Lecture 2: Linear Programming and Duality

Lecture Outline

- Part I: Linear Programming and Examples
- Part II: Von Neumann’s Minimax Theorem and Linear Programming Duality
- Part III: Linear Programming as a Problem Relaxation

Part I: Linear Programming, Examples, and Canonical Form

Linear Programming

- Linear Programming: Want to optimize a linear function over linear equalities and inequalities.
- Example: Maximize $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=3 x+4 y+5 z$ when

1. $x+y+z=1$
2. $x \geq 0$
3. $y \geq 0$
4. $z \geq 0$

- Answer: $x=y=0, z=1, f(x, y, z)=5$

Example: Directed Connectivity

- Directed connectivity: Is there a path from $s=$ x_{1} to $t=x_{n}$ in a directed graph G ?
- Linear program: Minimize x_{n} subject to

1. $x_{1}=1$
2. $x_{j} \geq x_{i}$ whenever $\mathrm{x}_{i} \rightarrow x_{j} \in E(G)$
3. $\forall i, x_{i} \geq 0$

- Answer is 1 if there is a path from s to t in G and 0 otherwise.

Example: Maximum Flow

- Max flow: Given edge capacities $c_{i j}$ for each edge $x_{i} \rightarrow x_{j}$ in G, what is the maximum flow from $s=x_{1}$ to $t=x_{n}$?
- Example:

Example Answer: 15

- Answer: 15. Actual flow is red/purple, capacity is blue/purple.

Max Flow Equations

- Take $x_{i j}=$ flow from i to j
- Recall: $c_{i j}$ is the capacity from i to j
- Program: Maximize $x_{n 1}$ subject to

1. $\forall i, j, 0 \leq x_{i j} \leq c_{i j}$ (no capacity is exceeded, no negative flow)
2. $\forall i, \sum_{j=1}^{n} x_{j i}=\sum_{j=1}^{n} x_{i j}$ (flow in = flow out)

In-class Exercise

- Shortest path problem: Given a directed graph G with lengths $l_{i j}$ on the edges, what is the shortest path from $s=x_{1}$ to $t=x_{n}$ in G ?
- Exercise: Express the shortest path problem as a linear program.

In-class Exercise Answer

- Shortest path problem: How long is the shortest path from $s=x_{1}$ to $t=x_{n}$ in a directed graph G ?
- Linear Program: Have variables d_{i} representing the distance of vertex x_{i} from vertex $s=x_{1}$. Maximize d_{n} subject to

1. $d_{1}=0$
2. $\forall i, j, d_{j} \leq d_{i}+l_{i j}$ where $l_{i j}$ is the length of the edge from x_{i} to x_{j}

Canonical Form

- Canonical form: Maximize $\mathrm{c}^{\mathrm{T}} x$ subject to

1. $A x \leq b$
2. $x \geq 0$

Putting Things Into Canonical Form

- Canonical form: Maximize $c^{\mathrm{T}} x$ subject to

1. $A x \leq b$
2. $x \geq 0$

- To put a linear program into canonical form:

1. Replace each equality $a_{i}^{T} x=b_{i}$ with two inequalities $a_{i}^{T} x \leq b_{i}$ and $-a_{i}^{T} x \leq-b_{i}$
2. In each expression, replace x_{j} with $\left(x_{j}^{+}-x_{j}^{-}\right)$ where x_{j}^{+}, x_{j}^{-}are two new variables.

Slack Form

- Slack form: Maximize $\mathrm{c}^{\mathrm{T}} x$ subject to

1. $A x=b$
2. $x \geq 0$

Putting Things Into Slack Form

- Slack form: Maximize $\mathrm{c}^{\mathrm{T}} x$ subject to

1. $A x=b$
2. $x \geq 0$

- To put a linear program into slack form from canonical form, simply add a slack variable for each inequality.

$$
\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \Leftrightarrow\left(\sum_{j=1}^{n} a_{i j} x_{j}\right)+s_{i}=b_{i}, s_{i} \geq 0
$$

Part II: Von Neumann’s Minimax Theorem and Linear Programming Duality

Linear Programming Duality

- Primal: Maximize $c^{\mathrm{T}} x$ subject to

1. $A x \leq b$
2. $x \geq 0$

- Dual: Minimize $b^{T} y$ subject to

1. $A^{T} y \geq c$
2. $y \geq 0$

- Observation: For any feasible $x, y, c^{T} x \leq b^{T} y$ because

$$
c^{T} x \leq y^{T} A x=y^{T}(A x-b)+y^{T} b \leq b^{T} y
$$

- Strong duality: $c^{T} x=b^{T} y$ at optimal x, y

Heart of Duality

- Game: Have a function $f: X \times Y \rightarrow R$.
- X player wants to minimize $f(x, y), Y$ player wants to maximize $f(x, y)$
- Obvious: Better to go second, i.e

$$
\max _{y \in Y} \min _{x \in X} f(x, y) \leq \min _{x \in X} \max _{y \in Y} f(x, y)
$$

- Minimax theorems: Under certain conditions,

$$
\max _{y \in Y} \min _{x \in X} f(x, y)=\min _{x \in X} \max _{y \in Y} f(x, y)!
$$

Von Neumann's Minimax Theorem

- Von Neumann [1928]: If X and Y are convex compact subsets of R^{m} and R^{n} and $f: X \times Y \rightarrow$ R is a continuous function which is convex in X and concave in Y then

$$
\max _{y \in Y} \min _{x \in X} f(x, y)=\min _{x \in X} \max _{y \in Y} f(x, y)
$$

- These conditions are necessary (see problem set)

Example

- Let $X=Y=[-1,1]$ and consider the function $f(x, y)=x y$.
- If the x player goes first and plays $x=.5$, the y player should play $y=1$, obtaining $f(x, y)=$. 5
- If the x player goes first and plays $x=-.5$, the y player should play $y=-1$, obtaining $f(x, y)=.5$
- The best play for the x player is $x=0$ as then $f(x, y)=0$ regardless of what y is.

Connection to Nash Equilibria

- Recall: X player wants to minimize $f(x, y), Y$ player wants to maximize $f(x, y)$.
- If $\left(x^{*}, y^{*}\right)$ is a Nash equilibrium then

$$
\begin{gathered}
f\left(x^{*}, y^{*}\right) \leq \max _{y \in Y} \min _{x \in X} f(x, y) \\
\leq \min _{x \in X} \max _{y \in Y} f(x, y) \leq f\left(x^{*}, y^{*}\right)
\end{gathered}
$$

- Note: Since f is convex in x and concave in y, pure strategies are always optimal.
- However, this is circular: proof that Nash equilibria exist \approx proof of minimax theorem

Minimax Theorem Proof Sketch

- Proof idea:

1. Define a function $T: X \times Y \rightarrow X \times Y$ so that $T(x, y)=(x, y)$ if and only if (x, y) is a Nash equilibrium.
2. Use Brouwer's fixed point theorem to argue that T must have a fixed point.

Attempt \#1

- We could try to define T as follows

1. Starting from (x, y), take x^{\prime} to be the closest point to x which minimizes $f\left(x^{\prime}, y\right)$.
2. Now take y^{\prime} to be the closest point to y which maximizes $f\left(x^{\prime}, y^{\prime}\right)$
3. Take $T(x, y)=\left(x^{\prime}, y^{\prime}\right)$

- $T(x, y)=(x, y) \Leftrightarrow(x, y)$ is a Nash equilibrium.

Brouwer's Fixed Point Theorem

- Brouwer's fixed point theorem: If X is a convex, compact subset of R^{n} then any continuous map $f: X \rightarrow X$ has a fixed point
- Example: Any continuous function $f: D^{2} \rightarrow D^{2}$ has a fixed point.

Correct function T

- Problem: Previous T may not be continuous!
- Correct T: Starting from (x, y) :

1. Define $\Delta\left(x_{2}\right)=f(x, y)-f\left(x_{2}, y\right)$ if $f\left(x_{2}, y\right)<$ $f(x, y)$ and $\Delta\left(x_{2}\right)=0$ otherwise.
2. Take $x^{\prime}=\frac{x+\int_{x_{2} \in X} \Delta\left(x_{2}\right) x_{2}}{1+\int_{x_{2} \in X} \Delta\left(x_{2}\right)}$
3. Define $\Delta\left(y_{2}\right)=f\left(x^{\prime}, y_{2}\right)-f\left(x^{\prime}, y\right)$ if $f\left(x, y_{2}\right)>$ $f(x, y)$ and $\Delta\left(y_{2}\right)=0$ otherwise.
4. Take $y^{\prime}=\frac{y+\int_{y_{2} \in Y} \Delta\left(y_{2}\right) y_{2}}{1+\int_{y_{2} \in Y} \Delta\left(y_{2}\right)}$ and $T(x, y)=\left(x^{\prime}, y^{\prime}\right)$

Duality Via Minimax Theorem

- Idea: Instead of trying to enforce some of the constraints, make the program into a two player game where the new player can punish any violated constraints.
- Example: Maximize $c^{\mathrm{T}} x$ subject to 1. $A x \leq b$

2. $x \geq 0$

- Game: Take $f(x, y)=c^{T} x+y^{T}(b-A x)$ where we have the constraint that $y \geq 0$ (here y wants to minimize $f(x, y)$).
- If $(A x)_{i}>b_{i}, y$ can take $y_{i} \rightarrow \infty$ to punish this.

Strong Duality Intuition

- Canonical primal form: Maximize $c^{\mathrm{T}} x$ subject to

$$
\begin{aligned}
& \text { 1. } A x \leq b \\
& \text { 2. } x \geq 0
\end{aligned}
$$

- $=\max _{x \geq 0} \min _{y \geq 0} c^{T} x+y^{T}(b-A x)$
- $=\min _{y \geq 0} \max _{x \geq 0} y^{T} b+\left(c^{T}-y^{T} A\right) x$
- Canonical dual form: Minimize $b^{T} y$ subject to

1. $A^{T} y \geq c^{T}$
2. $y \geq 0$

- Not quite a proof, domains of x, y aren't compact!

Slack Form Duality Intuition

- Slack primal form: Maximize $\mathrm{c}^{\mathrm{T}} x$ subject to

$$
\begin{aligned}
& \text { 1. } A x=b \\
& \text { 2. } x \geq 0
\end{aligned}
$$

- $=\max _{x \geq 0} \min _{y} c^{T} x+y^{T}(b-A x)$
- $=\min _{y} \max _{x \geq 0} y^{T} b+\left(c^{T}-y^{T} A\right) x$
- Slack dual form: Minimize $b^{T} y$ subject to

$$
\text { 1. } A^{T} y \geq c^{T}
$$

- See problem set for a true proof of strong duality.

Max-flow/Min-cut Theorem

- Classical duality example: max-flow/min-cut
- Max-flow/min-cut theorem: The maximum flow from s to t is equal to the minimum capacity across a cut separating s and t.
- Duality is a bit subtle (see problem set)

Max-flow/Min-cut Example

- Maximum flow was 15 , this is matched by the minimal cut shown below:

Part III: Linear Programming as a Problem Relaxation

Convex Relaxations

- Often we want to optimize over a nonconvex set, which is very difficult.
- To obtain an approximation, we can take a convex relaxation of our set.
- Linear programming can give such convex relaxations.

Bad Example: 3-SAT solving

- Actual problem: Want each $x_{i} \in\{0,1\}$.
- A clause $x_{i} \vee x_{j} \vee_{k}$ can be re-expressed as

$$
x_{i}+x_{j}+x_{k} \geq 1
$$

- Negations can be handled with the equality $\neg x_{i}=1-x_{i}$
- Convex relaxation: Only require $0 \leq x_{i} \leq 1$
- Too relaxed: Could just take all $x_{i}=\frac{1}{2}$!
- Note: strengthening this gives cutting planes

Example: Maximum Matching

- Have a variable $x_{i j}$ for each edge $(i, j) \in E(G)$
- Actual problem: Maximize $\sum_{i, j:(i, j) \in E(G)} x_{i j}$ subject to

1. $\forall i<j:(i, j) \in E(G), x_{i j} \in\{0,1\}$
2. $\forall i, \sum_{j<i:(j, i) \in E(G)} x_{j i}+\sum_{j>i:(i, j) \in E(G)} x_{i j} \leq 1$

- Convex relaxation: Only require $0 \leq x_{i j} \leq 1$
- Gives exact value for bipartite graphs, not in general (see problem set)

