Lecture 9: SOS Lower Bound for Knapsack

Lecture Outline

- Part I: Knapsack Eqations and Pseudoexpectation Values
- Part II: Johnson Scheme
- Part III: Proving PSDness
- Part IV: Further Work

Part I: Knapsack Eqations and Pseudo-expectation Values

Knapsack Problem

- Knapsack problem: Given weights w_{1}, \ldots, w_{n} and a knapsack with total capacity C, what is the maximum weight that can be carried?
- In other words, defining $w_{I}=\sum_{i \in I} w_{i}$ for each subset $I \subseteq[1, n]$, what is $\max \left\{w_{I}: I \subseteq[1, n], w_{I} \leq C\right\}$?
- Here we'll consider the simple case where $w_{i}=1$ for all i and $C \in[0, n]$ is not an integer.
- Answer is $\lfloor C\rfloor$, but can SOS prove it?

Knapsack Equations

- Want $x_{i}=1$ if $i \in I$ and $x_{i}=0$ otherwise.
- Knapsack equations:

1. $\forall i, x_{i}^{2}=x_{i}$
2. $\sum_{i=1}^{n} x_{i}=k$

- Here we take $k \in[0, n]$ to be a non-integer.
- Equations are infeasible because $\sum_{i=1}^{n} x_{i} \in \mathbb{Z}$

SOS Lower Bound for Knapsack

- Theorem[Gri01]: SOS needs degree at least $2 \min \{k, n-k\}$ to refute these equations
- We'll follow the presentation of [MPW15] and show a lower bound of $\min \{k, n-k\}$
- Note: This presentation was already in the retracted paper [MW13]

Review: SOS Lower Bound Strategy

- Recall: To prove an SOS lower bound, we generally do the following:

1. Come up with pseudo-expectation values \tilde{E} which obey the required linear equations
2. Show that the moment matrix M is PSD

- Here we'll use symmetry for part 1 and some combinatorics for part 2.

Pseudo-expectation Values

- Define $x_{I}=\prod_{i \in I} x_{i}$
- $\forall I,\left(\sum_{j=1}^{n} x_{j}\right) x_{I}=\sum_{j \in I} x_{j} x_{I}+\sum_{j \notin I} x_{j} x_{I}=k x_{I}$
- If $\tilde{E}\left[x_{I}\right]$ only depends on $|I|$,
$\forall I, j \notin I,|I| \tilde{E}\left[x_{I}\right]+(n-|I|) \tilde{E}\left[x_{I \cup\{j\}}\right]=k \tilde{E}\left[x_{I}\right]$

$$
\forall I, j \notin I, \tilde{E}\left[x_{I \cup\{j\}}\right]=\frac{k-|I|}{n-|I|} \tilde{E}\left[x_{I}\right]
$$

- Thus, $\tilde{E}\left[x_{I}\right]=\frac{k(k-1) \ldots(k-|I|+1)}{n(n-1) \ldots(n-|I|+1)}=\frac{\binom{k}{|I|}}{\binom{n}{|I|}}$

Viewing \tilde{E} as an Expectation

- $\tilde{E}\left[x_{I}\right]=\frac{\binom{k}{(I I}}{\left(\begin{array}{l}n I\end{array}\right)}$
- Could have predicted this as follows: If we had a set A of 1 s of size k, then of the $\binom{n}{||\mid}$ possible sets of size $|I|,\binom{k}{|I|}$ of them will be contained in A.
- Bayesian view: $\tilde{E}\left[x_{I}\right]$ is the expected value of x_{I} given what we can compute (in SOS).
- Here it is a true expectation if $k \in \mathbb{Z}$

Reduction to Multilinear Indices

- Recall from last lecture: If we have constraints $x_{i}^{2}=x_{i}$ or $x_{i}^{2}=1$, it is sufficient to consider $\tilde{E}\left[g^{2}\right]$ for multilinear g.
- Reason: For every polynomial g, there is a multilinear polynomial g^{\prime} with $\operatorname{deg}\left(g^{\prime}\right) \leq$ $\operatorname{deg}(g)$ such that $\tilde{E}\left[g^{\prime 2}\right]=\tilde{E}\left[g^{2}\right]$.
- Thus, it is sufficient to consider the restriction of M to multilinear indices.

Reduction to Degree $\frac{d}{2}$ Indices

- Lemma: If we also have the constraint $\sum_{i=1}^{n} x_{i}=k$, for every polynomial g of degree at most $\frac{d}{2}$, there is a homogeneous, multilinear polynomial g^{\prime} of degree exactly $\frac{d}{2}$ such that $\tilde{E}\left[g^{\prime 2}\right]=\tilde{E}\left[g^{2}\right]$.
- Proof idea: Use the following reductions:

1. $\forall i, x_{i}^{2} f=x_{i} f$
2. $\forall I \subseteq[1, n]:|I|<\frac{d}{2}, x_{I}=\frac{\sum_{i \notin I}^{n} x_{I \cup\{i\}}}{k-|I|}$. To see this, note that $\left(\sum_{i=1}^{n} x_{i}\right) x_{I}=k x_{I}=|I| x_{I}+\sum_{i \notin I}^{n} x_{I \cup\{i\}}$

Reduction to Degree $\frac{d}{2}$ Indices

- Corollary: To prove that $M \succcurlyeq 0$, it is sufficient to prove that the submatrix of M with multilinear entries of degree exactly $\frac{d}{2}$ is PSD.

Part II: Johnson Scheme

Johnson Scheme

- Algebra of matrices M such that:

1. The rows and columns of M are indexed by subsets of $[1, n]$ of size r for some r.
2. $M_{I J}$ only depends on $|I \cap J|$

- Equivalently, the Johnson Scheme is the algebra of matrices which are invariant under permutations of $[1, n]$.
- Claim: The matrices M in the Johnson scheme are all symmetric and commute with each other

Johnson Scheme Claim Proof

- Claim: For all A, B in the Johnson scheme, $A^{T}=$ $A, A B$ is in the Johnson scheme as well, and $A B=B A$
- Proof: For the first part, $\forall I, J, A_{I J}=A_{J I}$ because $|I \cap J|=|J \cap I|$. For the second part, $A B_{I K}=$ $\sum_{J \in\binom{n}{r}} A_{I J} B_{J K}$. Now observe that for any permutation σ of $[1, n], A B_{I K}=\sum_{J \in\binom{n}{r}} A_{I J} B_{J K}=$ $\sum_{J \in\binom{n}{r}} A_{\sigma(I) J} B_{J \sigma(K)}=A B_{\sigma(I) \sigma(K)}$
- For the third part, $A B=(A B)^{T}=B^{T} A^{T}=B A$

Johnson Scheme Picture for $r=1$

	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

$$
\square|I \cap J|=1
$$

$$
\square|I \cap J|=0
$$

Johnson Scheme Picture for $r=2$

	12	13	14	15	16	23	24	25	26	34	35	36	45	46	56
12															
13															
14															
15															
16															
23															
24															
25															
26															
34															
35															
36															
45															
46															
56															

$\square|I \cap J|=2$
$\square|I \cap J|=1$
$\square|I \cap J|=0$

Basis for Johnson Scheme

- Natural basis for Johnson Scheme: Define
 $|I \cap J|=a$ and $\left(D_{i}\right)_{I J}=0$ if $|I \cap J| \neq a$.
- Easy to express matrices in this basis, but not so easy to show PSDness

PSD Basis for Johnson Scheme

- Want a convenient basis of PSD matrices.
- Building block: Define v_{A} so that $\left(v_{A}\right)_{I}=1$ if $A \subseteq I$ and 0 otherwise
- PSD basis for Johnson Scheme: Define $P_{a} \in$ $\mathbb{R}^{\binom{n}{r} \times\binom{ n}{r} \text { to be } P_{a}=\sum_{A \subseteq[1, n]:|A|=a} v_{A} v_{A}^{T}, ~}$
- P_{a} has entries $\left(P_{a}\right)_{I J}=\binom{|I \cap J|}{a}$ because $v_{A} v_{A}^{T}=1$ if and only if $A \subseteq I \cap J$ and there are $\binom{|I \cap J|}{a}$ such $A \subseteq[1, n]$ of size a.

Basis for $r=1$

	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

$$
\begin{aligned}
& \square\left(D_{0}\right)_{I J}=0 \\
& \square\left(D_{0}\right)_{I J}=1
\end{aligned}
$$

Basis for $r=1$

	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

$$
\begin{aligned}
& \square\left(D_{1}\right)_{I J}=1 \\
& \square\left(D_{1}\right)_{I J}=0
\end{aligned}
$$

PSD Basis for $r=1$

	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

$$
\begin{aligned}
& \square\left(P_{0}\right)_{I J}=\binom{1}{0}=1 \\
& \square\left(P_{0}\right)_{I J}=\binom{0}{0}=1
\end{aligned}
$$

PSD Basis for $r=1$

	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

$$
\begin{aligned}
& \square\left(P_{1}\right)_{I J}=\binom{1}{1}=1 \\
& \square\left(P_{1}\right)_{I J}=\binom{0}{1}=0
\end{aligned}
$$

PSD Basis for $r=2$

	12	13	14	15	16	23	24	25	26	34	35	36	45	46	56
12															
13															
14															
15															
16															
23															
24															
25															
26															
34															
35															
36															
45															
46															
26															

$$
\begin{aligned}
& \square\left(P_{0}\right)_{I J}=\binom{2}{0}=1 \\
& \square\left(P_{0}\right)_{I J}=\binom{1}{0}=1 \\
& \square\left(P_{0}\right)_{I J}=\binom{0}{0}=1
\end{aligned}
$$

PSD Basis for $r=2$

	12	13	14	15	16	23	24	25	26	34	35	36	45	46	56
12															
13															
14															
15															
16															
23															
24															
25															
26															
34															
35															
36															
45															
46															
26															

$$
\begin{aligned}
& \square\left(P_{1}\right)_{I J}=\binom{2}{1}=2 \\
& \square\left(P_{1}\right)_{I J}=\binom{1}{1}=1 \\
& \square\left(P_{1}\right)_{I J}=\binom{0}{1}=0
\end{aligned}
$$

PSD Basis for $r=2$

	12	13	14	15	16	23	24	25	26	34	35	36	45	46	56
12															
13															
14															
15															
16															
23															
24															
25															
26															
34															
35															
36															
45															
46															
26															

$$
\begin{aligned}
& \square\left(P_{2}\right)_{I J}=\binom{2}{2}=1 \\
& \square\left(P_{2}\right)_{I J}=\binom{1}{2}=0 \\
& \square\left(P_{2}\right)_{I J}=\binom{0}{2}=0
\end{aligned}
$$

Shifting Between Bases

- Basis for Johnson Scheme: $\left(D_{a}\right)_{I J}=\delta_{a|I \cap J|}$
- PSD Basis for Johnson Scheme : $\left(P_{a}\right)_{I J}=\binom{|I \cap J|}{a}$
- Want to shift between bases.
- Lemma:

1. $P_{a}=\sum_{b=a}^{r}\binom{b}{a} D_{b}$
2. $D_{a}=\sum_{b=a}^{r}(-1)^{b-a}\binom{b}{a} P_{b}$

- First part is trivial, second part follows from a bit of combinatorics.

Shifting Between Bases Proof

- Lemma:

1. $\quad P_{a}=\sum_{b=a}^{r}\binom{b}{a} D_{b}$
2. $\quad D_{a}=\sum_{b=a}^{r}(-1)^{b-a}\binom{b}{a} P_{b}$

- Proof of the second part: Observe that $\sum_{b=a}^{r}(-1)^{b-a}\binom{b}{a} P_{b}=\sum_{a^{\prime}=a}^{r} \sum_{b=a}^{a^{\prime}}(-1)^{b-a}\binom{b}{a} D_{b}$
- Must show that for all $a^{\prime} \geq a$,

$$
\sum_{b=a}^{a \prime}(-1)^{b-a}\binom{a^{\prime}}{b}\binom{b}{a}=\delta_{a^{\prime} a}
$$

- In-class exercise: Prove this

Shifting Between Bases Proof

- Need to show: $\sum_{b=a}^{a^{\prime}}(-1)^{b-a}\binom{a^{\prime}}{b}\binom{b}{a}=\delta_{a^{\prime} a}$
- Answer: Observe that

$$
\binom{a^{\prime}}{b}\binom{b}{a}=\frac{a^{\prime}!b!}{b!\left(a^{\prime}-b\right)!a!(b-a)!}=\frac{a^{\prime}!}{a!\left(a^{\prime}-a\right)!} \frac{\left(a^{\prime}-a\right)!}{\left(a^{\prime}-b\right)!(b-a)!}
$$

- Our expression is equal to

$$
\frac{a^{\prime}!}{a!\left(a^{\prime}-a\right)!} \sum_{j=0}^{m}(-1)^{j}\binom{m}{j} \text { where } m=a^{\prime}-a
$$

- Now note that $\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}=(1+(-1))^{m}$, which equals 1 if $m=0$ and 0 if $m>0$.

Part III: Proving PSDness

Decomposition of M

- Recall that $\tilde{E}\left[x_{I}\right]=\frac{\left(\begin{array}{c}k \\ (I n)\end{array}\right.}{\left(\begin{array}{l}n \mid 1)\end{array}\right)}$
- $M_{I J}=\frac{\binom{k}{I I U J \mid}}{\binom{n}{I U J \mid)}}$
- Thus, $M=\sum_{a=0}^{r} \frac{\binom{k}{2 r-a}}{(2 r-a)} D_{a}$

PSD Decomposition

- To prove $M \succcurlyeq 0$, it is sufficient to express M as a non-negative linear combination of the matrices P_{a}.

Example: Decomposition for $r=1$

- $M=\frac{k}{n} D_{1}+\frac{k(k-1)}{n(n-1)} D_{0}=\frac{k}{n} P_{1}+\frac{k(k-1)}{n(n-1)}\left(P_{0}-P_{1}\right)$
- $M=\left(\frac{k}{n}-\frac{k(k-1)}{n(n-1)}\right) P_{1}+\frac{k(k-1)}{n(n-1)} P_{0}=\frac{k(n-k)}{n(n-1)} P_{1}+\frac{k(k-1)}{n(n-1)} P_{0}$

	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

$$
\begin{aligned}
& \square M_{I J}=\frac{k}{n} \\
& \square M_{I J}=\frac{k(k-1)}{n(n-1)}
\end{aligned}
$$

PSD Decomposition

- Claim: $M=\sum_{a=0}^{r} \frac{\binom{k}{2 r}}{\binom{n}{2 r}} \cdot \frac{\binom{n-k}{a}}{\binom{k-2 r+a}{a}} P_{a}$
- For the proof, see the appendix
- Corollary: $M \geqslant 0$ if $k \geq 2 r$ and $n-k \geq r$ (where $d=2 r$)

Improving Degree Lower Bound

- $\left\{P_{a}\right\}$ is a nice basis to work with because it is relatively easy to go between $\left\{D_{a}\right\}$ and $\left\{P_{a}\right\}$.
- However, in some sense, it's not the right basis to use.
- Want a basis $\left\{P_{a}^{\prime}\right\}$ such that all symmetric PSD matrices are a non-negative linear combination of the $\left\{P_{a}^{\prime}\right\}$.
- With the right basis, can get a higher degree lower bound.

Example

- Let J be the all ones matrix.
- For the case $d=2, r=1, P_{0}=J$ and $P_{1}=I d$
- Better basis: $P_{0}^{\prime}=J, P_{1}^{\prime}=\frac{n-1}{n} I d-\frac{1}{n} J$

Part IV: Further Work

Using Symmetry

- Can we take advantage of symmetry in the problem more generally?
- Yes!

Using Symmetry

- Proposition: Whenever there are valid pseudoexpectation values, there are valid pseudoexpectation values which are symmetric.
- Proof: Let S be the group of symmetries of the problem. If we have pseudo-expectation values \widetilde{E}, then for any $\sigma \in S, \widetilde{E^{\prime}}[\mathrm{f}]=\widetilde{\mathrm{E}}[\sigma(f)]$ is also valid. Since the conditions for pseudoexpectation values are convex, $\widetilde{E_{\text {avg }}}[f]=$ $\frac{\tilde{E}\left[\sum_{\sigma \in S} \sigma(f)\right]}{|S|}$ is valid as well and is symmetric.

Using Symmetry

- Gatermann and Parrilo [GP04] show how symmetry can be used to drastically reduce the search space for finding pseudoexpectation values.
- Recently, Raymond, Saunderson, Singh, and Thomas [RSST16] showed that if the problem is symmetric, it can be solved with a semidefinite program whose size is independent of n.

Obtaining Lower Bounds Directly

- One way to give intuition for the lower bound: SOS "thinks" that we are choosing k elements out of n and takes the corresponding pseudoexpectation values.
- SOS is very bad at determining functions must be integers and needs degree $\geq k$ to detect a problem.

Obtaining Lower Bounds Directly

- Is there a way to say that this intuition is good enough to obtain a lower bound without going through the combinatorics?
- Unless I'm mistaken, yes (this is work in progress).

References

- [GP04] K. Gatermann and P. Parrilo. Symmetry groups, semidefinite programs, and sums of squares. J. Pure Appl. Algebra, 192(1-3):95-128, 2004.
- [Gri01] D. Grigoriev. Complexity of Positivstellensatz proofs for the knapsack. Computational Complexity 10(2):139-154, 2001
- [MW13] R. Meka and A. Wigderson Association schemes, non-commutative polynomial concentration, and sum-of-squares lower bounds for planted clique. https://arxiv.org/abs/1307.7615v1
- [MPW15] R. Meka, A Potechin, A. Wigderson, Sum-of-squares lower bounds for planted clique. STOC p.87-96, 2015
- [RSST16] A. Raymond, J. Saunderson, M. Singh, R. Thomas. Symmetric sums of squares over k-subset hypercubes. https://arxiv.org/abs/1606.05639, 2016

Appendix: PSD Decomposition Calculations

Picture for $r=2$

	12	13	14	15	16	23	24	25	26	34	35	36	45	46	56
12															
13															
14															
15															
16															
23															
24															
25															
26															
34															
35															
36															
45															
46															
56															

$$
\begin{aligned}
& \square M_{I J}=\frac{\binom{k}{2}}{\binom{n}{2}} \\
& \square M_{I J}=\frac{\binom{k}{3}}{\binom{n}{3}} \\
& \square M_{I J}=\frac{\binom{k}{4}}{\binom{n}{4}}
\end{aligned}
$$

Decomposition for $r=2$

- $M=\frac{\binom{k}{2}}{\binom{n}{2}} D_{2}+\frac{\binom{k}{3}}{\binom{n}{3}} D_{1}+\frac{\binom{k}{4}}{\binom{n}{4}} D_{0}$
- $M=\frac{\binom{k}{2}}{\binom{n}{2}} P_{2}+\frac{\binom{k}{3}}{\binom{n}{3}}\left(P_{1}-2 P_{2}\right)+\frac{\binom{k}{4}}{\binom{n}{4}}\left(P_{0}-P_{1}+P_{2}\right)$
- $M=\left(\frac{\binom{k}{2}}{\binom{n}{2}}-2 \frac{\binom{k}{3}}{\binom{n}{3}}+\frac{\binom{k}{4}}{\binom{n}{4}}\right) P_{2}+\left(\frac{\binom{k}{3}}{\binom{n}{3}}-2 \frac{\binom{k}{4}}{\binom{n}{4}}\right) P_{1}+\frac{\binom{k}{4}}{\binom{n}{4}} P_{0}$
- $\frac{\binom{k}{4}}{\binom{n}{4}}=\frac{k(k-1)(k-2)(k-3)}{n(n-1)(n-2)(n-3)}$
- $\left(\frac{\binom{k}{3}}{\binom{n}{3}}-\frac{\binom{k}{4}}{\binom{n}{4}}\right)=\frac{k(k-1)(k-2)((n-3)-(k-3))}{n(n-1)(n-2)(n-3)}=\frac{k(k-1)(k-2)(n-k)}{n(n-1)(n-2)(n-3)}$

Decomposition for $r=2$

- Claim: $\left(\frac{\binom{k}{2}}{\binom{n}{2}}-2 \frac{\binom{k}{3}}{\binom{n}{3}}+\frac{\binom{k}{4}}{\binom{n}{4}}\right)=\frac{k(k-1)(n-k)(n-k-1)}{n(n-1)(n-2)(n-3)}$
- Proof: Consider $\frac{n(n-1)(n-2)(n-3)}{k(k-1)}\left(\frac{\binom{k}{2}}{\binom{n}{2}}-2 \frac{\binom{k}{3}}{\binom{n}{3}}+\frac{\binom{k}{4}}{\binom{n}{4}}\right)$. This equals $(n-2)(n-3)-2(k-2)(n-3)+(k-2)(k-3)$ which equals

$$
\begin{aligned}
& (n-2-(k-2))(n-3)-(k-2)(n-3-(k-3)) \\
& =(n-k)((n-3)-(k-2))=(n-k)(n-k-1)
\end{aligned}
$$

General Pattern

- $M=\frac{k(k-1)(n-k)(n-k-1)}{n(n-1)(n-2)(n-3)} P_{2}+$
$\frac{k(k-1)(k-2)(n-k)}{n(n-1)(n-2)(n-3)} P_{1}+\frac{k(k-1)(k-2)(k-3)}{n(n-1)(n-2)(n-3)} P_{0}$
- Can you see the pattern?
- General Pattern: $M=\frac{\binom{k}{2 r}}{\binom{n}{2 r}}\left(\sum_{a=0}^{r} \frac{\binom{n-k}{a}}{\binom{k-2 r+a}{a}} P_{a}\right)$

General Pattern Proof

- Claim: $M=\frac{\binom{k}{2 r}}{\binom{n}{2 r}}\left(\sum_{a=0}^{r} \frac{\binom{n-k}{a}}{\binom{k-2 r+a}{a}} P_{a}\right)$
- This gives $M=\frac{\binom{k}{2 r}}{\binom{n}{2 r}}\left(\sum_{a=0}^{r} \sum_{b=a}^{r} \frac{\binom{n-k}{a}}{\binom{k-2 r+a}{a}}\binom{b}{a} D_{b}\right)$
- $M=\frac{\binom{k}{2 r}}{\binom{n}{2 r}}\left(\sum_{b=0}^{r} \sum_{a=0}^{b} \frac{\binom{n-k}{a}}{\binom{k-2 r+a}{a}}\binom{b}{a} D_{b}\right)$
- Need to show: $\sum_{a=0}^{b} \frac{\binom{n-k}{a}}{\binom{k-2 r+a}{a}}\binom{b}{a}=\frac{\binom{n-2 r+b}{b}}{\binom{k-2 r+b}{b}}$

General Pattern Proof

- Claim: $\sum_{a=0}^{b} \frac{\binom{n-k}{a}}{\binom{k-2 r+a}{a}}\binom{b}{a}=\frac{\binom{n-2 r+b}{b}}{\binom{k-2 r+b}{b}}$
- Proof: Note that $\frac{\binom{k-2 r+b}{b}}{\binom{k-2 r+a}{a}}=\frac{\binom{k-2 r+b}{b-a}}{\binom{b}{a}}$, so this is equivalent to the following:

$$
\sum_{a=0}^{b}\binom{n-k}{a}\binom{k-2 r+b}{b-a}=\binom{n-2 r+b}{b}
$$

General Pattern Proof

- Claim: $\sum_{a=0}^{b}\binom{n-k}{a}\binom{k-2 r+b}{b-a}=\binom{n-2 r+b}{b}$
- Proof: One way to choose b elements out of $[1, n-2 r+b]$ elements is to first choose the number a of elements which will be in [1, $n-k$]. We then choose a elements from $[1, n-k]$ and choose the remaining $b-a$ elements from [$n-k+1, n-2 r+b]$, which gives $\binom{n-k}{a}\binom{k-2 r+b}{b-a}$ choices for each $a \in[0, b]$.

