Lecture 12: SOS Lower Bounds for Planted Clique Part I

Lecture Outline

- Part I: Planted Clique and the Meka-Wigderson Moments
- Part II: MPW Analysis Preprocessing
- Part III: MPW Analysis with Graph Matrices
- Part IV: The Pessimist Strikes Back

Part I: Planted Clique and the Meka-Wigderson Moments

Review: Planted Clique

- Recall the planted clique problem: Given a random graph G where a clique of size k has been planted, can we find this planted clique?
- Variant we'll analyze: Can we use SOS to prove that a random $G\left(n, \frac{1}{2}\right)$ graph has no clique of size k where $k \gg 2 \log n$ (the expected size of the largest clique in a random graph)?

Review: Planted Clique Equations

- Variable x_{i} for each vertex i in G.
- Want $x_{i}=1$ if i is in the clique.
- Want $x_{i}=0$ if i is not in the clique.
- Equations:
$x_{i}^{2}=x_{i}$ for all i.
$x_{i} x_{j}=0$ if $(i, j) \notin E(G)$
$\sum_{i} x_{i} \geq k$

First SOS Lower Bound

- Theorem [MPW15]: $\exists C>0$ such that whenever $k \leq C^{d}\left(\frac{n}{(\log n)^{2}}\right)^{\frac{1}{d}}$, with high probability degree d SOS cannot prove the k-clique equations are infeasible.

Review: SOS Lower Bound Strategy

- To prove an SOS lower bound:

1. Come up with pseudo-expectation values \tilde{E} which obey the required linear equations
2. Show that the moment matrix M is PSD

MW Moments

- Idea: Give each d-clique the same weight
- Define $x_{I}=\prod_{i \in I} x_{i}$
- Define $N_{d}(I)$ to be the number of d-cliques containing I.
- MW moments: take $\tilde{E}\left[x_{I}\right]=\frac{\binom{k}{|I|}}{\binom{d}{|I|}} \cdot \frac{N_{d}(I)}{N_{d}(\varnothing)}$

Checking $\sum_{i} x_{i}=k$

- MW moments: take $\tilde{E}\left[x_{I}\right]=\frac{\binom{k}{|I|}}{\binom{d}{|I|}} \cdot \frac{N_{d}(I)}{N_{d}(\varnothing)}$
- MW moments obey the equation $\sum_{i} x_{i}=k$
- Proof: $\sum_{i \notin I} N_{d}(I \cup i)=(d-|I|) N_{d}(I)$ as each d-clique containing I contains $d-|I|$ of the $i \notin I$
- $\frac{\binom{k}{|I|+1}}{\binom{d}{|I|+1}}=\frac{k-|I|}{d-|I|} \cdot \frac{\binom{k}{|I|}}{\binom{d}{|I|}}$
- $\sum_{i} \tilde{E}\left[x_{I \cup i}\right]=|I| \tilde{E}\left[x_{I}\right]+(k-|I|) \tilde{E}\left[x_{I}\right]=k \tilde{E}\left[x_{I}\right]$

Part II: MPW Analysis Preprocessing

Analysis Outline

- For the MPW analysis, we do the following:

1. Preprocess the moment matrix M to make it easier to analyze. More specifically, we find a matrix M^{\prime} which is easier to analyze such that if $\lambda_{\text {min }}\left(M^{\prime}\right) \geq \frac{k^{\frac{d}{2}}}{4 n^{\frac{d}{2}}}$ then $M \succcurlyeq 0$ with high probability
2. Decompose $M^{\prime}=E\left[M^{\prime}\right]+R$ and show that

$$
E\left[M^{\prime}\right] \succcurlyeq \frac{k^{\frac{d}{2}}}{2 n^{\frac{d}{2}}} I d \text { and w.h.p., }\|R\| \leq \frac{k^{\frac{d}{2}}}{4 n^{\frac{d}{2}}}
$$

Restriction to Multilinear, Degree $\frac{d}{2}$

- Preprocessing Step \#1: As we've seen from the 3XOR and knapsack lower bounds, since we have the constraints that $x_{i}^{2}=x_{i}$ for all i and $\sum_{i} x_{i}=k$, it is sufficient to consider the submatrix of M with multilinear, degree $\frac{d}{2}$ indices

Approximating $\tilde{E}\left[x_{I}\right]$

- Preprocessing Step \#2: Approximate $\tilde{E}\left[x_{I}\right]$
- Intuition: One view of $\tilde{E}\left[x_{I}\right]$ is that $\tilde{E}\left[x_{I}\right]$ is the expected value of x_{I} given what we can compute.
- Remark: This is connected to pseudocalibration/moment matching which we'll see next lecture.

Approximating $\tilde{E}\left[x_{I}\right]$ Continued

- A priori, if we choose a clique of size k at random, $|I|$ is part of the clique with
probability $\frac{\binom{k}{(I I)}}{\left(\begin{array}{l}n \mid\end{array}\right)} \approx \frac{k^{|I|}}{n^{|I|}}$
- If I is not a clique, $\tilde{E}\left[x_{I}\right]=0$. If I is a clique, I is $2^{\binom{(I I)}{2}}$ times more likely to be part of the clique.
Thus, $\tilde{E}\left[x_{I}\right] \approx 2\left(\begin{array}{c}(I I I) \\ 2\end{array} \frac{k^{|I|}}{n^{I I} \mid}\right.$ if I is a clique and is 0 otherwise.
- See appendix for calculations confirming this.

Approximation Error

- Let $M_{\text {approx }}$ be the matrix where $\left(M_{\text {approx }}\right)_{I J}=2^{\binom{|U J|}{2}} \frac{k^{|I \cup J|}}{n^{|I U J|}}$ if $I \cup J$ is a clique and $\left(M_{\text {approx }}\right)_{I J}=0$ otherwise.
- Can show that the difference $\Delta=\mathrm{M}-\mathrm{M}_{\text {approx }}$ is small (see [MPW15] for details).

The matrix M^{\prime}

- Preprocessing Step \#3: Fill in zero rows and columns of $M_{\text {approx }}$
- If I or J is not a clique then $\left(M_{\text {approx }}\right)_{I J}=0$.
- These zero rows and columns make $M_{a p p r o x}$ harder to analyze.
- Definition: Take M^{\prime} to be the matrix such that
 between $I \backslash J$ and $J \backslash I$ and $M_{I J}^{\prime}=0$ otherwise

$M^{\prime} \succcurlyeq 0 \Rightarrow M_{\text {approx }} \succcurlyeq 0$

- Can view $M_{\text {approx }}$ as a submatrix of M^{\prime}.
- This immediately implies that if $M^{\prime} \geqslant 0$ then $M_{\text {approx }} \succcurlyeq 0$
- Because of the error matrix $\Delta=\mathrm{M}-\mathrm{M}_{\text {approx }}$ we need the stronger statement that with high probability, $\lambda_{\text {min }}\left(M^{\prime}\right)$ is significantly bigger than 0 .

Summary

- We want to show that w.h.p. $M^{\prime} \succcurlyeq \frac{k^{\frac{d}{2}}}{4 n^{\frac{d}{2}}}$ where M^{\prime} is the matrix such that $M^{\prime}{ }_{I J}=2\binom{(I U J \mid}{2} \frac{k^{|I U J|}}{n^{|I U J|}}$ if all edges are present between $I \backslash J$ and $J \backslash I$ and $M^{\prime}{ }_{I J}=0$ otherwise

M^{\prime} Picture for $\mathrm{d}=4$

	12	13	14	15	16	23	24	25	26	34	35	36	45	46	56
12															
13															
14															
15															
16															
23															
24															
25															
26															
34															
35															
36															
45															
46															
56															

$$
\square M_{\{i, j\}\{i, j\}}^{\prime}=\frac{2 k^{2}}{n^{2}}
$$

$$
\square M_{\{i, j\}\{i, k\}}^{\prime}=\frac{8 k^{3}}{n^{3}} \text { if }
$$

$$
\mathrm{j} \sim k \text { and } 0
$$

otherwise

$$
\begin{aligned}
& \square M_{\{i, j\}\{k, l\}}^{\prime}=\frac{64 k^{4}}{n^{4}} \text { if } \\
& i \sim j, i \sim k, j \sim k, \\
& j \sim l \text { and is } 0 \\
& \text { otherwise }
\end{aligned}
$$

Part III: MPW Analysis with Graph Matrices

Recall Definition of R_{H}

- Definition: Definition: If $V(H)=U \cup V$ then define $R_{H}(A, B)=\chi_{\sigma(E(H))}$ where $\sigma: \mathrm{V}(\mathrm{H}) \rightarrow$ $V(G)$ is the injective map satisfying $\sigma(U)=A$, $\sigma(V)=B$ and preserving the ordering of U, V.
- Last lecture: Did not require A, B to be in ascending order.
- This lecture: Will require A, B to be in ascending order.
- Note: This only reduces our norms, so the probabilistic norm bounds still hold.

Review: Rough Norm Bound

- Theorem [MP16]: If H has no isolated vertices then with high probability, $\left\|R_{H}\right\|$ is $\tilde{O}\left(n^{\left(|V(H)|-s_{H}\right) / 2}\right)$ where s_{H} is the minimal size of a vertex separator between U and V (S is a vertex separator of U and V if every path from U to V intersects S)
- Note: The \tilde{O} contains polylog factors and constants related to the size of H.

Decomposition of $M_{\text {approx }}$ and M^{\prime}

- Claim: $M_{\text {approx }}=\sum_{H} \frac{k^{|U U V|}}{n^{|U U V|}} R_{H}$ where we sum over H which have no middle vertices.
- Claim: $M^{\prime}=\sum_{H} 2\binom{|U|}{2}+\binom{|V|}{2}-\binom{|U \cap V|}{2} \frac{k^{|U U V|}}{n^{|U U V|}} R_{H}$ where we sum over H which have no middle vertices and which have no edges within U or within V.
- Idea: Each of the $2\binom{(U \mid}{2}+\binom{|V|}{2}-\binom{|U \cap V|}{2}$ edges within U or V are given for free.

Entries of $\mathrm{E}\left[M^{\prime}\right]$

- $M^{\prime}=\sum_{H} 2^{\binom{|U|}{2}+\binom{|V|}{2}-\binom{|U \cap V|}{2} \frac{k^{|U U V|}}{n^{|U U V|}} R_{H} \text { where }, ~}$ we sum over H which have no middle vertices and which have no edges within U or within V.

- Idea: For any H which has an edge, $E\left[R_{H}\right]=0$. Otherwise, $E\left[R_{H}\right]=R_{H}$
$E\left[M^{\prime}\right]$ Picture for $\mathrm{d}=4$

	12	13	14	15	16	23	24	25	26	34	35	36	45	46	56
12															
13															
14															
15															
16															
23															
24															
25															
26															
34															
35															
36															
45															
46															
56															

$$
\begin{aligned}
& \square E\left[M^{\prime}\right]_{\{i, j\}\{i, j\}}=\frac{2 k^{2}}{n^{2}} \\
& \square E\left[M^{\prime}\right]_{\{i, j\}\{i, k\}}=\frac{4 k^{3}}{n^{3}} \\
& \square E\left[M^{\prime}\right]_{\{i, j\}\{, k, l\}}=\frac{4 k^{4}}{n^{4}}
\end{aligned}
$$

Analysis of $E\left[M^{\prime}\right]$

- $E\left[M^{\prime}\right]$ belongs to the Johnson Scheme of matrices A whose entries $A_{I J}$ only depend on $|I \cap J|$ (See Lecture 9 on SOS Lower Bounds for Knapsack)
- Can decompose $E\left[M^{\prime}\right]$ as a sum of PSD matrices, one of which is the identity matrix which has coefficient $\geq \frac{k^{\frac{d}{2}}}{2 n^{\frac{d}{2}}} I d$.

One Piece of $M^{\prime}-E\left[M^{\prime}\right](d=4)$

	12	13	14	15	16	23	24	25	26	34	35	36	45	46	56
12															
13															
14															
15															
16															
23															
24															
25															
26															
34															
35															
36															
45															
46															
56															

$\square 0$
$\square 0$
$\square \frac{60 k^{4}}{n^{4}}$ if all edges between I and J are present.
$-\frac{4 k^{4}}{n^{4}}$ otherwise

Piece of $M^{\prime}-E\left[M^{\prime}\right]$ Decomposition

- This piece has coefficient $\frac{4 k^{4}}{n^{4}}$ in R_{H} for all H which have the following form (and 0 for all other R_{H}):

Where $E(H)$ is non-empty and is a subset of the dashed lines

Piece of $M^{\prime}-E\left[M^{\prime}\right]$ Analysis

- All H here have minimum separator size s_{H} at least 1.
- This gives a norm bound of $\tilde{O}\left(\frac{k^{4}}{n^{4}} \cdot n^{\frac{4-1}{2}}\right)=$ $\tilde{O}\left(\frac{k^{2}}{\sqrt{n}} \cdot \frac{k^{2}}{n^{2}}\right)$
- This is much less than $\frac{k^{2}}{4 n^{2}}$ when $k \ll n^{\frac{1}{4}}$.

General Analysis of $R=M^{\prime}-E\left[M^{\prime}\right]$

- Define $R=M^{\prime}-E\left[M^{\prime}\right]$
- Claim: $R=\sum_{H} 2\left(\begin{array}{c}\binom{|U|}{2}+\binom{|V|}{2}-\binom{(U \cap V V)}{2} \frac{k^{|U U V|}}{n^{|U U V|}} R_{H}, ~\end{array}\right.$ where we sum over H which have no middle vertices, which have no edges within U or within V, and which have at least one edge.

General Analysis of $R=M^{\prime}-E\left[M^{\prime}\right]$

- $R=\sum_{H} 2\left(\begin{array}{c}\binom{U \mid}{ 2}+\binom{(V \mid)}{2}-\binom{|U \cap V|}{2} \frac{k^{|U U V|}}{n^{|U U V|}} R_{H} \text { where we }, ~\end{array}\right.$ sum over H which have no middle vertices, which have no edges within U or within V, and which have at least one edge
- Norm bound: For any such R_{H}, w.h.p. $\left\|R_{H}\right\|$ is $\tilde{O}\left(n \frac{|U \cup V|-|U n V|-1}{2}\right)$ as the minimal separator size s_{H} between U and V is at least $|U \cap V|+1$
- Corollary: w.h.p. $\frac{k^{|U U V|}}{n^{|U V V|}} R_{H}$ is $\tilde{O}\left(\frac{k^{|U U V|}}{\sqrt{n}^{|U V V|+|U n V|+1}}\right)$

General Analysis of $R=M^{\prime}-E\left[M^{\prime}\right]$

- R is a sum of terms which w.h.p. have norm $\tilde{O}\left(\frac{l^{|U U V|}}{\sqrt{n}^{|U U V|+|U n V|+1}}\right)$
- $|U \cup V| \leq d$ and $|U \cup V|+|U \cap V|=d$, so
w.h.p. $\|R\|$ is $\tilde{O}\left(\frac{k^{\frac{d}{2}}}{n^{\frac{d}{2}}} \cdot \frac{k^{\frac{d}{2}}}{\sqrt{n}}\right)$. This is much less than $\frac{k^{\frac{d}{2}}}{4 n^{\frac{d}{2}}}$ as long as $k \ll n^{\frac{1}{d}}$

Part IV: The Pessimist Strikes Back

Limitations of MW moments

- Can we prove a stronger lower bound with the MW moments?
- With a more careful analysis, a slightly stronger lower bound can be shown. For $d=4$, [DM15] proved an $\widetilde{\Omega}\left(n^{\frac{1}{3}}\right)$ lower bound. [HKPRS16] generalized this to $\widetilde{\Omega}\left(n^{\frac{2}{d+2}}\right)$
- By an argument of Jonathan Kelner, this is tight!

Pessimist's Query

- Kelner's argument: Pessimist can query the following polynomial:
- Take $p=C x_{i}-\sum_{J:|J|=\frac{d}{2}, i \notin J}(-1)^{|J \backslash N(I)|} x_{J}$ where $N(I)$ is the set of neighbors of I
- What is $\tilde{E}\left[p^{2}\right]$?
- Key idea: Cross terms will all be negative, but there will be cancellation in the square terms.

Pessimist's Query Analysis

- $p=C x_{i}-\sum_{J:|J|=\frac{d}{2}, i \notin J}(-1)^{|J \backslash N(i)|} x_{J}$ where
$N(i)$ is the set of neighbors of I
$p^{2}=C^{2} x_{i}-2 C \sum_{J: J \cup\{i\}}$ is a clique $x_{J \cup\{i\}}+$
$\left.\sum_{J, J^{\prime}}(-1)^{\mid\left(J \Delta J^{\prime}\right) \backslash N(I)}\right|_{J \cup J^{\prime}}$
- We expect $\tilde{E}\left[C^{2} x_{i}\right]$ to be $\Theta\left(\frac{C^{2} k}{n}\right)$
- We expect $\tilde{E}\left[2 C \sum_{J: J \cup\{i\}}\right.$ is a clique $\left.x_{J \cup\{i\}}\right]$ to be $\Theta\left(\frac{C k^{(d / 2)+1}}{n}\right)$

Pessimist’s Query Analysis Continued

- $p^{2}=C^{2} x_{i}-2 C \sum_{J: J \cup\{i\}}$ is a clique $x_{J \cup\{i\}}+$ $\sum_{J, J^{\prime}}(-1)^{\left|\left(J \Delta J^{\prime}\right) \backslash N(I)\right|} x_{J \cup J^{\prime}}$
- All terms of $\sum_{J, J^{\prime}} \tilde{E}\left[\left.(-1)^{\left|\left(J \Delta J^{\prime}\right) \backslash N(I)\right|}\right|_{J \cup J^{\prime}}\right]$ have expected value ≈ 0 except for the ones where $J^{\prime}=J$.
- These terms contribute $\Theta\left(k^{d / 2}\right)$ and it turns out that w.h.p. these terms are dominant

Pessimist's Query Analysis Continued

- We expect $\tilde{E}\left[p^{2}\right]$ to be $\Theta\left(\frac{C^{2} k}{n}\right)-\Theta\left(\frac{C k^{\left(\frac{d}{2}\right)+1}}{n}\right)+$ $\Theta\left(k^{d / 2}\right)$
- Taking $C=k^{\frac{d}{4}-\frac{1}{2}} \sqrt{n}$, this is

$$
\Theta\left(k^{d / 2}\right)-\Theta\left(\frac{k^{\left(\frac{3 d}{4}\right)+\frac{1}{2}}}{\sqrt{n}}\right)=k^{d / 2} \Theta\left(1-\frac{k^{\left(\frac{d+2}{4}\right)}}{\sqrt{n}}\right)
$$

which is negative if $k \gg n^{\frac{2}{d+2}}$

Back to the Drawing Board

- Pessimist has disproven our (Optimist's) first attempt at bluffing, but perhaps we can come up with a better bluff.
- Let's see what went wrong.

Graphical Picture

- Can represent the polynomial Pessimist is querying as follows:

times its transpose

Graphical Picture

- Multiplying graph matrices is tricky (more on that next lecture!). Some terms that appear are:

Potential Fix

- What if we add an appropriate multiple of

to our moment matrix?

Potential Fix Analysis

- This fix does work for $d=4$ [HKPRS16]
- However, it seems rather ad-hoc.
- Remark: It is related to giving more weight to cliques which have more common neighbors, but that's not quite what it does...
- Can we find a more principled general fix? Yes, see next lecture!

References

- [BHK+16] B. Barak, S. B. Hopkins, J. A. Kelner, P. Kothari, A. Moitra, and A. Potechin, A nearly tight sum-of-squares lower bound for the planted clique problem, FOCS p.428-437, 2016.
- [DM15] Y. Deshpande and A. Montanari, Improved sum-of-squares lower bounds for hidden clique and hidden submatrix problems, COLT, JMLR Workshop and Conference Proceedings, vol.40, JMLR.org, p.523-562,2015.
- [HKPRS16] S. Hopkins, P. Kothari, A. Potechin, P. Raghavendra, T. Schramm. Tight Lower Bounds for Planted Clique in the Degree-4 SOS Program. SODA 2016
- [MP16] D. Medarametla, A. Potechin. Bounds on the Norms of Uniform Low Degree Graph Matrices. RANDOM 2016. https://arxiv.org/abs/1604.03423
- [MPW15] R. Meka, Aaron Potechin, and Avi Wigderson, Sum-of-squares lower bounds for planted clique. STOC p.87-96, 2015

Appendix

Approximating $\tilde{E}\left[x_{I}\right]$ Calculation

- $\tilde{E}\left[x_{I}\right]=\frac{\binom{k}{I I}}{\binom{d}{I I}} \cdot \frac{N_{d}(I)}{N_{d}(\phi)}$
- If I is a clique then $N_{d}(I) \approx 2^{\binom{I I I}{2}-\binom{d}{2}\binom{n-|I|}{d-|I|}}$
- As a special case, $N_{d}(\varnothing) \approx 2^{-\binom{d}{2}}\binom{n}{d}$
- If I is a clique then

