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Part I: Planted Sparse Vector and 
2 to 4 Norm



• Planted Sparse Vector problem: Given the span 
of 𝑑 − 1 random vectors in ℝ𝑛 and one unit 
vector 𝑣 ∈ ℝ𝑛 of sparsity 𝑘, can we recover 𝑣?

• More precisely, let 𝑉 be an n × 𝑑 matrix where:

1. 𝑑 − 1 columns of 𝑉 are vectors of length ≈ 1
chosen randomly from ℝ𝑛

2. One column of 𝑉 is a unit vector 𝑣 with ≤ 𝑘
nonzero entries.

• Given 𝑉𝑅 where 𝑅 is an arbitrary invertible 𝑑 × 𝑑
matrix, can we recover 𝑣?

Planted Sparse Vector



• Theorem 1.4 [BKS14]: There is a constant 𝑐 > 0
and an algorithm based on constant degree SOS 
such that for every vector 𝑣0 supported on at 
most 𝑐𝑛 ⋅ min{1, 𝑛/𝑑2} coordinates, if 𝑣1, … , 𝑣𝑑
are chosen independently at random from the 
Gaussian distribution on 𝑅𝑛, then given any 
basis for 𝑉 = 𝑠𝑝𝑎𝑛{𝑣0, … , 𝑣𝑑}, the algorithm 
outputs an 𝜖-approximation to 𝑣0 in 
𝑝𝑜𝑙𝑦(𝑛, log(1/𝜖)) time.

Theorem Statement



• Random Distribution: We choose each entry of 𝑉

independently from 𝑁 0,
1

𝑛
, the normal 

distribution with mean 0 and standard deviation 
1

𝑛

• We then choose 𝑅 to be a random 𝑑 × 𝑑
orthogonal/rotation matrix and take 𝑉𝑅 to be 
our input matrix.

Random Distribution



• Remark: If 𝑅 is any 𝑑 × 𝑑 orthogonal/rotation 
matrix then 𝑉𝑅 can also be chosen by taking 

each entry of 𝑉 independently from 𝑁 0,
1

𝑛
.

• Idea: Each row of 𝑉 comes from a multivariate 

normal distribution with covariance matrix 
1

𝑛
𝐼𝑑𝑑, 

which is invariant under rotations

Random Distribution



• Planted Distribution: We choose each entry of 
the first 𝑑 − 1 columns of 𝑉 independently from 

𝑁 0,
1

𝑛
. The last column of 𝑉 is our sparse unit 

vector 𝑣.

• We then choose 𝑅 to be a random 𝑑 × 𝑑
orthogonal/rotation matrix and take 𝑉𝑅 to be 
our input matrix.

Planted Distribution



• We ask for an 𝑥 such that

1. 𝑉𝑅𝑥 = 1

2. 𝑉𝑅𝑥 is k-sparse (i.e. at most 𝑘 indices of 𝑉𝑅𝑥 are 
nonzero).

• Hard to search for 𝑥 such that 𝑉𝑅𝑥 is k-sparse, 
so we’ll need to relax the problem.

Output



• Key idea: All unit vectors have the same 2-norm. 
However, sparse vectors will have higher 4-norm

• 4-norm for a 𝑘-sparse unit vector in ℝ𝑛 is at 

least 
4
k ⋅

1

𝑘2
=

1
4
𝑘

(obtained by setting 𝑘

coordinates to 
±1

𝑘
and the rest to 0)

• Relaxation Attempt #1: Search for an 𝑥 such that
1. 𝑉𝑅𝑥 = 1

2. 𝑉𝑅𝑥 4 ≥
1
4
𝑘

Distinguishing Sparse Vectors



• This is the 2 to 4 Norm Problem: Given a matrix 

𝐴, find the vector 𝑥 which maximizes 
𝐴𝑥 4

𝐴𝑥

2 to 4 Norm Problem



Part II: SOS and 2 to 4 Norm on 
Random Subspaces



• Unfortunately, the 2 to 4 norm problem is hard 
[BBH+12]:

– NP-hard to obtain an approximation ratio of 

1 +
1

𝑛𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛)

– Assuming ETH (the exponential time hypothesis), it is 
hard to approximate to within a constant factor.

• Thus, we’ll need to relax our problem further.

2 to 4 Norm Hardness



• Relaxation: Find ෨𝐸 which respects the following 
constraints:

1. 𝑉𝑅𝑥 2 = σ𝑖=1
𝑛 𝑉𝑅𝑥 𝑖

2 = 1

2. 𝑉𝑅𝑥 4
4 = σ𝑖=1

𝑛 𝑉𝑅𝑥 𝑖
4 ≥

1

𝑘

SOS Relaxation



• Constraints:

1. 𝑉𝑅𝑥 2 = σ𝑖=1
𝑛 𝑉𝑅𝑥 𝑖

2 = 1

2. 𝑉𝑅𝑥 4
4 = σ𝑖=1

𝑛 𝑉𝑅𝑥 𝑖
4 ≥

1

𝑘

• To show that SOS distinguishes between the 
random and planted distribution, it is sufficient 
to show that there is no ෨𝐸 which respects these 
constraints and has a PSD moment matrix 𝑀.

• Remark: Although the 2 to 4 Norm problem is 
hard in general, we just need to show that SOS 
can approximate it on random subspaces.

Showing a Distinguishing Algorithm



• Given a random subspace, what is the expected 
value of the largest 4-norm of a unit vector in 
the subspace?

• Trivial strategy: Any unit vector’s 4-norm is at 

least 
1
4 𝑛

.

• Can we do better?

2 to 4 Norm on Random Subspaces



• Another strategy: Take a basis for this space and 
take a linear combination which maximizes one 
coordinate (subject to having length 1)

• If we add together 𝑑 random vectors with entries 

≈ ±
1

𝑛
, w.h.p. the result will have norm ෩Θ 𝑑 . 

Diving the resulting vector by ෩Θ 𝑑 , the 

maximized entry will have magnitude ෩Θ
𝑑

𝑛
, 

other entries will have magnitude ෩O
1

𝑛

2 to 4 Norm on Random Subspaces



• Calling our final result 𝑤, w.h.p. the maximized 

entry of 𝑤 contributes ෩Θ
𝑑2

𝑛2
to 𝑤 4

4 while the 

other entries contribute ෩Θ
1

𝑛
.

• It turns out that this strategy is essentially 
optimal. Thus, with high probability the 
maximum 4-norm of a unit vector in a d-
dimensional random subspace will be 

෩Θ max
𝑑

𝑛
,
1
4 𝑛

.

2 to 4 Norm on Random Subspaces



• Planted dist: max 4-norm ≥
1
4
𝑘

• Random dist: max 4-norm is ෩Θ max
𝑑

𝑛
,
1
4 𝑛

.

• IF SOS can certify the upper bound for a 
random subspace, this gives a distinguishing 

algorithm when max
𝑑

𝑛
,
1
4 𝑛

≪
1
4
𝑘

(which 

happens when 𝑑 ≤ 𝑛 and 𝑘 ≪ 𝑛 or when 

𝑑 ≥ 𝑛 and k ≪
𝑛2

𝑑2
)

Algorithm Boundary



Part III: Warmup: Showing 𝑥 ≈ 1



• Take 𝑤 = 𝑉𝑅𝑥.

• We expect that 𝑤 ≈ 𝑥 . Since we require 
that 𝑤 = 1, this implies that we will have 
𝑥 ≈ 1

• To check that 𝑤 ≈ 𝑥 , observe that 𝑤 2
2 =

𝑥𝑇 RV T VR x. Thus, it is sufficient to show that 
RV T VR ≈ 𝐼𝑑.

Showing 𝑥 ≈ 1



• We have that RV T VR ≈ 𝐼𝑑 because the 
columns of 𝑉𝑅 are 𝑑 random unit vectors 
(where 𝑑 ≪ 𝑛) and are thus approximately 
orthonormal.

• However, we will use graph matrices to analyze 
the 4-norm, so as a warm-up, let’s check that 
RV T VR ≈ 𝐼𝑑 using graph matrices.

Checking RV T VR ≈ 𝐼𝑑



• So far we have worked over {−1,+1}𝑚.

• How can we use graph matrices over 𝑁 0,1 𝑚?

• Key idea: Look at the Fourier characters over 
𝑁(0,1).

Graph Matrices Over 𝑁(0,1)



• Inner product on 𝑁 0,1 : 𝑓 ⋅ 𝑔 =
𝐸𝑥∼𝑁 0,1 𝑓 𝑥 𝑔(𝑥)

• Fourier characters: Hermite polynomials

• The first few Hermite polynomials (up to 
normalization) are as follows:
1. ℎ0 = 1

2. ℎ1 = 𝑥

3. ℎ2 = 𝑥2 − 1

4. ℎ3 = 𝑥3 − 3𝑥

• To normalize, divide ℎ𝑗 by 𝑗!

Fourier Analysis Over 𝑁(0,1)



• Graph matrices over {−1,1}𝑚: 1 and 𝑥 are a 
basis for functions over {−1,1}. We represent 𝑥
by an edge and 1 by the absence of an edge

• Graph matrices over 𝑁 0,1 𝑚: {ℎ𝑗} are a basis 

for functions over 𝑁(0,1). We represent ℎ𝑗 by a 

multi-edge with multiplicity 𝑗.

Graph Matrices Over 𝑁(0,1)



• For convenience, take 𝐴 = 𝑛𝑅𝑉 and think of 
the entries of 𝐴 as the input. Now each entry of 
𝐴 is chosen independently from 𝑁(0,1)

• 𝐴𝑖𝑗 is represented by an edge from node 𝑖 to 

node 𝑗.

• In class challenge: What is RV T VR in terms 
of graph matrices?

Graph Matrices for RV T VR

𝑗1 𝑖 𝑖 𝑗2×
1

𝑛
𝑛 𝑛𝑑 𝑑



• In class challenge answer:

Graph Matrices for RV T VR

𝑗1 𝑖 𝑖 𝑗2×
1

𝑛
𝑛 𝑛𝑑 𝑑

=

d n d

𝑈 𝑉

𝑗1 𝑗2𝑖1

𝑛
+

d

n

𝑈 = 𝑉

𝑗

𝑖

d

n

𝑈 = 𝑉

𝑗

𝑖

1

𝑛
+ 2

𝑛



• Here we have two different types of vertices, 
one for the rows of 𝐴 (which has 𝑛 possibilities) 
and one for the columns of 𝐴 (which has 𝑑
possibilities)

• Can generalize the rough norm bounds to handle 
multiple types of vertices (writing this up is on 
my to-do list)

Generalizing Rough Norm Bounds 



• Generalized rough norm bounds:

• Each isolated vertex outside of 𝑈 and 𝑉
contributes a factor equal to the number of 
possibilities for that vertex

• Each vertex in the minimum separator (which 
minimizes the total number of possibilities for its 
vertices) contributes nothing

• Each other vertex contributes a factor equal to 
the square root of the number of possibilities for 
that vertex

Generalizing Rough Norm Bounds 



Norm Bounds for RV T VR

𝑗1 𝑖 𝑖 𝑗2×
1

𝑛
𝑛 𝑛𝑑 𝑑

=

d n d

𝑈 𝑉

𝑗1 𝑗2𝑖1

𝑛
+

d

n

𝑈 = 𝑉

𝑗

𝑖

d

n

𝑈 = 𝑉

𝑗

𝑖

1

𝑛
+ 2

𝑛

෨𝑂
𝑑

𝑛
෨𝑂

1

𝑛
= 𝐼𝑑𝑑



Part IV: 4-Norm Analysis



• We want to bound 
1

𝑛
𝐴𝑥

4

4

• Take 𝐵 to be the matrix with entries 𝐵𝑖,(𝑗1,𝑗2) =

𝐴𝑖𝑗1𝐴𝑖𝑗2

•
1

𝑛
𝐴𝑥

4

4

=
1

𝑛2
𝑥 ⊗ 𝑥 𝑇𝐵𝑇𝐵(𝑥 ⊗ 𝑥)

• Can try to bound 𝐵𝑇𝐵

4-Norm Analysis



• Picture for 𝐵𝑇𝐵:

Picture for 𝐵𝑇𝐵

𝑗1 𝑖

𝑛𝑑

𝑗1 𝑖

𝑛𝑑

𝑖

𝑛

𝑗1

𝑗2

2

+

+

𝑗3𝑖

𝑛 𝑑

𝑗3𝑖

𝑛 𝑑

𝑖

𝑛

𝑗3

𝑗4

2

+

+

×



• If 𝑑 ≤ 𝑛, the target norm bound on 𝐵𝑇𝐵 is 

෩O(𝑛), giving a bound of ෩O
1

𝑛
on 𝑉𝑅𝑥 4

4.

• If 𝑑 ≥ 𝑛, the target norm bound on 𝐵𝑇𝐵 is 

෩O 𝑑2 , giving a bound of ෩O
𝑑2

𝑛2
on 𝑉𝑅𝑥 4

4

Targets



Casework

d

n

𝑈

𝑗1

𝑖

d

𝑗2

d

𝑉

𝑗3

d

𝑗4

𝑖

𝑛

𝑗1

𝑗2

× 𝑖

𝑛

𝑗3

𝑗4

Norm ෨𝑂 𝑑 𝑛

if 𝑑 ≤ 𝑛, 

norm ෨𝑂 𝑑2 if 

𝑑 ≥ 𝑛



Casework

d

n𝑈

𝑗1

𝑖
d

𝑗2

𝑉
d

𝑗4

𝑖

𝑛

𝑗1

𝑗2

× 𝑖

𝑛

𝑗1

𝑗4

Norm ෨𝑂 𝑑𝑛

Note: 0 or 2 edges 
between 𝑖 and 𝑗1



Casework

d

n

𝑈 = 𝑉

𝑗1

𝑖

d

𝑗2

𝑖

𝑛

𝑗1

𝑗2

× 𝑖

𝑛

𝑗1

𝑗2

= 𝑛𝐼𝑑 + Norm 
෨𝑂 𝑛

Note: 0 or 2 edges 
between 𝑖 and 𝑗1, 
0 or 2 edges 
between 𝑖 and 𝑗2



Casework

d n

𝑈

𝑗1 𝑖 d

𝑉

𝑗3

d

𝑗4

𝑖

𝑛

𝑗1 × 𝑖

𝑛

𝑗3

𝑗4

Norm ෨𝑂 𝑛𝑑3

Too large!

Note: 0 or 2 edges 
between 𝑖 and 𝑗1

Note: 0 or 2 edges 
between 𝑖 and 𝑗1



Casework

n

𝑈

𝑖 d

𝑉

𝑗1

d

𝑗4

𝑖

𝑛

𝑗1 × 𝑖

𝑛

𝑗1

𝑗4

Norm ෨𝑂 𝑑𝑛Note: 1 or 3 edges 
between 𝑖 and 𝑗1

Note: 0 or 2 edges 
between 𝑖 and 𝑗1



Casework

d n

𝑈

𝑗1 𝑖

d

𝑉

𝑗2

𝑖

𝑛

𝑗1 × 𝑖

𝑛

𝑗2

Norm ෨𝑂 𝑛𝑑
Too large!

Note: 0 or 2 edges 
between 𝑖 and 𝑗1 and 
between 𝑖 and 𝑗2

Note: 0 or 2 edges 
between 𝑖 and 𝑗1 and 
between 𝑖 and 𝑗2



Casework

n

𝑖

d

𝑈 = 𝑉

𝑗1

𝑖

𝑛

𝑗1 × 𝑖

𝑛

𝑗1

Turns out to be 
3𝐼𝑑 + Norm
෨𝑂( 𝑛)

Note: 0 or 2 edges 
between 𝑖 and 𝑗1 on 
both ends

Note: 0,2, or 4 edges 
between 𝑖 and 𝑗1



• Most cases have sufficiently small norm.

• Two cases have a norm which is too large, so 
norm bounds alone are not enough…

Summary



Part V: SOS-Symmetry to the 
Rescue



• Instead of looking at max
𝑤: 𝑤 =1

𝑤𝑇𝐵𝑇𝐵𝑤, we only 

need to upper bound

max
𝑥: 𝑥 =1

𝑥 ⊗ 𝑥 𝑇𝐵𝑇𝐵(𝑥 ⊗ 𝑥)

• As far as 𝑥 ⊗ 𝑥 𝑇𝐵𝑇𝐵(𝑥 ⊗ 𝑥) is concerned, we 
can rearrange indices in pieces of 𝐵𝑇𝐵.

Key Idea: Rearranging Indices



Rearranging Indices Case #1

d n

𝑈

𝑗1 𝑖

d

𝑉

𝑗2

𝑖

𝑛

𝑗1 × 𝑖

𝑛

𝑗2

d

n

𝑈 = 𝑉

𝑗1

𝑖

d

𝑗2

𝑖

𝑛

𝑗1

𝑗2

× 𝑖

𝑛

𝑗1

𝑗2

rearranging indices



Rearranging Indices Case #2

rearranging indices

d n

𝑈

𝑗1 𝑖 d

𝑉

𝑗3

d

𝑗4

𝑖

𝑛

𝑗1 × 𝑖

𝑛

𝑗3

𝑗4

d

n𝑈

𝑗1

𝑖
d

𝑗2

𝑉
d

𝑗4

𝑖

𝑛

𝑗1

𝑗2

× 𝑖

𝑛

𝑗1

𝑗4



• For the two cases whose norm is too high, their 
norm can be reduced by rearranging indices.

• This proves the upper bound on

max
𝑥: 𝑥 =1

𝑥 ⊗ 𝑥 𝑇𝐵𝑇𝐵(𝑥 ⊗ 𝑥)

Effect of Rearranging Indices



Part VI: Observations and Loose Ends



• Note: This 4-norm analysis roughly 
corresponds to p.33-37 of [BBH+12]

• Remark: When 𝑑 ≪ 𝑛, with a slightly 
more careful analysis we can show that 

𝑥 ⊗ 𝑥 𝑇𝐵𝑇𝐵 𝑥 ⊗ 𝑥 = 3 ± 𝑜 1 𝑥 2
4, 

matching the results in [BBH+12].

Observations: 4-Norm Analysis



• How can we handle arbitrary 𝑅 rather than a 
random orthogonal 𝑅 (i.e. any span of the 
vectors)?

• SOS handles it automatically!

• Idea: The SOS-symmetry and 𝑀 ≽ 0 constraints 
are invariant under linear transformations of the 
variables. Thus, having a different 𝑅 merely 
applies a linear transformation to the pseudo-
expectation values.

Loose Ends: Arbitrary 𝑅



• We have only shown a distinguishing algorithm 
between the random and planted cases. How 
can we find the planted sparse vector 𝑣 exactly?

• Can be done in two steps:
1. The analysis shows that degree 4 SOS will output a 

vector 𝑣′ which is highly correlated with 𝑣 (because 
the random part of the subspace has nothing with 
high 4-norm)

2. Using 𝑣′ as a guide, find 𝑣. This can be done by 
minimizing then 𝐿1 norm of a vector 𝑣 in the 
subspace subject to 𝑣 ⋅ 𝑣′ = 1, see [BKS14] for 
details.

Loose Ends: Finding 𝑣 Exactly



Part VII: Open Problems



• What more can we say when 𝑑 ≫ 𝑛?

• More specifically, can we find a better algorithm
using more than the 4-norm? Is there an SOS 

lower bound showing that 𝑘 =
𝑛2

𝑑2
is tight?

Open Problems
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