gives NP-hardness



• Why doesn’t SOS capture Gaussian elimination?

• One explanation: SOS is inherently robust to 
noise, so it cannot capture techniques which are 
not robust, like Gaussian elimination.

• This explanation has merit, though the fact 
remains that Gaussian elimination is an 
algorithm not captured by SOS.

SOS Robustness



Part VI: Further Work



Definition: A distribution of solutions for a •

clause is balanced k-wise independent if for all 
indices 𝑖1, … , 𝑖𝑘 and all 𝑏1, … , 𝑏𝑘 ∈ [0,1], 

𝑃 ∀𝑗 ∈ 1, 𝑛 , 𝑥𝑖𝑗
= 𝑏𝑗 = 2−𝑘

Example: For a • 3-XOR clause 𝑥𝑖 + 𝑥𝑗 + 𝑥𝑘 = 𝑏

mod 2, the uniform distribution of solutions is 
balanced 2-wise independent.

k-wise Independent Distributions 



• These ideas have been vastly generalized to 
show tight SOS upper and lower bounds on CSPs 
with balanced 𝑘-wise independent distributions
[BCK15], [KMDW17].

• Note: Balanced pairwise independence implies 
UGC-hardness [AM08], NP-hardness is only 
known if there is a balanced pairwise 
independent subgroup [Cha13].

Further Work
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