Lecture 13: SOS Lower Bounds for Planted Clique Part II

Lecture Outline

- Part I: Relaxed k-clique Equations and Theorem Statement
- Part II: Pseudo-Calibration/Moment Matching
- Part III: Decomposition of Graph Matrices via Minimum Vertex Separators
- Part IV: Attempt \#1: Bounding with Square Terms
- Part V: Approximate PSD Decomposition
- Part VI: Further Work and Open Problems

Part I: Relaxed k-clique Equations

 and Theorem Statement
Relaxed Planted Clique Equations

- Flaw in the current analysis: Need to relax the k-clique equations slightly to make the combinatorics easier to analyze
- Relaxed k-clique Equations:
$x_{i}^{2}=x_{i}$ for all i .
$x_{i} x_{j}=0$ if $(i, j) \notin E(G)$
$(1-\epsilon) k \leq \sum_{i} x_{i} \leq(1+\epsilon) k$

Planted Clique SOS Lower Bound

- Theorem 1.1 of $[\mathrm{BHK}+16]: \exists c>0$ such that if $k \leq n^{\frac{1}{2}-c \sqrt{\frac{d}{\log n}}}$, with high probability degree d SOS cannot prove that the relaxed k-clique equations are infeasible.
- Note: For $d=4$ there is a lower bound of $\widetilde{\Omega}(\sqrt{n})$ for the original k-clique equations.

High Level Idea

- High level idea: Show that it is hard to distinguish between the random distribution $G\left(n, \frac{1}{2}\right)$ and the planted distribution where we put each vertex in the planted clique with probability $\frac{k}{n}$.
- Remark: We take this planted distribution to make the combinatorics easier. If we could analyze the planted distribution where the clique has size exactly k, we would satisfy the constraint $\sum_{i} x_{i}=k$ exactly.

Part II: Pseudo-Calibration/Moment Matching

Choosing Pseudo-Expectation Values

- Last lecture, Pessimist disproved our first attempt for pseudo-expectation values, the MW moments.
- How can we come up with better pseudoexpectation values?

Pseudo-Calibration/Moment Matching

- Setup: We are trying to distinguish between a random distribution $\left(G\left(n, \frac{1}{2}\right)\right.$) and a planted distribution ($G\left(n, \frac{1}{2}\right)+$ planted clique)
- Pseudo-calibration/moment matching: The pseudo-expectation values over the random distribution should match the actual expected values over the planted distribution in expectation for all low degree tests.

Review: Discrete Fourier Analysis

- Requirements for discrete Fourier analysis

1. An inner product
2. An orthonormal basis of Fourier characters

- This gives us Fourier decompositions and Parseval's Theorem

Fourier Analysis over the Hypercube

- Example: Fourier analysis on $\{-1,1\}^{n}$
- Inner product: $f \cdot g=\frac{1}{2^{n}} \sum_{x} f(x) g(x)$
- Fourier characters: $\chi_{A}(x)=\prod_{i \in A} x_{i}$
- Fourier decomposition: $f=\sum_{V} \hat{f}_{A} \chi_{A}$ where $\hat{f}_{A}=f \cdot \chi_{A}$
- Parseval's Theorem: $\sum_{A} \hat{f}_{A}^{2}=f \cdot f=\|f\|^{2}$

Fourier Analysis over $G\left(n, \frac{1}{2}\right)$

- Inner product: $f \cdot g=E_{G \sim G\left(n, \frac{1}{2}\right)} f(G) g(G)$
- Fourier characters: $\chi_{E}(G)=(-1)^{|E \backslash E(G)|}$

Pseudo-Calibration Equation

- Pseudo-Calibration Equation:
$E_{G \sim G\left(n, \frac{1}{2}\right)}\left[\tilde{E}\left[x_{V}\right] \cdot \chi_{E}\right]=E_{G \sim \text { planted dist }}\left[x_{V} \cdot \chi_{E}\right]$
- We want this equation to hold for all small V and E

Pseudo-Calibration Calculation

- To calculate $E_{G \sim p l a n t e d ~ d i s t ~}\left[x_{V} \cdot \chi_{E}\right]$, first choose the planted clique and then choose the rest of the graph
- $x_{V}=0$ if any $i \in V$ is not in the planted clique
- $E\left[\chi_{E}(G)\right]=0$ whenever E is not fully contained in the planted clique
- Def: Define $V(E)=\{$ endpoints of edges in E \}
- If $V \cup V(E) \subseteq$ planted clique then $x_{V} \chi_{E}=1$
- $E_{G \sim p l a n t e d ~ d i s t ~}\left[x_{V} \cdot \chi_{E}\right]=\left(\frac{k}{n}\right)^{|V \cup V(E)|}$

Calculation Picture

- If all the vertices are in the planted clique then $x_{V} \chi_{E}(G)=1$. Otherwise, either $x_{V}=0$ (because an $i \in V$) is missing or $E\left[\chi_{E}\right]=0$ because each edge outside the clique is present with probability $\frac{1}{2}$

Fourier Coefficients of $\tilde{E}\left[x_{V}\right]$

- From the pseudo-calibration calculation, $\widetilde{E\left[x_{V}\right]_{E}}=E_{G \sim G\left(n, \frac{1}{2}\right)}\left[\tilde{E}\left[x_{V}\right] \cdot \chi_{E}\right]=\left(\frac{k}{n}\right)^{|V U V(E)|}$
- We take $\tilde{E}\left[x_{V}\right]=\sum_{E:|V \cup V(E)| \leq D}\left(\frac{k}{n}\right)^{|V U V(E)|}$ where D is a truncation parameter and then normalize so that $\tilde{E}\left[x_{\emptyset}\right]=\tilde{E}[1]=1$
- Good exercise: What happens if we don't truncate at all?

Graph Matrix Decomposition

- Ignoring the normalization, $M=\sum_{H}\left(\frac{k}{n}\right)^{|V(H)|} R_{H}$ where we sum over ALL H with at most D vertices which have no isolated vertices outside of U and V.

Part III: Decomposition of Graph Matrices via Minimum Vertex Separators

Proof Sketch

- How can we show $M \succcurlyeq 0$ with high probability?
- High level idea:

1. Find an approximate PSD decomposition $M^{\text {fact }}$ of M
2. Handle the error $M^{f a c t}-M$. Unfortunately, this error is not small enough to ignore, so we carefully show that $M^{f a c t}-M \preccurlyeq M^{f a c t}$ with high probability. We briefly sketch the ideas for this in Appendix I. For the full details, see [BHK+16]

Technical Minefield

－Warning：This analysis is a technical minefield

Mine handled
correctly

Not quite correct， see Appendix II

5			（8）																										－		
	2	1	2								1	2	1	1	1	1			2	1	4	1	1	1			1	13	31	1	2
	2	1	2		1	1		1			1	1	3	3	2	1		1	1	4	1	1	3	1		1	I	31	14	4	1
	1	1	2	1	2	1		2	2	2	2	2	2	2	1	1		1	1	4	14	4	1	1	2	2	三	31	13	3	1
			2	1	3	1		3	1	1	2	1	1	2	1	1				2	12	2		1	1	1	2	21	12	2	1
			2	1	2			2	1	1	3	2	1	3	2	2				1	1	1		1	2	I	2	21	12	2	1
	1	1	2	1	2	1		2	3	4	1	1		1	1	2	1	2	1	1					1	コ	1	三	3	3	1
	1	1	2	1	2	1		2	2	1	3	2		1	1	2	1	2	1	1	1	1	1		1	，	1	11	1	3	1
1	3	2	3	1	3	2		4	1	5	1	1	1	1	2	2	3	3	2	1	1	1	1		1	4	1		1	3	1
1	2	1	2	1	2	1		3	1	1	2	1	1	1	2	1	3	1	3	1	1	1	2	1	1	2	1	14	41	1	1
2	3	1	1		1	1		2	2	2	1		1	2	3	2	4	1	1	1			1	1	J	I	三		32	2	1
1	2	2	2	2	1	1		1	2	1	1			1	1	1	3	15	5	2	2	1	2	2	1	1	2	21	11	1	
2	1	3	1	1	1	2		1	4	1	3	1	1	2	2	1	3	1	4	1	21	1	2	2	2	2	2	21	12	2	1
1	2	1	3	3	2	I		1	4	1	1	1	1	1	1		2	1	3	1	2	2	1	1							1
	1	1	1	1	1	三		2	2	2	3	3	3	2	1		1	2	2	1	12	2	2	1		1	2		22	2	1
1	1	1		1	2	1		1			1	1	1	3	1	1		1	1	3	3	1	1		1	2	1	1	12	2	1
1	1	1			1	1		1			1	3	1	3	1	1			2	1	1	2	1		1	1	I	I	31	1	1

Decomposition via Separators

- How can we handle all of the different R_{H} ?
- Key idea: Decompose each H into three parts $\sigma, \tau, \sigma^{\prime T}$ based on the leftmost and rightmost minimum vertex separators S and T of H

Separator Definitions

- Definition: Given a graph H with distinguished sets of vertices U and V, a vertex separator S is a set of vertices such that any path from U to V must intersect S.
- Definition: A leftmost minimum vertex separator S is a set of vertices such that for any vertex sepator S^{\prime} of minimum size, any path from U to S^{\prime} intersects S.
- A rightmost minimum vertex separator is defined analogously.

Existence of Minimum Separators

- Lemma 6.3 of [BHK+16]: Leftmost and rightmost minimum vertex separators always exist and are unique.

Left, Middle, and Right Parts

- Let S, T be the leftmost and rightmost minimum vertex separators of H
- Definition: We take the left part σ of H to be the part of H between U and S, we take the middle part τ of H to be the part of H between S and T, and we take the right part $\sigma^{\prime T}$ of H to be the part of H between T and V

Conditions on Parts

- $\sigma, \tau, \sigma^{\prime T}$ satisfy the following:
- The unique minimum vertex separator of σ is $V_{\sigma}=S$ (where V_{σ} is the right side of σ)
- The leftmost and rightmost minimum vertex separators of τ are $U_{\tau}=S$ and $V_{\tau}=T$ (where U_{τ} and V_{τ} are the left and right sides of τ)
- The unique minimum vertex separator of $\sigma^{\prime T}$ is $U_{\sigma^{\prime} T}=T\left(\right.$ where $U_{\sigma^{\prime}}$ is the left side of $\sigma^{\prime T}$)

Approximate Decomposition

Claim: If r is the size of the minimum vertex separator of H,

$$
R_{H} \approx R_{\sigma} R_{\tau} R_{\sigma^{\prime} T}
$$

- Idea: There is a bijection between injective mappings $\phi: V(H) \rightarrow V(G)$ and injective mappings $\phi_{1}: V(\sigma) \rightarrow V(G), \phi_{2}: V(\tau) \rightarrow V(G)$, and $\phi_{3}: V\left(\sigma^{\prime T}\right) \rightarrow V(G)$ such that

1. $\quad \phi_{1}, \phi_{2}$ agree on S and ϕ_{2}, ϕ_{3} agree on T
2. Collectively, $\phi_{1}, \phi_{2}, \phi_{3}$ don't map two different vertices of H to the same vertex of G

Approximate Decomposition

Claim: If r is the size of the minimum vertex separator of H,

$$
R_{H} \approx R_{\sigma} R_{\tau} R_{\sigma^{\prime} T}
$$

- Corollary:

$$
\left(\frac{k}{n}\right)^{|V(H)|} R_{H} \approx\left(\left(\frac{k}{n}\right)^{|V(H)|-\frac{r}{2}} R_{\sigma}\right)\left(\left(\frac{k}{n}\right)^{|V(H)|-r} R_{\tau}\right)\left(\left(\frac{k}{n}\right)^{|V(H)|-\frac{r}{2}} R_{\sigma^{\prime}}\right)
$$

Intersection Terms

1•Warning! There will be terms where $\phi_{1}, \phi_{2}, \phi_{3}$ map multiple vertices to the same vertex. We call these intersection terms.

- We sketch how to handle intersection terms in Appendix I. For now, we sweep this under the rug.

Part IV: Attempt \#1: Bounding With Square Terms

Bounding With Square Terms

- How can we handle all of the $R_{\sigma} R_{\tau} R_{\sigma^{\prime} T}$ terms?
- One idea: Can bound $R_{\sigma} R_{\tau} R_{\sigma^{\prime}}{ }^{T}+\left(R_{\sigma} R_{\tau} R_{\sigma^{\prime} T}\right)^{T}$ as follows.
$\cdot\left(a R_{\sigma}-b R_{\sigma^{\prime} T}^{T} R_{\tau}^{T}\right)\left(a R_{\sigma}-b R_{\sigma^{\prime} T}^{T} R_{\tau}^{T}\right)^{T} \succcurlyeq 0$

Bounding With Square Terms

- $\left(a R_{\sigma}-b R_{\sigma^{\prime}}^{T} R_{\tau}^{T}\right)\left(a R_{\sigma}-b R_{\sigma^{T}}^{T} R_{\tau}^{T}\right)^{T} \succcurlyeq 0$
- Rearranging, ab $\left(R_{\sigma} R_{\tau} R_{\sigma^{\prime}}+\left(R_{\sigma} R_{\tau} R_{\sigma^{\prime}}\right)^{T}\right) \leqslant$

$$
a^{2} R_{\sigma} R_{\sigma}^{T}+b^{2} R_{\sigma^{\prime}}^{T} R_{\tau}^{T} R_{\tau} R_{\sigma^{\prime}} \preccurlyeq a^{2} R_{\sigma} R_{\sigma}^{T}+
$$

$$
b^{2}\left\|R_{\tau}^{T} R_{\tau}\right\| R_{\sigma^{\prime} T}^{T} R_{\sigma^{\prime} T}
$$

Example

- What square terms would the following R_{H} be bounded by (ignoring intersection terms)?

Example Answer

- Answer: Take the left part and its mirror image and take the right part and its mirror image

Bounding With Square Terms Failure

- Unfortunately, the coefficients on the square terms aren't high enough for this idea to work.
- We need a more sophisticated analysis.

Part V: Approximate PSD Decomposition

$L Q L^{T}$ factorization

- Definition: Define $L_{r}=\sum_{\sigma:\left|V_{\sigma}\right|=r}\left(\frac{k}{n}\right)^{|V(\sigma)|-\frac{r}{2}} R_{\sigma}$ and define $Q_{r}=\sum_{\tau:\left|U_{\tau}\right|=\left|V_{\tau}\right|=r}\left(\frac{k}{n}\right)^{|V(\tau)|-r} R_{\tau}$ where we require that V_{σ} is the unique minimum vertex separator of σ and U_{τ}, V_{τ} are the leftmost and rightmost minimum vertex separators of τ. Define $M^{f a c t}=\sum_{r=0}^{\frac{d}{2}} L_{r} Q_{r} L_{r}^{T}$
- Claim: $M \approx M^{f a c t}=\sum_{r=0}^{\frac{d}{2}} L_{r} Q_{r} L_{r}^{T}$

Claim Justification

- Claim: $M \approx M^{\text {fact }}=\sum_{r=0}^{\frac{d}{2}} L_{r} Q_{r} L_{r}^{T}$
- This follows from the decomposition of each H into left, middle, and right parts $\sigma, \tau,{\sigma^{\prime}}^{T}$ and the claim that up to intersection terms,

$$
\left(\frac{k}{n}\right)^{|V(H)|} R_{H}=\left(\left(\frac{k}{n}\right)^{|V(H)|-\frac{r}{2}} R_{\sigma}\right)\left(\left(\frac{k}{n}\right)^{|V(H)|-r} R_{\tau}\right)\left(\left(\frac{k}{n}\right)^{|V(H)|-\frac{r}{2}} R_{\sigma^{\prime}}\right)
$$

Analysis of Q_{r}

- $Q_{r}=\sum_{\tau:\left|U_{\tau}\right|=\left|V_{\tau}\right|=r}\left(\frac{k}{n}\right)^{|V(\tau)|-r} R_{\tau}$
- Probabilistic norm bounds: With high probability, $\left\|R_{\tau}\right\|$ is $\tilde{O}\left(n^{\frac{|V(\tau)|-r}{2}}\right)$ because r is the size of the minimum vertex separator of H
- Corollary: If $k \leq n^{\frac{1}{2}-\epsilon}$ then with high probability, $Q_{r} \succcurlyeq \frac{1}{2} I d$ as the identity is the dominant term of Q_{r}

Summary

- If $k \leq n^{\frac{1}{2}-\epsilon}$ then with high probability,

$$
M^{f a c t}=\sum_{r=0}^{\frac{d}{2}} L_{r} Q_{r} L_{r}^{T} \succcurlyeq \frac{1}{2} \sum_{r=0}^{\frac{d}{2}} L_{r} L_{r}^{T}
$$

- The $\frac{1}{2} \sum_{r=0}^{\frac{d}{2}} L_{r} L_{r}^{T}$ allows us to deal with the error $M^{f a c t}-M$.

Part VI: Further Work and Open Problems

Further Work

- The techniques used for planted clique can be generalized to other planted problems where we are trying to distinguish a planted distribution from a random distribution [HKP+17]

Open Problems

- Can we prove the full lower bound for planted clique with the exact constraint that $\sum_{i=1}^{n} x_{i}=k$?
- How close to \sqrt{n} can we make the lower bound?
- It turns out that the current machinery doesn't work as well for random sparse graphs. What bounds can we prove for problems such as densest k-subgraph and independent set on sparse graphs?

References

- [BHK+16] B. Barak, S. B. Hopkins, J. A. Kelner, P. Kothari, A. Moitra, and A. Potechin, A nearly tight sum-of-squares lower bound for the planted clique problem, FOCS p.428-437, 2016.
- [HKP+17] S. Hopkins, P. Kothari, A. Potechin, P. Raghavendra, T. Schramm, D. Steurer. The power of sum-of-squares for detecting hidden structures. FOCS 2017

Appendix I: Handling Intersection Terms

High Level Idea

- If there are intersections between the left, middle, and right parts, this creates a new graph H_{2}.
- We can decompose H_{2} into new left, middle, and right parts!

Choosing New Separators

- How do we choose the new separators S^{\prime} and T'?
- We take S^{\prime} to be the leftmost minimum vertex separator between U and \{intersected vertices\} $\cup S$.
- Similarly, we take T^{\prime} to be the rightmost minimum vertex separator between \{intersected vertices $\} \cup T$ and V.

Key Idea

- This decomposition works the same regardless of what σ_{2} and ${\sigma_{2}^{\prime T}}^{T}$ look like (see Claim 6.11 of [BHK+16])!
- Thus, we get a new approximate decomposition of the form $\sum_{r^{\prime}=0}^{\frac{d}{2}} L_{r^{\prime}} Q_{r^{\prime}}^{\prime} L_{r^{\prime}}$
- This can be bounded by $\frac{1}{2} \sum_{r=0}^{\frac{d}{2}} L_{r} L_{r}^{T}$ as long as we always have that $\left\|Q_{r^{\prime}}^{\prime}\right\| \ll 1$

Bounding New Middle Parts

- We need to show that the new middle parts don't have norms which are too high.
- This is done with the intersection tradeoff lemma (Lemma 7.12 of [BHK+16])

Appendix II: Technical Mines

Approximate Decomposition Mine

Claim: If r is the size of the minimum vertex separator of H,

$$
R_{H} \approx R_{\sigma} R_{\tau} R_{\sigma^{\prime} T}
$$

- There are subtle issues related to the ordering of S and T, the leftmost and rightmost minimum vertex separators of H
- How these issues should be handled depends on whether we require matrix indices to be in ascending order.

Approximate Decomposition Mine

1. If we require matrix indices to be in ascending order, what we actually have is $R_{H} \approx$ $\sum_{\sigma, \tau, \sigma^{\prime} T: H=\sigma \cup \tau \cup \sigma^{T} T} R_{\sigma} R_{\tau} R_{\sigma^{\prime}}$ where $\sigma \cup \tau \cup{\sigma^{\prime T}}^{T}$ is the graph formed by gluing $\sigma, \tau, \sigma^{\prime T}$ together.

- In fact, this equation is precisely what is needed for the approximate PSD
decomposition $M \approx M^{f a c t}=\sum_{r=0}^{\frac{d}{2}} L_{r} Q_{r} L_{r}^{T}$.

Approximate Decomposition Mine

1. Remark: $[\mathrm{BHK}+16]$ navigates this issue by keeping everything in terms of the individual ribbons (Fourier characters for a given matrix entry) until it is time to use the matrix norm bounds (see Definition 6.1 and subsection 6.4 of [BHK+16])

Approximate Decomposition Mine

1. If we do not require matrix indices to be in ascending order, we actually have the following two equations
2. $R_{H} \approx\left|\operatorname{Aut}\left(\sigma, \tau, \sigma^{\prime}{ }^{T}\right)\right| R_{\sigma} R_{\tau} R_{\sigma^{\prime},}$ where \mid Aut $\left(\sigma, \tau,{\sigma^{\prime}}^{T}\right) \mid$ is the number of different ways to decompose H into $\sigma, \tau, \sigma^{\prime^{T}}$.
3. $\quad R_{H} \approx \frac{1}{\left(s_{H}\right)!^{2}} \sum_{\sigma, \tau, \sigma^{\prime} T: H=\sigma \cup \tau \cup \sigma^{T}} R_{\sigma} R_{\tau} R_{\sigma^{\prime} T}$ where $\sigma \cup \tau \cup{\sigma^{\prime}}^{T}$ is the graph formed by gluing $\sigma, \tau,{\sigma^{\prime}}^{T}$ together.

Truncation Mine

Definition: Define $L_{r}=\sum_{\sigma:\left|V_{\sigma}\right|=r}\left(\frac{k}{n}\right)^{|V(\sigma)|-\frac{r}{2}} R_{\sigma}$ and define $Q_{r}=\sum_{\tau:\left|U_{\tau}\right|=\left|V_{\tau}\right|=r}\left(\frac{k}{n}\right)$ R_{τ} where we require that V_{σ} is the unique minimum vertex separator of σ and U_{τ}, V_{τ} are the leftmost and rightmost minimum vertex separators of τ. Define $M^{f a c t}=\sum_{r=0}^{\frac{d}{2}} L_{r} Q_{r} L_{r}^{T}$
1 . Actually, we need to truncate L_{r} and R_{r} by only taking σ, τ with at most D vertices

Truncation Mine

1. Warning: There is a mismatch between H which have at most D vertices and triples $\sigma, \tau, \sigma^{\prime^{T}}$ which each have at most D vertices.

- This truncation error turns out to have very small total norm, see Lemma 7.4 of [BHK+16]

