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for Planted Clique Part II
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Part I: Relaxed k-clique Equations 
and Theorem Statement



Relaxed Planted Clique Equations

• Flaw in the current analysis: Need to relax the 
𝑘-clique equations slightly to make the 
combinatorics easier to analyze

• Relaxed 𝑘-clique Equations:

𝑥𝑖
2 = 𝑥𝑖 for all i.

𝑥𝑖𝑥𝑗 = 0 if 𝑖, 𝑗 ∉ 𝐸(𝐺)

1 − 𝜖 𝑘 ≤ σ𝑖 𝑥𝑖 ≤ (1 + 𝜖)𝑘



Planted Clique SOS Lower Bound

• Theorem 1.1 of [BHK+16]: ∃𝑐 > 0 such that if 

𝑘 ≤ 𝑛
1

2
−𝑐

𝑑

𝑙𝑜𝑔𝑛, with high probability degree 𝑑
SOS cannot prove that the relaxed 𝑘-clique 
equations are infeasible.

• Note: For 𝑑 = 4 there is a lower bound of 
෩Ω 𝑛 for the original 𝑘-clique equations.



High Level Idea

• High level idea: Show that it is hard to 
distinguish between the random distribution 

𝐺 𝑛,
1

2
and the planted distribution where we 

put each vertex in the planted clique with 

probability 
𝑘

𝑛
.

• Remark: We take this planted distribution to 
make the combinatorics easier. If we could 
analyze the planted distribution where the 
clique has size exactly 𝑘, we would satisfy the 
constraint σ𝑖 𝑥𝑖 = 𝑘 exactly.



Part II: Pseudo-Calibration/Moment 
Matching



Choosing Pseudo-Expectation Values

• Last lecture, Pessimist disproved our first 
attempt for pseudo-expectation values, the 
MW moments.

• How can we come up with better pseudo-
expectation values?



Pseudo-Calibration/Moment Matching

• Setup: We are trying to distinguish between a 

random distribution (𝐺 𝑛,
1

2
)  and a planted 

distribution (𝐺 𝑛,
1

2
+ planted clique) 

• Pseudo-calibration/moment matching: The 
pseudo-expectation values over the random 
distribution should match the actual expected 
values over the planted distribution in 
expectation for all low degree tests.



Review: Discrete Fourier Analysis

• Requirements for discrete Fourier analysis

1. An inner product 

2. An orthonormal basis of Fourier characters

• This gives us Fourier decompositions and 
Parseval’s Theorem



Fourier Analysis over the Hypercube

• Example: Fourier analysis on {−1,1}𝑛

• Inner product: 𝑓 ⋅ 𝑔 =
1

2𝑛
σ𝑥 𝑓 𝑥 𝑔(𝑥)

• Fourier characters: 𝜒𝐴(𝑥) = ς𝑖∈𝐴 𝑥𝑖

• Fourier decomposition: 𝑓 = σ𝑉
መ𝑓𝐴 𝜒𝐴 where 

መ𝑓𝐴 = 𝑓 ⋅ 𝜒𝐴

• Parseval’s Theorem: σ𝐴
መ𝑓𝐴

2 = 𝑓 ⋅ 𝑓 = 𝑓 2



Fourier Analysis over 𝐺 𝑛,
1

2

• Inner product: 𝑓 ⋅ 𝑔 = 𝐸
𝐺∼𝐺 𝑛,

1

2

𝑓 𝐺 𝑔(𝐺)

• Fourier characters: 𝜒𝐸(𝐺) = −1 |𝐸\E 𝐺 |



Pseudo-Calibration Equation

• Pseudo-Calibration Equation:

𝐸
𝐺∼𝐺 𝑛,

1

2

[ ෨𝐸[𝑥𝑉] ⋅ 𝜒𝐸] = 𝐸𝐺∼𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝑑𝑖𝑠𝑡 [𝑥𝑉 ⋅ 𝜒𝐸]

• We want this equation to hold for all small 𝑉
and 𝐸



Pseudo-Calibration Calculation

• To calculate 𝐸𝐺∼𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝑑𝑖𝑠𝑡 𝑥𝑉 ⋅ 𝜒𝐸 , first 
choose the planted clique and then choose 
the rest of the graph

• 𝑥𝑉 = 0 if any 𝑖 ∈ 𝑉 is not in the planted clique

• 𝐸[𝜒𝐸(𝐺)] = 0 whenever 𝐸 is not fully 
contained in the planted clique

• Def: Define 𝑉 𝐸 = endpoints of edges in 𝐸

• If 𝑉 ∪ 𝑉 𝐸 ⊆ 𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝑐𝑙𝑖𝑞𝑢𝑒 then 𝑥𝑉𝜒𝐸 = 1

• 𝐸𝐺∼𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝑑𝑖𝑠𝑡 𝑥𝑉 ⋅ 𝜒𝐸 =
𝑘

𝑛

|𝑉∪𝑉(𝐸)|



Calculation Picture

• If all the vertices are in the planted clique then 
𝑥𝑉𝜒𝐸(𝐺) = 1 . Otherwise, either 𝑥𝑉 = 0 (because 
an 𝑖 ∈ 𝑉) is missing or 𝐸 𝜒𝐸 = 0 because each 

edge outside the clique is present with probability 
1

2

𝑉

𝐸



Fourier Coefficients of ෨𝐸[𝑥𝑉]

• From the pseudo-calibration calculation, 

෨𝐸[𝑥𝑉]𝐸 = 𝐸
𝐺∼𝐺 𝑛,

1

2

෨𝐸[𝑥𝑉] ⋅ 𝜒𝐸 =
𝑘

𝑛

|𝑉∪𝑉(𝐸)|

• We take ෨𝐸[𝑥𝑉] = σ𝐸: 𝑉∪𝑉 𝐸 ≤𝐷
𝑘

𝑛

|𝑉∪𝑉(𝐸)|

where 𝐷 is a truncation parameter and then 

normalize so that ෨𝐸[𝑥∅] = ෨𝐸[1] = 1

• Good exercise: What happens if we don’t 
truncate at all?



Graph Matrix Decomposition

• Ignoring the normalization, 𝑀 = σ𝐻
𝑘

𝑛

|𝑉(𝐻)|
𝑅𝐻

where we sum over ALL 𝐻 with at most 𝐷
vertices which have no isolated vertices outside 
of 𝑈 and 𝑉.



Part III: Decomposition of Graph 
Matrices via Minimum Vertex 

Separators



Proof Sketch

• How can we show 𝑀 ≽ 0 with high probability?

• High level idea:

1. Find an approximate PSD decomposition 𝑀𝑓𝑎𝑐𝑡 of 
𝑀

2. Handle the error 𝑀𝑓𝑎𝑐𝑡 − 𝑀. Unfortunately, this 
error is not small enough to ignore, so we carefully 
show that 𝑀𝑓𝑎𝑐𝑡 − 𝑀 ≼ 𝑀𝑓𝑎𝑐𝑡 with high 
probability. We briefly sketch the ideas for this in 
Appendix I. For the full details, see [BHK+16]



Technical Minefield

• Warning: This analysis is a technical minefield

Mine handled 
correctly 

Not quite correct, 
see Appendix II



Decomposition via Separators

• How can we handle all of the different 𝑅𝐻?

• Key idea: Decompose each 𝐻 into three parts 
𝜎, 𝜏, 𝜎′𝑇 based on the leftmost and rightmost 
minimum vertex separators 𝑆 and 𝑇 of 𝐻

U V
S T

H
𝜎

𝜏
𝜎′𝑇



Separator Definitions

• Definition: Given a graph 𝐻 with 
distinguished sets of vertices 𝑈 and 𝑉, a 
vertex separator 𝑆 is a set of vertices such 
that any path from 𝑈 to 𝑉 must intersect 𝑆.

• Definition: A leftmost minimum vertex 
separator 𝑆 is a set of vertices such that for 
any vertex sepator 𝑆′ of minimum size, any 
path from 𝑈 to 𝑆′ intersects 𝑆.

• A rightmost minimum vertex separator is 
defined analogously.



Existence of Minimum Separators

• Lemma 6.3 of [BHK+16]: Leftmost and 
rightmost minimum vertex separators
always exist and are unique.



Left, Middle, and Right Parts

• Let 𝑆, 𝑇 be the leftmost and rightmost 
minimum vertex separators of 𝐻

• Definition: We take the left part 𝜎 of 𝐻 to be 
the part of 𝐻 between 𝑈 and 𝑆, we take the 
middle part 𝜏 of 𝐻 to be the part of 𝐻
between 𝑆 and 𝑇, and we take the right part 
𝜎′𝑇 of 𝐻 to be the part of 𝐻 between 𝑇 and 𝑉



Conditions on Parts

• 𝜎, 𝜏, 𝜎′𝑇 satisfy the following:

• The unique minimum vertex separator of 𝜎 is 
𝑉𝜎 = 𝑆 (where 𝑉𝜎 is the right side of 𝜎)

• The leftmost and rightmost minimum vertex 
separators of 𝜏 are 𝑈𝜏 = 𝑆 and 𝑉𝜏 = 𝑇 (where 
𝑈𝜏 and 𝑉𝜏 are the left and right sides of 𝜏)

• The unique minimum vertex separator of 𝜎′𝑇 is 
𝑈

𝜎′𝑇 = 𝑇 (where 𝑈
𝜎′𝑇 is the left side of 𝜎′𝑇)



Approximate Decomposition

• Claim: If 𝑟 is the size of the minimum vertex 
separator of 𝐻, 

𝑅𝐻 ≈ 𝑅𝜎𝑅𝜏𝑅
𝜎′𝑇

• Idea: There is a bijection between injective
mappings 𝜙: 𝑉 𝐻 → 𝑉(𝐺) and injective
mappings 𝜙1: 𝑉 𝜎 → 𝑉(𝐺), 𝜙2: 𝑉 𝜏 → 𝑉(𝐺), 
and 𝜙3: 𝑉(𝜎′𝑇

) → 𝑉(𝐺) such that
1. 𝜙1, 𝜙2 agree on 𝑆 and 𝜙2, 𝜙3 agree on 𝑇

2. Collectively, 𝜙1, 𝜙2, 𝜙3 don’t map two different 
vertices of 𝐻 to the same vertex of 𝐺



Approximate Decomposition

• Claim: If 𝑟 is the size of the minimum vertex 
separator of 𝐻, 

𝑅𝐻 ≈ 𝑅𝜎𝑅𝜏𝑅
𝜎′𝑇

• Corollary:

𝑘

𝑛

|𝑉(𝐻)|
𝑅𝐻 ≈

𝑘

𝑛

𝑉 𝐻 −
𝑟

2
𝑅𝜎

𝑘

𝑛

𝑉 𝐻 −𝑟
𝑅𝜏

𝑘

𝑛

𝑉 𝐻 −
𝑟

2
𝑅

𝜎′𝑇



U V
S T

𝑅𝐻

U
S S T

V
T

≈

× ×

𝑅𝜎
𝑅𝜏 𝑅

𝜎′𝑇



Intersection Terms

• Warning! There will be terms where 𝜙1, 𝜙2, 𝜙3

map multiple vertices to the same vertex. We 
call these intersection terms.

• We sketch how to handle intersection terms in 
Appendix I. For now, we sweep this under the 
rug.



Part IV: Attempt #1: Bounding With 
Square Terms



Bounding With Square Terms

• How can we handle all of the 𝑅𝜎𝑅𝜏𝑅
𝜎′𝑇 terms?

• One idea: Can bound 𝑅𝜎𝑅𝜏𝑅
𝜎′𝑇 + 𝑅𝜎𝑅𝜏𝑅

𝜎′𝑇

𝑇

as follows.

• 𝑎𝑅𝜎 − 𝑏𝑅
𝜎′𝑇
𝑇 𝑅𝜏

𝑇 𝑎𝑅𝜎 − 𝑏𝑅
𝜎′𝑇
𝑇 𝑅𝜏

𝑇
𝑇

≽ 0



Bounding With Square Terms

• 𝑎𝑅𝜎 − 𝑏𝑅
𝜎′𝑇
𝑇 𝑅𝜏

𝑇 𝑎𝑅𝜎 − 𝑏𝑅
𝜎′𝑇
𝑇 𝑅𝜏

𝑇
𝑇

≽ 0

• Rearranging, ab 𝑅𝜎𝑅𝜏𝑅
𝜎′𝑇 + 𝑅𝜎𝑅𝜏𝑅

𝜎′𝑇

𝑇
≼

𝑎2𝑅𝜎𝑅𝜎
𝑇 + 𝑏2𝑅

𝜎′𝑇
𝑇 𝑅𝜏

𝑇𝑅𝜏𝑅
𝜎′𝑇 ≼ 𝑎2𝑅𝜎𝑅𝜎

𝑇 +

𝑏2 𝑅𝜏
𝑇𝑅𝜏 𝑅

𝜎′𝑇
𝑇 𝑅

𝜎′𝑇



Example

• What square terms would the following 𝑅𝐻 be 
bounded by (ignoring intersection terms)?

U V
S T

𝑅𝐻



Example Answer

• Answer: Take the left part and its mirror 
image and take the right part and its mirror 
image

𝜎 𝜎𝑇 𝜎′ 𝜎′𝑇



Bounding With Square Terms Failure

• Unfortunately, the coefficients on the square 
terms aren’t high enough for this idea to work.

• We need a more sophisticated analysis.



Part V: Approximate PSD 
Decomposition



𝐿𝑄𝐿𝑇 factorization

• Definition: Define 𝐿𝑟 = σ𝜎:|𝑉𝜎|=𝑟
𝑘

𝑛

𝑉 𝜎 −
𝑟

2
𝑅𝜎

and define 𝑄𝑟 = σ𝜏:|𝑈𝜏|=|𝑉𝜏|=𝑟
𝑘

𝑛

𝑉 𝜏 −𝑟
𝑅𝜏

where we require that 𝑉𝜎 is the unique 
minimum vertex separator of 𝜎 and 𝑈𝜏, 𝑉𝜏 are 
the leftmost and rightmost minimum vertex 

separators of 𝜏. Define 𝑀𝑓𝑎𝑐𝑡 = σ
𝑟=0

𝑑

2 𝐿𝑟𝑄𝑟𝐿𝑟
𝑇

• Claim: 𝑀 ≈ 𝑀𝑓𝑎𝑐𝑡 = σ
𝑟=0

𝑑

2 𝐿𝑟𝑄𝑟𝐿𝑟
𝑇



Claim Justification

• Claim: 𝑀 ≈ 𝑀𝑓𝑎𝑐𝑡 = σ
𝑟=0

𝑑

2 𝐿𝑟𝑄𝑟𝐿𝑟
𝑇

• This follows from the decomposition of each 

𝐻 into left, middle, and right parts 𝜎, 𝜏, 𝜎′𝑇
and 

the claim that up to intersection terms, 

𝑘

𝑛

|𝑉(𝐻)|
𝑅𝐻 =

𝑘

𝑛

𝑉 𝐻 −
𝑟

2
𝑅𝜎

𝑘

𝑛

𝑉 𝐻 −𝑟
𝑅𝜏

𝑘

𝑛

𝑉 𝐻 −
𝑟

2
𝑅

𝜎′𝑇



Analysis of 𝑄𝑟

• 𝑄𝑟 = σ𝜏:|𝑈𝜏|=|𝑉𝜏|=𝑟
𝑘

𝑛

𝑉 𝜏 −𝑟
𝑅𝜏

• Probabilistic norm bounds: With high 

probability, 𝑅𝜏 is ෨𝑂(𝑛
𝑉 𝜏 −𝑟

2 ) because 𝑟 is 
the size of the minimum vertex separator of 𝐻

• Corollary: If 𝑘 ≤ 𝑛
1

2
−𝜖 then with high 

probability, 𝑄𝑟 ≽
1

2
𝐼𝑑 as the identity is the 

dominant term of 𝑄𝑟



Summary

• If 𝑘 ≤ 𝑛
1

2
−𝜖 then with high probability,

𝑀𝑓𝑎𝑐𝑡 = σ
𝑟=0

𝑑

2 𝐿𝑟𝑄𝑟𝐿𝑟
𝑇 ≽

1

2
σ

𝑟=0

𝑑

2 𝐿𝑟𝐿𝑟
𝑇

• The 
1

2
σ

𝑟=0

𝑑

2 𝐿𝑟𝐿𝑟
𝑇 allows us to deal with the 

error 𝑀𝑓𝑎𝑐𝑡 − 𝑀.



Part VI: Further Work and Open 
Problems



Further Work

• The techniques used for planted clique can be 
generalized to other planted problems where 
we are trying to distinguish a planted 
distribution from a random distribution
[HKP+17]



Open Problems

• Can we prove the full lower bound for planted 
clique with the exact constraint that 
σ𝑖=1

𝑛 𝑥𝑖 = 𝑘?

• How close to 𝑛 can we make the lower 
bound?

• It turns out that the current machinery 
doesn’t work as well for random sparse 
graphs. What bounds can we prove for
problems such as densest k-subgraph and
independent set on sparse graphs? 
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• [BHK+16] B. Barak, S. B. Hopkins, J. A. Kelner, P. Kothari, A. Moitra, and A. Potechin, 
A nearly tight sum-of-squares lower bound for the planted clique problem, FOCS 
p.428–437, 2016.

• [HKP+17] S. Hopkins, P. Kothari, A. Potechin, P. Raghavendra, T. Schramm, D. Steurer. 
The power of sum-of-squares for detecting hidden structures. FOCS 2017



Appendix I: Handling Intersection 
Terms



High Level Idea

• If there are intersections between the left, 
middle, and right parts, this creates a new 
graph 𝐻2.

• We can decompose 𝐻2 into new left, middle, 
and right parts!



𝑈 𝐻

𝑆 = 𝑇

𝑉

=

𝑈 𝐻2 𝑉
𝑆2

𝑇′
𝜎2

𝜏2

𝜎2
′𝑇



Choosing New Separators

• How do we choose the new separators 𝑆′ and 
𝑇′? 

• We take 𝑆′ to be the leftmost minimum vertex 
separator between 𝑈 and 
{intersected vertices} ∪ 𝑆. 

• Similarly, we take 𝑇′ to be the rightmost 
minimum vertex separator between 
{intersected vertices} ∪ 𝑇 and 𝑉.



Key Idea

• This decomposition works the same 

regardless of what 𝜎2 and 𝜎2
′𝑇

look like (see 
Claim 6.11 of [BHK+16])!

• Thus, we get a new approximate 

decomposition of the form σ
𝑟′=0

𝑑

2 𝐿𝑟′𝑄𝑟′
′ 𝐿𝑟′

• This can be bounded by 
1

2
σ

𝑟=0

𝑑

2 𝐿𝑟𝐿𝑟
𝑇 as long as 

we always have that 𝑄𝑟′
′ ≪ 1



Bounding New Middle Parts

• We need to show that the new middle parts 
don’t have norms which are too high.

• This is done with the intersection tradeoff 
lemma (Lemma 7.12 of [BHK+16])



Appendix II: Technical Mines



Approximate Decomposition Mine

• Claim: If 𝑟 is the size of the minimum vertex 
separator of 𝐻, 

𝑅𝐻 ≈ 𝑅𝜎𝑅𝜏𝑅
𝜎′𝑇

• There are subtle issues related to the ordering 
of 𝑆 and 𝑇, the leftmost and rightmost 
minimum vertex separators of 𝐻

• How these issues should be handled depends
on whether we require matrix indices to be in
ascending order.



Approximate Decomposition Mine

• If we require matrix indices to be in ascending 
order, what we actually have is 𝑅𝐻 ≈
σ

𝜎,𝜏,𝜎′𝑇
:𝐻=𝜎∪𝜏∪𝜎′𝑇 𝑅𝜎𝑅𝜏𝑅

𝜎′𝑇 where 𝜎 ∪ 𝜏 ∪ 𝜎′𝑇

is the graph formed by gluing 𝜎, 𝜏, 𝜎′𝑇
together.

• In fact, this equation is precisely what is 
needed for the approximate PSD 

decomposition 𝑀 ≈ 𝑀𝑓𝑎𝑐𝑡 = σ
𝑟=0

𝑑

2 𝐿𝑟𝑄𝑟𝐿𝑟
𝑇.



Approximate Decomposition Mine

• Remark: [BHK+16] navigates this issue by 
keeping everything in terms of the individual 
ribbons (Fourier characters for a given matrix 
entry) until it is time to use the matrix norm 
bounds (see Definition 6.1 and subsection 6.4 
of [BHK+16])



Approximate Decomposition Mine

• If we do not require matrix indices to be in 
ascending order, we actually have the following 
two equations

1. 𝑅𝐻 ≈ 𝐴𝑢𝑡 𝜎, 𝜏, 𝜎′𝑇
𝑅𝜎𝑅𝜏𝑅

𝜎′𝑇 where 

𝐴𝑢𝑡 𝜎, 𝜏, 𝜎′𝑇
is the number of different ways 

to decompose 𝐻 into 𝜎, 𝜏, 𝜎′𝑇
.

2. 𝑅𝐻 ≈
1

𝑠𝐻 !2
σ

𝜎,𝜏,𝜎′𝑇
:𝐻=𝜎∪𝜏∪𝜎′𝑇 𝑅𝜎𝑅𝜏𝑅

𝜎′𝑇 where 

𝜎 ∪ 𝜏 ∪ 𝜎′𝑇
is the graph formed by gluing 𝜎, 𝜏, 𝜎′𝑇

together.



Truncation Mine

• Definition: Define 𝐿𝑟 = σ𝜎:|𝑉𝜎|=𝑟
𝑘

𝑛

𝑉 𝜎 −
𝑟

2
𝑅𝜎

and define 𝑄𝑟 = σ𝜏:|𝑈𝜏|=|𝑉𝜏|=𝑟
𝑘

𝑛

𝑉 𝜏 −𝑟
𝑅𝜏

where we require that 𝑉𝜎 is the unique 
minimum vertex separator of 𝜎 and 𝑈𝜏, 𝑉𝜏 are 
the leftmost and rightmost minimum vertex 

separators of 𝜏. Define 𝑀𝑓𝑎𝑐𝑡 = σ
𝑟=0

𝑑

2 𝐿𝑟𝑄𝑟𝐿𝑟
𝑇

• Actually, we need to truncate 𝐿𝑟 and 𝑅𝑟 by only 
taking 𝜎, 𝜏 with at most 𝐷 vertices



Truncation Mine

• Warning: There is a mismatch between 𝐻
which have at most 𝐷 vertices and triples 

𝜎, 𝜏, 𝜎′𝑇
which each have at most 𝐷 vertices.

• This truncation error turns out to have very 
small total norm, see Lemma 7.4 of [BHK+16]


