
Lecture 12: SOS Lower Bounds 
for Planted Clique Part I



Lecture Outline

• Part I: Planted Clique and the Meka-Wigderson
Moments

• Part II: MPW Analysis Preprocessing

• Part III: MPW Analysis with Graph Matrices

• Part IV: The Pessimist Strikes Back



Part I: Planted Clique and the 
Meka-Wigderson Moments



Review: Planted Clique

• Recall the planted clique problem: Given a 
random graph 𝐺 where a clique of size 𝑘 has 
been planted, can we find this planted clique? 

• Variant we’ll analyze: Can we use SOS to prove 

that a random 𝐺 𝑛,
1

2
graph has no clique of 

size 𝑘 where 𝑘 ≫ 2𝑙𝑜𝑔𝑛 (the expected size of 
the largest clique in a random graph)?



Review: Planted Clique Equations

• Variable 𝑥𝑖 for each vertex i in G. 

• Want 𝑥𝑖 = 1 if i is in the clique. 

• Want 𝑥𝑖 = 0 if i is not in the clique.

• Equations:

𝑥𝑖
2 = 𝑥𝑖 for all i.

𝑥𝑖𝑥𝑗 = 0 if 𝑖, 𝑗 ∉ 𝐸(𝐺)

σ𝑖 𝑥𝑖 ≥ 𝑘



• Theorem [MPW15]: ∃𝐶 > 0 such that whenever 

𝑘 ≤ 𝐶𝑑
𝑛

𝑙𝑜𝑔𝑛 2

1

𝑑
, with high probability degree 

𝑑 SOS cannot prove the 𝑘-clique equations are 
infeasible.

First SOS Lower Bound



• To prove an SOS lower bound:

1. Come up with pseudo-expectation values ෨𝐸 which 
obey the required linear equations

2. Show that the moment matrix 𝑀 is PSD

Review: SOS Lower Bound Strategy



• Idea: Give each 𝑑-clique the same weight

• Define 𝑥𝐼 = ς𝑖∈𝐼 𝑥𝑖
• Define 𝑁𝑑(𝐼) to be the number of 𝑑-cliques 

containing 𝐼. 

• MW moments: take ෨𝐸 𝑥𝐼 =
𝑘
|𝐼|

𝑑
|𝐼|

⋅
𝑁𝑑(𝐼)

𝑁𝑑(∅)

MW Moments



• MW moments: take ෨𝐸 𝑥𝐼 =
𝑘
|𝐼|

𝑑
|𝐼|

⋅
𝑁𝑑(𝐼)

𝑁𝑑(∅)

• MW moments obey the equation σ𝑖 𝑥𝑖 = 𝑘

• Proof: σ𝑖∉𝐼𝑁𝑑(𝐼 ∪ 𝑖) = 𝑑 − 𝐼 𝑁𝑑(𝐼) as each 
d-clique containing 𝐼 contains 𝑑 − |𝐼| of the 𝑖 ∉ 𝐼

•
𝑘
𝐼 +1

𝑑
𝐼 +1

=
𝑘−|𝐼|

𝑑−|𝐼|
⋅

𝑘
|𝐼|

𝑑
|𝐼|

• σ𝑖
෨𝐸 𝑥𝐼∪𝑖 = 𝐼 ෨𝐸 𝑥𝐼 + 𝑘 − 𝐼 ෨𝐸 𝑥𝐼 = 𝑘 ෨𝐸 𝑥𝐼

Checking σ𝑖 𝑥𝑖 = 𝑘



Part II: MPW Analysis Preprocessing



Analysis Outline

• For the MPW analysis, we do the following:

1. Preprocess the moment matrix 𝑀 to make it 
easier to analyze. More specifically, we find a 
matrix 𝑀′ which is easier to analyze such that if 

𝜆min 𝑀′ ≥
𝑘
𝑑
2

4𝑛
𝑑
2

then 𝑀 ≽ 0 with high probability

2. Decompose 𝑀′ = 𝐸 𝑀′ + 𝑅 and show that 

𝐸 𝑀′ ≽
𝑘
𝑑
2

2𝑛
𝑑
2

𝐼𝑑 and w.h.p., 𝑅 ≤
𝑘
𝑑
2

4𝑛
𝑑
2



Restriction to Multilinear, Degree 
𝑑

2

• Preprocessing Step #1: As we’ve seen from the 
3XOR and knapsack lower bounds, since we 

have the constraints that 𝑥𝑖
2 = 𝑥𝑖 for all 𝑖 and 

σ𝑖 𝑥𝑖 = 𝑘, it is sufficient to consider the 

submatrix of 𝑀 with multilinear, degree 
𝑑

2

indices



Approximating ෨𝐸[𝑥𝐼]

• Preprocessing Step #2: Approximate ෨𝐸[𝑥𝐼]

• Intuition: One view of ෨𝐸[𝑥𝐼] is that  ෨𝐸[𝑥𝐼] is the 
expected value of 𝑥𝐼 given what we can 
compute.

• Remark: This is connected to pseudo-
calibration/moment matching which we’ll see 
next lecture.



Approximating ෨𝐸[𝑥𝐼] Continued

• A priori, if we choose a clique of size 𝑘 at 
random, |𝐼| is part of the clique with 

probability 
𝑘
|𝐼|

𝑛
|𝐼|

≈
𝑘|𝐼|

𝑛|𝐼|

• If 𝐼 is not a clique, ෨𝐸 𝑥𝐼 = 0. If 𝐼 is a clique, 𝐼 is 

2
|𝐼|
2 times more likely to be part of the clique. 

Thus, ෨𝐸 𝑥𝐼 ≈ 2
|𝐼|
2

𝑘|𝐼|

𝑛|𝐼|
if 𝐼 is a clique and is 0

otherwise.

• See appendix for calculations confirming this.



Approximation Error

• Let 𝑀𝑎𝑝𝑝𝑟𝑜𝑥 be the matrix where 

𝑀𝑎𝑝𝑝𝑟𝑜𝑥 𝐼𝐽
= 2

|𝐼∪𝐽|
2

𝑘|𝐼∪𝐽|

𝑛|𝐼∪𝐽|
if 𝐼 ∪ 𝐽 is a clique 

and 𝑀𝑎𝑝𝑝𝑟𝑜𝑥 𝐼𝐽
= 0 otherwise.

• Can show that the difference Δ = M−M𝑎𝑝𝑝𝑟𝑜𝑥

is small (see [MPW15] for details).



The matrix 𝑀′

• Preprocessing Step #3: Fill in zero rows and 
columns of 𝑀𝑎𝑝𝑝𝑟𝑜𝑥

• If 𝐼 or 𝐽 is not a clique then (𝑀𝑎𝑝𝑝𝑟𝑜𝑥)𝐼𝐽= 0.

• These zero rows and columns make 𝑀𝑎𝑝𝑝𝑟𝑜𝑥

harder to analyze. 

• Definition: Take 𝑀′ to be the matrix such that 

𝑀′𝐼𝐽 = 2
|𝐼∪𝐽|
2

𝑘|𝐼∪𝐽|

𝑛|𝐼∪𝐽|
if all edges are present 

between 𝐼 ∖ 𝐽 and 𝐽 ∖ 𝐼 and 𝑀′𝐼𝐽 = 0 otherwise



𝑀′ ≽ 0 ⇒ 𝑀𝑎𝑝𝑝𝑟𝑜𝑥 ≽ 0

• Can view 𝑀𝑎𝑝𝑝𝑟𝑜𝑥 as a submatrix of 𝑀′.

• This immediately implies that if 𝑀′ ≽ 0 then 
𝑀𝑎𝑝𝑝𝑟𝑜𝑥 ≽ 0

• Because of the error matrix Δ = M−M𝑎𝑝𝑝𝑟𝑜𝑥

we need the stronger statement that with high 
probability, 𝜆min 𝑀′ is significantly bigger 
than 0.



Summary

• We want to show that w.h.p. 𝑀′ ≽
𝑘
𝑑
2

4𝑛
𝑑
2

where 

𝑀′ is the matrix such that 𝑀′𝐼𝐽 = 2
|𝐼∪𝐽|
2

𝑘|𝐼∪𝐽|

𝑛|𝐼∪𝐽|
if 

all edges are present between 𝐼 ∖ 𝐽 and 𝐽 ∖ 𝐼
and 𝑀′𝐼𝐽 = 0 otherwise



𝑀′ Picture for d = 4
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𝑀′ 𝑖,𝑗 {𝑖,𝑘} =
8𝑘3

𝑛3
if 

j ∼ 𝑘 and 0
otherwise

𝑀′ 𝑖,𝑗 {𝑖,𝑗} =
2𝑘2

𝑛2

𝑀′ 𝑖,𝑗 {𝑘,𝑙} =
64𝑘4

𝑛4
if 

𝑖 ∼ 𝑗, 𝑖 ∼ 𝑘, 𝑗 ∼ 𝑘, 
𝑗 ∼ 𝑙 and is 0 
otherwise



Part III: MPW Analysis with Graph 
Matrices



Recall Definition of 𝑅𝐻

• Definition: Definition: If 𝑉 𝐻 = 𝑈 ∪ 𝑉 then 
define 𝑅𝐻 𝐴, 𝐵 = 𝜒𝜎(𝐸(𝐻)) where 𝜎: V H →
𝑉(𝐺) is the injective map satisfying 𝜎 𝑈 = 𝐴, 
𝜎 𝑉 = 𝐵 and preserving the ordering of 𝑈, 𝑉.

• Last lecture: Did not require 𝐴, 𝐵 to be in 
ascending order.

• This lecture: Will require 𝐴, 𝐵 to be in 
ascending order.

• Note: This only reduces our norms, so the 
probabilistic norm bounds still hold. 



Review: Rough Norm Bound

• Theorem [MP16]: If 𝐻 has no isolated 
vertices then with high probability, 𝑅𝐻 is 
෨𝑂 𝑛( 𝑉 𝐻 −𝑠𝐻)/2 where 𝑠𝐻 is the minimal 

size of a vertex separator between 𝑈 and 𝑉
(S is a vertex separator of U and V if every 
path from U to V intersects S)

• Note: The ෨𝑂 contains polylog factors and 
constants related to the size of 𝐻.



Decomposition of 𝑀𝑎𝑝𝑝𝑟𝑜𝑥 and 𝑀′

• Claim: 𝑀𝑎𝑝𝑝𝑟𝑜𝑥 = σ𝐻
𝑘|𝑈∪𝑉|

𝑛|𝑈∪𝑉|
𝑅𝐻 where we 

sum over 𝐻 which have no middle vertices.

• Claim: 𝑀′ = σ𝐻 2
|𝑈|
2 + |𝑉|

2 − |𝑈∩𝑉|
2

𝑘|𝑈∪𝑉|

𝑛|𝑈∪𝑉|
𝑅𝐻

where we sum over 𝐻 which have no 
middle vertices and which have no edges 
within 𝑈 or within 𝑉.

• Idea: Each of the 2
|𝑈|
2 + |𝑉|

2 − |𝑈∩𝑉|
2 edges 

within 𝑈 or 𝑉 are given for free.



Entries of E[𝑀′]

• 𝑀′ = σ𝐻 2
|𝑈|
2 + |𝑉|

2 − |𝑈∩𝑉|
2

𝑘|𝑈∪𝑉|

𝑛|𝑈∪𝑉|
𝑅𝐻 where 

we sum over 𝐻 which have no middle 
vertices and which have no edges within 𝑈
or within 𝑉.

• Claim: E 𝑀′
𝐼𝐽 = 2

|𝐼|
2 + |𝐽|

2 − |𝐼∩𝐽|
2

𝑘|𝐼∪𝐽|

𝑛|𝐼∪𝐽|

• Idea: For any 𝐻 which has an edge, 
𝐸 𝑅𝐻 = 0. Otherwise, 𝐸 𝑅𝐻 = 𝑅𝐻



𝐸[𝑀′] Picture for d = 4
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𝐸[𝑀′] 𝑖,𝑗 {𝑖,𝑘} =
4𝑘3

𝑛3

𝐸[𝑀′] 𝑖,𝑗 {𝑖,𝑗} =
2𝑘2

𝑛2

𝐸[𝑀′] 𝑖,𝑗 {𝑘,𝑙} =
4𝑘4

𝑛4



Analysis of 𝐸[𝑀′]

• 𝐸[𝑀′] belongs to the Johnson Scheme of 
matrices 𝐴 whose entries 𝐴𝐼𝐽 only depend on 

|𝐼 ∩ 𝐽| (See Lecture 9 on SOS Lower Bounds 
for Knapsack)

• Can decompose 𝐸 𝑀′ as a sum of PSD 
matrices, one of which is the identity matrix 

which has coefficient ≥
𝑘
𝑑
2

2𝑛
𝑑
2

𝐼𝑑.



One Piece of 𝑀′ − 𝐸[𝑀′] (𝑑 = 4)
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0

0

60𝑘4

𝑛4
if all edges 

between 𝐼 and 𝐽
are present.

−
4𝑘4

𝑛4
otherwise



Piece of 𝑀′ − 𝐸[𝑀′] Decomposition

• This piece has coefficient 
4𝑘4

𝑛4
in 𝑅𝐻 for all 𝐻

which have the following form (and 0 for all 
other 𝑅𝐻):

𝑈

𝑢1

𝑢2

𝑉

𝑣1

𝑣2

Where 𝐸(𝐻) is non-empty and is 
a subset of the dashed lines



Piece of 𝑀′ − 𝐸[𝑀′] Analysis

• All 𝐻 here have minimum separator size 𝑠𝐻 at 
least 1.

• This gives a norm bound of ෨𝑂
𝑘4

𝑛4
⋅ 𝑛

4−1

2 =

෨𝑂
𝑘2

𝑛
⋅
𝑘2

𝑛2

• This is much less than 
𝑘2

4𝑛2
when 𝑘 ≪ 𝑛

1

4.



General Analysis of 𝑅 = 𝑀′ − 𝐸[𝑀′]

• Define 𝑅 = 𝑀′ − 𝐸[𝑀′]

• Claim: 𝑅 = σ𝐻 2
|𝑈|
2 + |𝑉|

2 − |𝑈∩𝑉|
2

𝑘|𝑈∪𝑉|

𝑛|𝑈∪𝑉|
𝑅𝐻

where we sum over 𝐻 which have no middle 
vertices, which have no edges within 𝑈 or 
within 𝑉, and which have at least one edge.



• 𝑅 = σ𝐻 2
|𝑈|
2 + |𝑉|

2 − |𝑈∩𝑉|
2

𝑘|𝑈∪𝑉|

𝑛|𝑈∪𝑉|
𝑅𝐻 where we 

sum over 𝐻 which have no middle vertices, 
which have no edges within 𝑈 or within 𝑉, and 
which have at least one edge

• Norm bound: For any such 𝑅𝐻 , w.h.p. 𝑅𝐻 is 

෨𝑂(𝑛
𝑈∪𝑉 − 𝑈∩𝑉 −1

2 ) as the minimal separator size 
𝑠𝐻 between 𝑈 and 𝑉 is at least 𝑈 ∩ 𝑉 + 1

• Corollary: w.h.p. 
𝑘|𝑈∪𝑉|

𝑛|𝑈∪𝑉|
𝑅𝐻 is ෨𝑂

𝑘 𝑈∪𝑉

𝑛
𝑈∪𝑉 + 𝑈∩𝑉 +1

General Analysis of 𝑅 = 𝑀′ − 𝐸[𝑀′]



• 𝑅 is a sum of terms which w.h.p. have norm 

෨𝑂
𝑘 𝑈∪𝑉

𝑛
𝑈∪𝑉 + 𝑈∩𝑉 +1

• 𝑈 ∪ 𝑉 ≤ 𝑑 and 𝑈 ∪ 𝑉 + 𝑈 ∩ 𝑉 = 𝑑, so 

w.h.p. 𝑅 is ෨𝑂
𝑘
𝑑
2

𝑛
𝑑
2

⋅
𝑘
𝑑
2

𝑛
. This is much less than 

𝑘
𝑑
2

4𝑛
𝑑
2

as long as 𝑘 ≪ 𝑛
1

𝑑

General Analysis of 𝑅 = 𝑀′ − 𝐸[𝑀′]



Part IV: The Pessimist Strikes Back



Limitations of MW moments

• Can we prove a stronger lower bound with the 
MW moments?

• With a more careful analysis, a slightly stronger 
lower bound can be shown. For 𝑑 = 4, [DM15] 

proved an ෩Ω(𝑛
1

3) lower bound. [HKPRS16] 

generalized this to ෩Ω(𝑛
2

𝑑+2)

• By an argument of Jonathan Kelner, this is tight!



Pessimist’s Query

• Kelner’s argument: Pessimist can query the 
following polynomial:

• Take 𝑝 = 𝐶𝑥𝑖 − σ
𝐽: 𝐽 =

𝑑

2
,𝑖∉𝐽

−1 𝐽∖𝑁 𝐼 𝑥𝐽 where 

𝑁(𝐼) is the set of neighbors of 𝐼

• What is ෨𝐸 𝑝2 ?

• Key idea: Cross terms will all be negative, but 
there will be cancellation in the square terms.



Pessimist’s Query Analysis

• 𝑝 = 𝐶𝑥𝑖 − σ
𝐽: 𝐽 =

𝑑

2
,𝑖∉𝐽

−1 𝐽∖𝑁 𝑖 𝑥𝐽 where 

𝑁(𝑖) is the set of neighbors of 𝐼

𝑝2 = 𝐶2𝑥𝑖 − 2𝐶 σ𝐽:𝐽∪{𝑖} 𝑖𝑠 𝑎 𝑐𝑙𝑖𝑞𝑢𝑒 𝑥𝐽∪{𝑖} +

σ𝐽,𝐽′ −1
(𝐽Δ𝐽′)∖𝑁 𝐼 𝑥𝐽∪𝐽′

• We expect ෨𝐸[𝐶2𝑥𝑖] to be Θ
𝐶2𝑘

𝑛

• We expect ෨𝐸 2𝐶 σ𝐽:𝐽∪{𝑖} 𝑖𝑠 𝑎 𝑐𝑙𝑖𝑞𝑢𝑒 𝑥𝐽∪{𝑖} to be 

Θ
𝐶𝑘(𝑑/2)+1

𝑛



Pessimist’s Query Analysis Continued

• 𝑝2 = 𝐶2𝑥𝑖 − 2𝐶 σ𝐽:𝐽∪{𝑖} 𝑖𝑠 𝑎 𝑐𝑙𝑖𝑞𝑢𝑒 𝑥𝐽∪{𝑖} +

σ𝐽,𝐽′ −1
(𝐽Δ𝐽′)∖𝑁 𝐼 𝑥𝐽∪𝐽′

• All terms of σ𝐽,𝐽′
෨𝐸 −1 𝐽Δ𝐽′ ∖𝑁 𝐼 𝑥𝐽∪𝐽′ have 

expected value ≈ 0 except for the ones where 
𝐽′ = 𝐽.

• These terms contribute Θ(𝑘𝑑/2) and it turns 
out that w.h.p. these terms are dominant



Pessimist’s Query Analysis Continued

• We expect ෨𝐸[𝑝2] to be Θ
𝐶2𝑘

𝑛
− Θ

𝐶𝑘
𝑑
2 +1

𝑛
+

Θ(𝑘𝑑/2)

• Taking 𝐶 = 𝑘
𝑑

4
−
1

2 𝑛, this is

Θ(𝑘𝑑/2) − Θ
𝑘

3𝑑
4 +

1
2

𝑛
= 𝑘𝑑/2Θ 1 −

𝑘
𝑑+2
4

𝑛

which is negative if 𝑘 ≫ 𝑛
2

𝑑+2



• Pessimist has disproven our (Optimist’s) first 
attempt at bluffing, but perhaps we can come 
up with a better bluff.

• Let’s see what went wrong.

Back to the Drawing Board



Graphical Picture

• Can represent the polynomial Pessimist is 
querying as follows:

𝑥𝑖𝑥𝑗1

𝑥𝑗2

𝑥𝑗𝑟

𝑥𝑖

times its transpose

𝐶 −



Graphical Picture

• Multiplying graph matrices is tricky (more on 
that next lecture!). Some terms that appear are:

𝑥𝑖𝑥𝑗1

𝑥𝑗2

𝑥𝑗𝑟

𝑥𝑖𝐶2 −

𝑥𝑖𝑥𝑗1

𝑥𝑗2

𝑥𝑗𝑟

𝑥𝑗1′

𝑥𝑗2′

𝑥𝑗𝑟′

𝐶

𝑥𝑖 𝑥𝑗1′

𝑥𝑗2′

𝑥𝑗𝑟′

+−𝐶



Potential Fix

• What if we add an appropriate multiple of

𝑥𝑖𝑥𝑗1

𝑥𝑗2

𝑥𝑗𝑟

𝑥𝑗1′

𝑥𝑗2′

𝑥𝑗𝑟′

to our moment matrix?



Potential Fix Analysis

• This fix does work for 𝑑 = 4 [HKPRS16]

• However, it seems rather ad-hoc. 

• Remark: It is related to giving more weight to 
cliques which have more common neighbors, 
but that’s not quite what it does…

• Can we find a more principled general fix? Yes, 
see next lecture!
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Appendix



Approximating ෨𝐸[𝑥𝐼] Calculation

• ෨𝐸 𝑥𝐼 =
𝑘
|𝐼|

𝑑
|𝐼|

⋅
𝑁𝑑(𝐼)

𝑁𝑑(∅)

• If 𝐼 is a clique then 𝑁𝑑 𝐼 ≈ 2
|𝐼|
2 − 𝑑

2 𝑛−|𝐼|
𝑑−|𝐼|

• As a special case, 𝑁𝑑 ∅ ≈ 2
− 𝑑

2 𝑛
𝑑

• If 𝐼 is a clique then

෨𝐸 𝑥𝐼 ≈
𝑘
𝐼 2

𝐼
2 − 𝑑

2 𝑛− 𝐼
𝑑− 𝐼

𝑑
𝐼 2

− 𝑑
2 𝑛

𝑑

= 2
𝐼
2

𝑘
𝐼

𝑛
𝐼

≈ 2
𝐼
2

𝑘|𝐼|

𝑛|𝐼|


