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Part I: Knapsack Eqations and 
Pseudo-expectation Values



• Knapsack problem: Given weights 𝑤1, … , 𝑤𝑛
and a knapsack with total capacity 𝐶, what is 
the maximum weight that can be carried?

• In other words, defining 𝑤𝐼 = σ𝑖∈𝐼𝑤𝑖 for each 
subset 𝐼 ⊆ [1, 𝑛], what is 
max{𝑤𝐼: 𝐼 ⊆ 1, 𝑛 , 𝑤𝐼 ≤ 𝐶}?

• Here we’ll consider the simple case where 
𝑤𝑖 = 1 for all 𝑖 and 𝐶 ∈ [0, 𝑛] is not an integer.

• Answer is 𝐶 , but can SOS prove it?

Knapsack Problem



• Want 𝑥𝑖 = 1 if 𝑖 ∈ 𝐼 and 𝑥𝑖 = 0 otherwise.

• Knapsack equations:

1. ∀𝑖, 𝑥𝑖
2 = 𝑥𝑖

2. σ𝑖=1
𝑛 𝑥𝑖 = 𝑘

• Here we take 𝑘 ∈ [0, 𝑛] to be a non-integer.

• Equations are infeasible because σ𝑖=1
𝑛 𝑥𝑖 ∈ ℤ

Knapsack Equations



• Theorem[Gri01]: SOS needs degree at least 
2min{𝑘, 𝑛 − 𝑘} to refute these equations

• We’ll follow the presentation of [MPW15] and 
show a lower bound of min{𝑘, 𝑛 − 𝑘}

• Note: This presentation was already in the 
retracted paper [MW13]

SOS Lower Bound for Knapsack



• Recall: To prove an SOS lower bound, we 
generally do the following:

1. Come up with pseudo-expectation values ෨𝐸 which 
obey the required linear equations

2. Show that the moment matrix 𝑀 is PSD

• Here we’ll use symmetry for part 1 and some 
combinatorics for part 2.

Review: SOS Lower Bound Strategy



• Define 𝑥𝐼 = ς𝑖∈𝐼 𝑥𝑖

• ∀𝐼, (σ𝑗=1
𝑛 𝑥𝑗)𝑥𝐼 = σ𝑗∈𝐼 𝑥𝑗𝑥𝐼 + σ𝑗∉𝐼 𝑥𝑗𝑥𝐼 = 𝑘𝑥𝐼

• If ෨𝐸[𝑥𝐼] only depends on |𝐼|, 

∀𝐼, 𝑗 ∉ 𝐼, |𝐼| ෨𝐸[𝑥𝐼] + 𝑛 − |𝐼| ෨𝐸[𝑥𝐼∪{𝑗}] = 𝑘 ෨𝐸[𝑥𝐼]

∀𝐼, 𝑗 ∉ 𝐼, ෨𝐸 𝑥𝐼∪{𝑗} =
𝑘 − |𝐼|

𝑛 − |𝐼|
෨𝐸[𝑥𝐼]

• Thus, ෨𝐸[𝑥𝐼] =
𝑘 𝑘−1 …(𝑘−|𝐼|+1)

𝑛 𝑛−1 …(𝑛−|𝐼|+1)
=

𝑘
|𝐼|

𝑛
|𝐼|

Pseudo-expectation Values



• ෨𝐸[𝑥𝐼] =
𝑘
|𝐼|

𝑛
|𝐼|

• Could have predicted this as follows: If we had 

a set 𝐴 of 1s of size 𝑘, then of the 𝑛
|𝐼|

possible sets of size |𝐼|, 𝑘
|𝐼|

of them will be 

contained in 𝐴.

• Bayesian view: ෨𝐸[𝑥𝐼] is the expected value of 
𝑥𝐼 given what we can compute (in SOS).

• Here it is a true expectation if 𝑘 ∈ ℤ

Viewing ෨𝐸 as an Expectation



• Recall from last lecture: If we have 

constraints 𝑥𝑖
2 = 𝑥𝑖 or 𝑥𝑖

2 = 1, it is sufficient 
to consider ෨𝐸[𝑔2] for multilinear 𝑔.

• Reason: For every polynomial 𝑔, there is a 
multilinear polynomial 𝑔′ with deg 𝑔′ ≤

deg(𝑔) such that ෨𝐸 𝑔′2 = ෨𝐸[𝑔2].

• Thus, it is sufficient to consider the restriction 
of 𝑀 to multilinear indices.

Reduction to Multilinear Indices



• Lemma: If we also have the constraint 
σ𝑖=1
𝑛 𝑥𝑖 = 𝑘, for every polynomial 𝑔 of degree 

at most 
𝑑

2
, there is a homogeneous, multilinear

polynomial 𝑔′ of degree exactly 
𝑑

2
such that 

෨𝐸 𝑔′2 = ෨𝐸[𝑔2].

• Proof idea: Use the following reductions:

1. ∀𝑖, 𝑥𝑖
2𝑓 = 𝑥𝑖𝑓

2. ∀𝐼 ⊆ 1, 𝑛 : 𝐼 <
𝑑

2
, 𝑥𝐼 =

σ𝑖∉𝐼
𝑛 𝑥𝐼∪{𝑖}

𝑘−|𝐼|
. To see this, 

note that σ𝑖=1
𝑛 𝑥𝑖 𝑥𝐼 = 𝑘𝑥𝐼 = 𝐼 𝑥𝐼 + σ𝑖∉𝐼

𝑛 𝑥𝐼∪{𝑖}

Reduction to Degree 
𝑑

2
Indices



• Corollary: To prove that 𝑀 ≽ 0, it is sufficient to 
prove that the submatrix of 𝑀 with multilinear

entries of degree exactly 
𝑑

2
is PSD.

Reduction to Degree 
𝑑

2
Indices



Part II: Johnson Scheme



Johnson Scheme

• Algebra of matrices 𝑀 such that:

1. The rows and columns of 𝑀 are indexed by 
subsets of [1, 𝑛] of size 𝑟 for some 𝑟.

2. 𝑀𝐼𝐽 only depends on |𝐼 ∩ 𝐽|

• Equivalently, the Johnson Scheme is the algebra 
of matrices which are invariant under 
permutations of [1, 𝑛].

• Claim: The matrices 𝑀 in the Johnson scheme 
are all symmetric and commute with each other



Johnson Scheme Claim Proof

• Claim: For all 𝐴, 𝐵 in the Johnson scheme, 𝐴𝑇 =
𝐴, 𝐴𝐵 is in the Johnson scheme as well, and 
𝐴𝐵 = 𝐵𝐴

• Proof: For the first part, ∀𝐼, 𝐽, 𝐴𝐼𝐽 = 𝐴𝐽𝐼 because 
𝐼 ∩ 𝐽 = |𝐽 ∩ 𝐼|. For the second part, 𝐴𝐵𝐼𝐾 =
σ
𝐽∈ 𝑛

𝑟
𝐴𝐼𝐽𝐵𝐽𝐾. Now observe that for any 

permutation 𝜎 of [1, 𝑛], 𝐴𝐵𝐼𝐾 = σ
𝐽∈ 𝑛

𝑟
𝐴𝐼𝐽𝐵𝐽𝐾 =

σ
𝐽∈ 𝑛

𝑟
𝐴𝜎(𝐼)𝐽𝐵𝐽𝜎(𝐾) = 𝐴𝐵𝜎 𝐼 𝜎(𝐾)

• For the third part, 𝐴𝐵 = 𝐴𝐵 𝑇 = 𝐵𝑇𝐴𝑇 = 𝐵𝐴



Johnson Scheme Picture for 𝑟 = 1
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Johnson Scheme Picture for 𝑟 = 2
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• Natural basis for Johnson Scheme: Define 

𝐷𝑎 ∈ ℝ
𝑛
𝑟 × 𝑛

𝑟 to have entries 𝐷𝑎 𝐼𝐽 = 1 if 

𝐼 ∩ 𝐽 = 𝑎 and 𝐷𝑖 𝐼𝐽 = 0 if 𝐼 ∩ 𝐽 ≠ 𝑎.

• Easy to express matrices in this basis, but not 
so easy to show PSDness

Basis for Johnson Scheme



• Want a convenient basis of PSD matrices.

• Building block: Define 𝑣𝐴 so that 𝑣𝐴 𝐼 = 1 if 
A ⊆ 𝐼 and 0 otherwise

• PSD basis for Johnson Scheme: Define 𝑃𝑎 ∈

ℝ
𝑛
𝑟 × 𝑛

𝑟 to be 𝑃𝑎 = σ𝐴⊆ 1,𝑛 : 𝐴 =𝑎 𝑣𝐴𝑣𝐴
𝑇

• 𝑃𝑎 has entries 𝑃𝑎 𝐼𝐽 =
|𝐼∩𝐽|
𝑎

because 

𝑣𝐴𝑣𝐴
𝑇 = 1 if and only if 𝐴 ⊆ 𝐼 ∩ 𝐽 and there 

are |𝐼∩𝐽|
𝑎

such 𝐴 ⊆ [1, 𝑛] of size 𝑎. 

PSD Basis for Johnson Scheme



Basis for 𝑟 = 1
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Basis for 𝑟 = 1
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PSD Basis for 𝑟 = 1
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PSD Basis for 𝑟 = 1
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PSD Basis for 𝑟 = 2
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PSD Basis for 𝑟 = 2
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PSD Basis for 𝑟 = 2
12 13 14 15 16 23 24 25 26 34 35 36 45 46 56

12

13

14

15

16

23

24

25

26

34

35

36

45

46

56
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𝑃2 𝐼𝐽 =
1

2
= 0

𝑃2 𝐼𝐽 =
0

2
= 0



• Basis for Johnson Scheme: 𝐷𝑎 𝐼𝐽 = 𝛿𝑎|𝐼∩𝐽|

• PSD Basis for Johnson Scheme : 𝑃𝑎 𝐼𝐽 =
|𝐼∩𝐽|
𝑎

• Want to shift between bases.

• Lemma:

1. 𝑃𝑎 = σ𝑏=𝑎
𝑟 𝑏

𝑎
𝐷𝑏

2. 𝐷𝑎 = σ𝑏=𝑎
𝑟 −1 𝑏−𝑎 𝑏

𝑎
𝑃𝑏

• First part is trivial, second part follows from a 
bit of combinatorics.

Shifting Between Bases



• Lemma:

1. 𝑃𝑎 = σ𝑏=𝑎
𝑟 𝑏

𝑎
𝐷𝑏

2. 𝐷𝑎 = σ𝑏=𝑎
𝑟 −1 𝑏−𝑎 𝑏

𝑎
𝑃𝑏

• Proof of the second part: Observe that   
σ𝑏=𝑎
𝑟 −1 𝑏−𝑎 𝑏

𝑎
𝑃𝑏 = σ𝑎′=𝑎

𝑟 σ𝑏=𝑎
𝑎′ −1 𝑏−𝑎 𝑏

𝑎
𝐷𝑏

• Must show that for all 𝑎′ ≥ 𝑎,

σ𝑏=𝑎
𝑎′ −1 𝑏−𝑎 𝑎′

𝑏
𝑏
𝑎

= 𝛿𝑎′𝑎

• In-class exercise: Prove this

Shifting Between Bases Proof



• Need to show: σ𝑏=𝑎
𝑎′ −1 𝑏−𝑎 𝑎′

𝑏
𝑏
𝑎

= 𝛿𝑎′𝑎

• Answer: Observe that

𝑎′

𝑏
𝑏
𝑎

=
𝑎′!𝑏!

𝑏!(𝑎′−𝑏)!𝑎!(𝑏−𝑎)!
=

𝑎′!

𝑎! 𝑎′−𝑎 !

𝑎′−𝑎 !

𝑎′−𝑏 ! 𝑏−𝑎 !

• Our expression is equal to 

𝑎′!

𝑎! 𝑎′−𝑎 !
σ𝑗=0
𝑚 −1 𝑗 𝑚

𝑗
where 𝑚 = 𝑎′ − 𝑎

• Now note that σ𝑗=0
𝑚 −1 𝑗 𝑚

𝑗
= 1 + −1

𝑚
, 

which equals 1 if 𝑚 = 0 and 0 if 𝑚 > 0.

Shifting Between Bases Proof



Part III: Proving PSDness



• Recall that ෨𝐸[𝑥𝐼] =
𝑘
|𝐼|

𝑛
|𝐼|

• 𝑀𝐼𝐽 =
𝑘

|𝐼∪𝐽|

𝑛
|𝐼∪𝐽|

• Thus, 𝑀 = σ𝑎=0
𝑟

𝑘
2𝑟−𝑎
𝑛

2𝑟−𝑎

𝐷𝑎

Decomposition of 𝑀



• To prove 𝑀 ≽ 0, it is sufficient to express 𝑀
as a non-negative linear combination of the 
matrices 𝑃𝑎.

PSD Decomposition



Example: Decomposition for 𝑟 = 1

1 2 3 4 5 6

1
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𝑀𝐼𝐽 =
𝑘 𝑘 − 1

𝑛(𝑛 − 1)

𝑀𝐼𝐽 =
𝑘

𝑛

• 𝑀 =
𝑘

𝑛
𝐷1 +

𝑘 𝑘−1

𝑛(𝑛−1)
𝐷0 =

𝑘

𝑛
𝑃1 +

𝑘 𝑘−1

𝑛 𝑛−1
(𝑃0 − 𝑃1)

• 𝑀 =
𝑘

𝑛
−

𝑘 𝑘−1

𝑛(𝑛−1)
𝑃1 +

𝑘 𝑘−1

𝑛(𝑛−1)
𝑃0 =

𝑘(𝑛−𝑘)

𝑛(𝑛−1)
𝑃1 +

𝑘 𝑘−1

𝑛(𝑛−1)
𝑃0



• Claim: 𝑀 = σ𝑎=0
𝑟

𝑘
2𝑟
𝑛
2𝑟

⋅
𝑛−𝑘
𝑎

𝑘−2𝑟+𝑎
𝑎

𝑃𝑎

• For the proof, see the appendix

• Corollary: 𝑀 ≽ 0 if 𝑘 ≥ 2𝑟 and 𝑛 − 𝑘 ≥ 𝑟
(where 𝑑 = 2𝑟)

PSD Decomposition



• {𝑃𝑎} is a nice basis to work with because it is 
relatively easy to go between {𝐷𝑎} and {𝑃𝑎}.

• However, in some sense, it’s not the right 
basis to use.

• Want a basis {𝑃𝑎
′} such that all symmetric PSD 

matrices are a non-negative linear 
combination of the {𝑃𝑎

′}.

• With the right basis, can get a higher degree 
lower bound.

Improving Degree Lower Bound



• Let 𝐽 be the all ones matrix.

• For the case 𝑑 = 2, 𝑟 = 1, 𝑃0 = 𝐽 and 𝑃1 = 𝐼𝑑

• Better basis: 𝑃0
′ = 𝐽, 𝑃1

′ =
𝑛−1

𝑛
𝐼𝑑 −

1

𝑛
𝐽

Example



Part IV: Further Work



• Can we take advantage of symmetry in the 
problem more generally?

• Yes!

Using Symmetry



• Proposition: Whenever there are valid pseudo-
expectation values, there are valid pseudo-
expectation values which are symmetric.

• Proof: Let 𝑆 be the group of symmetries of the 
problem. If we have pseudo-expectation values 
෨𝐸, then for any 𝜎 ∈ 𝑆, ෪𝐸′ f = ෩E[𝜎 𝑓 ] is also 
valid. Since the conditions for pseudo-

expectation values are convex, ෫𝐸𝑎𝑣𝑔 𝑓 =
෨𝐸 σ𝜎∈𝑆 𝜎 𝑓

|𝑆|
is valid as well and is symmetric.

Using Symmetry



• Gatermann and Parrilo [GP04] show how 
symmetry can be used to drastically reduce 
the search space for finding pseudo-
expectation values.

• Recently, Raymond, Saunderson, Singh, and 
Thomas [RSST16] showed that if the 
problem is symmetric, it can be solved with 
a semidefinite program whose size is 
independent of 𝑛.

Using Symmetry



• One way to give intuition for the lower bound: 
SOS “thinks” that we are choosing 𝑘 elements 
out of 𝑛 and takes the corresponding pseudo-
expectation values.

• SOS is very bad at determining functions must 
be integers and needs degree ≥ 𝑘 to detect a 
problem.

Obtaining Lower Bounds Directly



• Is there a way to say that this intuition is good 
enough to obtain a lower bound without going 
through the combinatorics?

• Unless I’m mistaken, yes (this is work in 
progress).

Obtaining Lower Bounds Directly
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Appendix: PSD Decomposition 
Calculations



Picture for 𝑟 = 2
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Decomposition for 𝑟 = 2

• 𝑀 =
𝑘
2
𝑛
2

𝐷2 +
𝑘
3
𝑛
3

𝐷1 +
𝑘
4
𝑛
4

𝐷0

• 𝑀 =
𝑘
2
𝑛
2

𝑃2 +
𝑘
3
𝑛
3

(𝑃1−2𝑃2) +
𝑘
4
𝑛
4

(𝑃0−𝑃1 + 𝑃2)

• 𝑀 =
𝑘
2
𝑛
2

− 2
𝑘
3
𝑛
3

+
𝑘
4
𝑛
4

𝑃2 +
𝑘
3
𝑛
3

− 2
𝑘
4
𝑛
4

𝑃1 +
𝑘
4
𝑛
4

𝑃0

•
𝑘
4
𝑛
4

=
𝑘(𝑘−1)(𝑘−2)(𝑘−3)

𝑛(𝑛−1)(𝑛−2)(𝑛−3)

•
𝑘
3
𝑛
3

−
𝑘
4
𝑛
4

=
𝑘(𝑘−1)(𝑘−2)( 𝑛−3 − 𝑘−3 )

𝑛(𝑛−1)(𝑛−2)(𝑛−3)
=

𝑘(𝑘−1)(𝑘−2)(𝑛−𝑘)

𝑛(𝑛−1)(𝑛−2)(𝑛−3)



Decomposition for 𝑟 = 2

• Claim:
𝑘
2
𝑛
2

− 2
𝑘
3
𝑛
3

+
𝑘
4
𝑛
4

=
𝑘(𝑘−1) 𝑛−𝑘 𝑛−𝑘−1

𝑛(𝑛−1)(𝑛−2)(𝑛−3)

• Proof: Consider 
𝑛(𝑛−1)(𝑛−2)(𝑛−3)

𝑘(𝑘−1)

𝑘
2
𝑛
2

− 2
𝑘
3
𝑛
3

+
𝑘
4
𝑛
4

. This 

equals 𝑛 − 2 𝑛 − 3 − 2 𝑘 − 2 𝑛 − 3 + 𝑘 − 2 𝑘 − 3
which equals 

𝑛 − 2 − 𝑘 − 2 𝑛 − 3 − (𝑘 − 2)(𝑛 − 3 − (𝑘 − 3))

= 𝑛 − 𝑘 𝑛 − 3 − 𝑘 − 2 = (𝑛 − 𝑘)(𝑛 − 𝑘 − 1)



General Pattern

• 𝑀 =
𝑘(𝑘−1) 𝑛−𝑘 𝑛−𝑘−1

𝑛(𝑛−1)(𝑛−2)(𝑛−3)
𝑃2 +

𝑘(𝑘−1)(𝑘−2)(𝑛−𝑘)

𝑛(𝑛−1)(𝑛−2)(𝑛−3)
𝑃1 +

𝑘(𝑘−1)(𝑘−2)(𝑘−3)

𝑛 𝑛−1 𝑛−2 𝑛−3
𝑃0

• Can you see the pattern?

• General Pattern: 𝑀 =
𝑘
2𝑟
𝑛
2𝑟

σ𝑎=0
𝑟

𝑛−𝑘
𝑎

𝑘−2𝑟+𝑎
𝑎

𝑃𝑎



General Pattern Proof

• Claim: 𝑀 =
𝑘
2𝑟
𝑛
2𝑟

σ𝑎=0
𝑟

𝑛−𝑘
𝑎

𝑘−2𝑟+𝑎
𝑎

𝑃𝑎

• This gives 𝑀 =
𝑘
2𝑟
𝑛
2𝑟

σ𝑎=0
𝑟 σ𝑏=𝑎

𝑟
𝑛−𝑘
𝑎

𝑘−2𝑟+𝑎
𝑎

𝑏
𝑎
𝐷𝑏

• 𝑀 =
𝑘
2𝑟
𝑛
2𝑟

σ𝑏=0
𝑟 σ𝑎=0

𝑏
𝑛−𝑘
𝑎

𝑘−2𝑟+𝑎
𝑎

𝑏
𝑎
𝐷𝑏

• Need to show: σ𝑎=0
𝑏

𝑛−𝑘
𝑎

𝑘−2𝑟+𝑎
𝑎

𝑏
𝑎

=
𝑛−2𝑟+𝑏

𝑏

𝑘−2𝑟+𝑏
𝑏



General Pattern Proof

• Claim: σ𝑎=0
𝑏

𝑛−𝑘
𝑎

𝑘−2𝑟+𝑎
𝑎

𝑏
𝑎

=
𝑛−2𝑟+𝑏

𝑏

𝑘−2𝑟+𝑏
𝑏

• Proof: Note that 
𝑘−2𝑟+𝑏

𝑏

𝑘−2𝑟+𝑎
𝑎

=
𝑘−2𝑟+𝑏
𝑏−𝑎

𝑏
𝑎

, so this is 

equivalent to the following:

σ𝑎=0
𝑏 𝑛−𝑘

𝑎
𝑘−2𝑟+𝑏
𝑏−𝑎

= 𝑛−2𝑟+𝑏
𝑏



General Pattern Proof

• Claim:σ𝑎=0
𝑏 𝑛−𝑘

𝑎
𝑘−2𝑟+𝑏
𝑏−𝑎

= 𝑛−2𝑟+𝑏
𝑏

• Proof: One way to choose 𝑏 elements out of 
[1, 𝑛 − 2𝑟 + 𝑏] elements is to first choose the 
number 𝑎 of elements which will be in 1, 𝑛 − 𝑘 . 
We then choose 𝑎 elements from 1, 𝑛 − 𝑘 and 
choose the remaining 𝑏 − 𝑎 elements from 
𝑛 − 𝑘 + 1, 𝑛 − 2𝑟 + 𝑏 , which gives 
𝑛−𝑘
𝑎

𝑘−2𝑟+𝑏
𝑏−𝑎

choices for each 𝑎 ∈ [0, 𝑏].


