Lecture 8: SOS Lower Bound for 3-XOR

Lecture Outline

- Part I: SOS Lower Bounds from Pseudoexpectation Values
- Part II: Random 3-XOR Equations and Pseudoexpectation Values
- Part III: Proving PSDness
- Part IV: Analyzing Parameter Regimes
- Part V: Gaussian Elimination and SOS
- Part VI: Further Work

Part I: SOS Lower Bounds from Pseudo-expectation Values

Positivstellensatz Proofs Review

- Recall: a degree d Positivstellensatz proof that constraints $s_{1}\left(x_{1}, \ldots, x_{n}\right)=0, s_{1}\left(x_{1}, \ldots, x_{n}\right)=0$, etc. are infeasible is an expression of the form $-1=\sum_{i} f_{i} s_{i}+\sum_{j} g_{j}^{2}$ where:

1. $\forall i, \operatorname{deg}\left(f_{i}\right)+\operatorname{deg}\left(s_{i}\right) \leq d$
2. $\forall j, \operatorname{deg}\left(g_{j}\right) \leq \frac{d}{2}$

- How do we show that there is no degree d Positivstellensatz proof of infeasibility?

Positivstellensatz Proofs Review

- Recall: a degree d Positivstellensatz proof that $h\left(x_{1}, \ldots, x_{n}\right) \geq c$ given constraints
$s_{1}\left(x_{1}, \ldots, x_{n}\right)=0, s_{1}\left(x_{1}, \ldots, x_{n}\right)=0$, etc. is an expression of the form $h=c+\sum_{i} f_{i} s_{i}+\sum_{j} g_{j}^{2}$ where:

1. $\forall i, \operatorname{deg}\left(f_{i}\right)+\operatorname{deg}\left(s_{i}\right) \leq d$
2. $\forall j, \operatorname{deg}\left(g_{j}\right) \leq \frac{d}{2}$

- How do we show that there is no degree d

Positivstellensatz proof that $h\left(x_{1}, \ldots, x_{n}\right) \geq c$?

Pseudo-expectation Values Review

- Recall: Given constraints $s_{1}\left(x_{1}, \ldots, x_{n}\right)=$ $0, s_{1}\left(x_{1}, \ldots, x_{n}\right)=0$, etc., degree d Pseudoexpectation values consist of a linear map \tilde{E} from polynomials of degree $\leq d$ to \mathbb{R} such that:

1. $\tilde{E}[1]=1$
2. $\forall f, i, \tilde{E}\left[f s_{i}\right]=0$ whenever $\operatorname{deg}\left(f_{i}\right)+\operatorname{deg}\left(s_{i}\right) \leq d$
3. $\forall g, \tilde{E}\left[g^{2}\right] \geq 0$ whenever $\operatorname{deg}(g) \leq \frac{d}{2}$

- The third condition is equivalent to $M \geqslant 0$ where M is the moment matrix with entries $M_{p q}=\tilde{E}[p q]$

SOS Lower Bound Strategy

- Recall: degree d pseudo-expectation values imply there is no degree d Positivstellensatz proof of infeasibility
- Analogously, degree d pseudo-expectation values with $\widetilde{E}[h]<c$ imply there is no degree d Positivstellensatz proof that $h \geq c$.
- Proof: can assume both exist and get the following contradiction:

$$
\mathrm{c}>\widetilde{\mathrm{E}}[h]=\tilde{E}[c]+\sum_{i} \tilde{E}\left[f_{i} s_{i}\right]+\sum_{j} \tilde{E}\left[g_{j}^{2}\right] \geq c
$$

SOS Lower Bound Strategy

- To prove an SOS lower bound, we generally do the following:

1. Come up with pseudo-expectation values \tilde{E} which obey the required linear equations
2. Show that the moment matrix M is PSD

- In the examples we'll see, part 1 is relatively easy and the technical part is part 2.
- That said, for several very important problems, we're stuck on part 1!

Part II: Random 3-XOR Equations and Pseudo-expectation Values

Equations for Random 3-XOR

- Want each $x_{i} \in\{-1,1\}$
- 3-XOR constraint: $x_{i} x_{j} x_{k}=1$ or $x_{i} x_{j} x_{k}=-1$
- We will take $m 3$-XOR constraints at random
- Problem equations:

1. $\forall i, x_{i}^{2}=1$
2. $\forall a \in[1, m], x_{i_{a}} x_{j_{a}} x_{k_{a}}=c_{a}$ where $\forall a \in[1, m]$, $i_{a}, j_{a}, k_{a} \in[1, n]$ and $c_{a} \in\{-1,1\}$

SOS Lower Bound for Random 3-XOR

- Problem equations:

1. $\forall i, x_{i}^{2}=1$
2. $\forall a \in[1, m], x_{i_{a}} x_{j_{a}} x_{k_{a}}=c_{a}$ where $\forall a \in[1, m]$,

$$
i_{a}, j_{a}, k_{a} \in[1, n] \text { and } c_{a} \in\{-1,1\}
$$

- Theorem [Gri02], rediscovered by [Sch08]: If $m \leq \frac{n^{\frac{3}{2}-\epsilon}}{\sqrt{d}}$ then w.h.p., degree d SOS does not refute these equations.

Choosing Pseudo-expectation Values

- How do we choose the pseudo-expectation values?
- Many choices are fixed.
- Example: If $x_{1} x_{2} x_{3}=1$ and $x_{1} x_{4} x_{5}=-1$ then $x_{1}^{2} x_{2} x_{3} x_{4} x_{5}=x_{2} x_{3} x_{4} x_{5}=-1$
- However, we only want to make these deductions at low degrees...

Choosing Pseudo-expectation Values

- Def: Define $x_{I}=\prod_{i \in I} x_{i}$
- Proposition: $\forall I, J, x_{I} x_{J}=x_{I \Delta J}$ where $I \Delta J=$ $(I \cup J) \backslash(I \cap J)$ is the disjoint union of I and J.
- To decide which x_{I} have fixed values:

1. Keep track of a collection of equations $\left\{x_{I}=c_{I}\right\}$ starting with the problem constraints.
2. If we have equations $x_{I}=c_{I}$ and $x_{J}=c_{J}$ where $I, \mathrm{~J}$, and $I \Delta J$ all have size at most d, then we add the equation $x_{I \Delta J}=c_{I} c_{J}$ (if we don't have it already)

Choosing Pseudo-expectation Values

- Set $\tilde{E}\left[x_{I}\right]=c_{I}$ if our collection has $x_{I}=c_{I}$
- What if we don't have an equation for x_{I} ?
- If we have no equation for x_{I}, set $\tilde{E}\left[x_{I}\right]=0$
- Set $\tilde{E}\left[x_{i}^{2} f\right]=\tilde{E}[f]$ for all f of degree $\leq d-2$
- These pseudo-expectation values are welldefined as long as we never have both the equations $x_{I}=1$ and $x_{I}=-1$.

Part III: Proving PSDness

To-Do List

- Here we assume that \tilde{E} is well defined. We will analyze when this holds w.h.p. in the next section.
- Need to check linear equations. This follows from the definitions:
- Whenever we have a constraint $x_{I}=c_{I}$, for all J of size $\leq d-3$, either $\tilde{E}\left[x_{I} x_{J}\right]=c_{I} c_{J}=c_{I} \tilde{E}\left[x_{J}\right]$ or $\tilde{E}\left[x_{I} x_{J}\right]=c_{I} \tilde{E}\left[x_{J}\right]=0$

$$
-\forall i, f: \operatorname{deg}(f) \leq d-2, \tilde{E}\left[x_{i}^{2} f\right]=\tilde{E}[f]
$$

- Need to check moment matrix is PSD.

Restriction to Multilinear Indices

- Observation: Whenever we have constraints $x_{i}^{2}=x_{i}$ or $x_{i}^{2}=1$, it is sufficient to consider the entries of M indexed by multilinear monomials.
- Reason: Given any g of degree $\leq \frac{d}{2}, \exists$ multilinear g^{\prime} such that $\tilde{E}\left[g^{\prime 2}\right]=\tilde{E}\left[g^{2}\right]$.
- Proof idea: Any non-multilinear term $x_{i}^{2} f$ in g can be replaced by f.
- Corollary: $\tilde{E}\left[g^{2}\right] \geq 0$ for all g of degree $\leq d / 2$ $\Leftrightarrow \tilde{E}\left[g^{2}\right]$ for all multilinear g of degree $\leq d / 2$.

Key Idea: Equivalence Classes

- Definition: For sets I, J of size $\leq \frac{d}{2}$, we say $x_{I} \sim x_{J}$ if $x_{I} x_{J}=x_{I \Delta J}$ is determined
- Proposition: If $x_{I} \sim x_{J}$ and $x_{J} \sim x_{K}$ then $x_{I} \sim$ x_{K}.
- Proof: If $x_{I} \sim x_{J}$ and $x_{J} \sim x_{K}$ then $x_{I \Delta J}$ and $x_{J \Delta K}$ are determined. Now $x_{I \Delta J} x_{J \Delta K}=$ $x_{I} x_{J}^{2} x_{K}=x_{I \Delta K}$ is determined. Thus, $x_{I} \sim x_{K}$
- Remark: We carefully chose which deductions to make so that this would work.

PSD Decomposition

- Proposition: $\tilde{E}\left[x_{I} x_{J}\right] \neq 0$ if and only $I \sim J$.
- Choose a representative I_{E} from every equivalence class E.
- Take $v_{E}\left(x_{I}\right)=\tilde{E}\left[x_{I} x_{I_{E}}\right]$
- $v_{E}\left(x_{I}\right)=c_{I \Delta I_{E}}$ if $x_{I} \in E$. Otherwise, $v_{E}\left(x_{I}\right)=0$
- $v_{E}\left(x_{I}\right) v_{E}\left(x_{J}\right)=c_{I \Delta I_{E}} c_{J \Delta I_{E}}=c_{I \Delta J}$ if $I, J \in E$. Otherwise, $v_{E}\left(x_{I}\right) v_{E}\left(x_{J}\right)=0$

PSD Decomposition

- $v_{E}\left(x_{I}\right) v_{E}\left(x_{J}\right)=c_{I \Delta I_{E}} c_{J \Delta I_{E}}=c_{I \Delta J}$ if $I, J \in E$. Otherwise, $v_{E}\left(x_{I}\right) v_{E}\left(x_{J}\right)=0$
- Corollary: $\forall I, J, \sum_{E} v_{E}\left(x_{I}\right) v_{E}\left(x_{J}\right)=\tilde{E}\left[x_{I} x_{J}\right]$
- Corollary: $M=\sum_{E} v_{E} v_{E}^{T} \succcurlyeq 0$

Part IV: Analyzing Parameter Regimes

Parameter Regimes

- How large does m have to be before the random 3-XOR constraints are unsatisifable w.h.p.?
- For which m will the pseudo-expectation values be well-defined w.h.p., giving us the SOS lower bound?

Unsatisfiability of 3-XOR Constraints

- For any given possible solution $\left(x_{1}, \ldots, x_{n}\right)$, the probability it is valid if there are m random 3-XOR constraints is 2^{-m}.
- Using a union bound, $P[\exists$ solution $] \leq 2^{n-m}$
- Equations are unsatisfiable w.h.p. if $m \gg n$
- In fact, not hard to show that
$\forall \epsilon>0, \exists C, n_{0}>0$: if $m \geq C n, n \geq n_{0}$ then w.h.p. there is no solution satisfying $\frac{1}{2}+\epsilon$ of the constraints

Local Consistency

- If \tilde{E} is not well-defined then we must be able to derive the contradiction $-1=1$ without going to degree higher than $2 d$.
- Multiplying all of the constraints involved in such a contradiction, every variable appears an even number of times.

Local Contradiction Picture

- Draw a triangle $\left(x_{i_{a}}, x_{j_{a}}, x_{k_{a}}\right)$ for each constraint $x_{i_{a}} x_{j_{a}} x_{k_{a}}=c_{a}$ involved in the contradiction.
- Every vertex is covered an even number of times
- Example: If we have the constraints $x_{1} x_{2} x_{3}=1$, $x_{4} x_{5} x_{6}=1, x_{1} x_{2} x_{4}=1, x_{3} x_{5} x_{6}=1$, we get the following picture:

Probabilistic Analysis

- What is the probability that there is some contradiction involving D vertices where each variable appears twice?
- There are $\binom{n}{D} \leq\left(\frac{e n}{D}\right)^{D}$ ways to choose the D vertices.
- Now choose the triangles one by one, starting at any vertex which has not yet been covered twice and choosing the other two vertices. This gives $\leq D^{2}$ choices for each of the $\frac{2 D}{3}$ triangles.

Probabilistic Analysis Continued

- We have $\leq\left(D^{2}\right)^{\frac{2 D}{3}}\left(\frac{e n}{D}\right)^{D}$ choices for the structure of the constraints. For a given structure, the probability it appears is $\left(\frac{m}{n^{3}}\right)^{\frac{2 D}{3}}$. Thus, the probability of such a contradiction is at $\operatorname{most}\left(\frac{m D^{2}}{n^{3}}\right)^{\frac{2 D}{3}}\left(\frac{e n}{D}\right)^{D}=\frac{m^{\frac{2 D}{3} D^{\frac{D}{3}} e^{D}}}{n^{D}}=e \sqrt[3]{m^{2} D / n^{3}}$
- This is much less than 1 if $m \ll \frac{n^{\frac{3}{2}}}{\sqrt{D}}$

Analysis Subtleties

- Note: Can have $D>d$ variables involved in a contradiction without going to degree more than d (by ignoring vertices which have already been covered twice)
- However, must have a constraint graph on $\geq \frac{D}{3}$ vertices where at most d vertices appear an odd number of times.
- Can take $D=O(d)$ and show w.h.p. this does not happen.

Analysis Subtleties

- Note: Also have to consider the cases where variables appear more than twice in the clauses.
- These cases can be analyzed in a similar way.

Part V: Gaussian Elimination and SOS

Disproving Perfect Completeness

- As stated, the 3-XOR problem is actually easy, it's a system of linear of linear equations mod 2
- $\operatorname{Map}\{-1,1\}$ to $\{1,0\}$ and multiplication to addition mod 2. Example: $x_{i} x_{j} x_{k}=-1$ becomes $x_{i}+x_{j}+x_{k}=1 \bmod 2$
- Can use Gaussian elimination!

Noise Gives NP-hardness

- While disproving perfect completeness is easy, it is NP-hard to distinguish between the case when $(1-\epsilon)$ of the constraints can be satisfied and the case when at most $\left(\frac{1}{2}+\epsilon\right)$ of the constraints can be satisfied.
- Problem reformulation: Given constraints $\left\{x_{i_{a}} x_{j_{a}} x_{k_{a}}=c_{a}: a \in[1, m]\right\}$, problem becomes: Maximize $\sum_{a=1}^{m} c_{a} x_{i_{a}} x_{j_{a}} x_{k_{a}}$ subject to

1. $\forall i, x_{i}^{2}=1$

SOS Robustness

- Why doesn't SOS capture Gaussian elimination?
- One explanation: SOS is inherently robust to noise, so it cannot capture techniques which are not robust, like Gaussian elimination.
- This explanation has merit, though the fact remains that Gaussian elimination is an algorithm not captured by SOS.

Part VI: Further Work

k-wise Independent Distributions

- Definition: A distribution of solutions for a clause is balanced k -wise independent if for all indices i_{1}, \ldots, i_{k} and all $b_{1}, \ldots, b_{k} \in[0,1]$,

$$
P\left[\forall j \in[1, n], x_{i_{j}}=b_{j}\right]=2^{-k}
$$

- Example: For a 3-XOR clause $x_{i}+x_{j}+x_{k}=b$ mod 2 , the uniform distribution of solutions is balanced 2-wise independent.

Further Work

- These ideas have been vastly generalized to show tight SOS upper and lower bounds on CSPs with balanced k-wise independent distributions [BCK15], [KMDW17].
- Note: Balanced pairwise independence implies UGC-hardness [AMO8], NP-hardness is only known if there is a balanced pairwise independent subgroup [Cha13].

References

- [AM08] P. Austrin, E. Mossel. Approximation Resistant Predicates From Pairwise Independence. https://arxiv.org/abs/0802.2300. 2008
- [BCK15] B. Barak, S. O. Chan, and P. Kothari. Sum of squares lower bounds from pairwise independence. STOC 2015.
- [Cha13] S. O. Chan. Hardness of Maximum Constraint Satisfaction. Ph.D. thesis at Berkeley.
- [KMDW17] P. Kothari, R. Mori, R. O’Donnell, D. Witmer. Sum of squares lower bounds for refuting any CSP. STOC 2017.

