Lecture 14: Planted Sparse Vector

Lecture Outline

- Part I: Planted Sparse Vector and 2 to 4 Norm
- Part II: SOS and 2 to 4 Norm on Random Subspaces
- Part III: Warmup: Showing $\|x\| \approx 1$
- Part IV: 4-Norm Analysis
- Part V: SOS-symmetry to the Rescue
- Part VI: Observations and Loose Ends
- Part VII: Open Problems

Part I: Planted Sparse Vector and 2 to 4 Norm

Planted Sparse Vector

- Planted Sparse Vector problem: Given the span of $d-1$ random vectors in \mathbb{R}^{n} and one unit vector $v \in \mathbb{R}^{n}$ of sparsity k, can we recover v ?
- More precisely, let V be an $\mathrm{n} \times d$ matrix where: 1. $d-1$ columns of V are vectors of length ≈ 1 chosen randomly from \mathbb{R}^{n}

2. One column of V is a unit vector v with $\leq k$ nonzero entries.

- Given $V R$ where R is an arbitrary invertible $d \times d$ matrix, can we recover v ?

Theorem Statement

- Theorem 1.4 [BKS14]: There is a constant $c>0$ and an algorithm based on constant degree SOS such that for every vector v_{0} supported on at most $c n \cdot \min \left\{1, n / d^{2}\right\}$ coordinates, if v_{1}, \ldots, v_{d} are chosen independently at random from the Gaussian distribution on R^{n}, then given any basis for $V=\operatorname{span}\left\{v_{0}, \ldots, v_{d}\right\}$, the algorithm outputs an ϵ-approximation to v_{0} in $\operatorname{poly}(n, \log (1 / \epsilon))$ time.

Random Distribution

- Random Distribution: We choose each entry of V independently from $N\left(0, \frac{1}{n}\right)$, the normal distribution with mean 0 and standard deviation $\frac{1}{\sqrt{n}}$
- We then choose R to be a random $d \times d$ orthogonal/rotation matrix and take $V R$ to be our input matrix.

Random Distribution

- Remark: If R is any $d \times d$ orthogonal/rotation matrix then $V R$ can also be chosen by taking each entry of V independently from $N\left(0, \frac{1}{n}\right)$.
- Idea: Each row of V comes from a multivariate normal distribution with covariance matrix $\frac{1}{n} I d_{d}$, which is invariant under rotations

Planted Distribution

- Planted Distribution: We choose each entry of the first $d-1$ columns of V independently from $N\left(0, \frac{1}{n}\right)$. The last column of V is our sparse unit vector v.
- We then choose R to be a random $d \times d$ orthogonal/rotation matrix and take $V R$ to be our input matrix.

Output

- We ask for an x such that

1. $\|V R x\|=1$
2. $\quad V R x$ is k-sparse (i.e. at most k indices of $V R x$ are nonzero).

- Hard to search for x such that $V R x$ is k-sparse, so we'll need to relax the problem.

Distinguishing Sparse Vectors

- Key idea: All unit vectors have the same 2-norm. However, sparse vectors will have higher 4-norm
- 4-norm for a k-sparse unit vector in \mathbb{R}^{n} is at
least $\sqrt[4]{\mathrm{k} \cdot \frac{1}{k^{2}}}=\frac{1}{\sqrt[4]{k}}$ (obtained by setting k
coordinates to $\frac{ \pm 1}{\sqrt{k}}$ and the rest to 0)
- Relaxation Attempt \#1: Search for an x such that

1. $\|V R x\|=1$
2. $\|V R x\|_{4} \geq \frac{1}{\sqrt[4]{k}}$

2 to 4 Norm Problem

- This is the 2 to 4 Norm Problem: Given a matrix A, find the vector x which maximizes $\frac{\|A x\|_{4}}{\|A x\|}$

Part II: SOS and 2 to 4 Norm on Random Subspaces

2 to 4 Norm Hardness

- Unfortunately, the 2 to 4 norm problem is hard [BBH+12]:
- NP-hard to obtain an approximation ratio of $\left(1+\frac{1}{n p o l y \log (n)}\right)$
- Assuming ETH (the exponential time hypothesis), it is hard to approximate to within a constant factor.
- Thus, we'll need to relax our problem further.

SOS Relaxation

- Relaxation: Find \tilde{E} which respects the following constraints:

1. $\|V R x\|^{2}=\sum_{i=1}^{n}(V R x)_{i}^{2}=1$
2. $\|V R x\|_{4}^{4}=\sum_{i=1}^{n}(V R x)_{i}^{4} \geq \frac{1}{k}$

Showing a Distinguishing Algorithm

- Constraints:

$$
\begin{aligned}
& \text { 1. } \quad\|V R x\|^{2}=\sum_{i=1}^{n}(V R x)_{i}^{2}=1 \\
& \text { 2. }\|V R x\|_{4}^{4}=\sum_{i=1}^{n}(V R x)_{i}^{4} \geq \frac{1}{k}
\end{aligned}
$$

- To show that SOS distinguishes between the random and planted distribution, it is sufficient to show that there is no \widetilde{E} which respects these constraints and has a PSD moment matrix M.
- Remark: Although the 2 to 4 Norm problem is hard in general, we just need to show that SOS can approximate it on random subspaces.

2 to 4 Norm on Random Subspaces

- Given a random subspace, what is the expected value of the largest 4-norm of a unit vector in the subspace?
- Trivial strategy: Any unit vector's 4-norm is at least $\frac{1}{\sqrt[4]{n}}$.
- Can we do better?

2 to 4 Norm on Random Subspaces

- Another strategy: Take a basis for this space and take a linear combination which maximizes one coordinate (subject to having length 1)
- If we add together d random vectors with entries $\approx \pm \frac{1}{\sqrt{n}}$, w.h.p. the result will have norm $\widetilde{\Theta}(\sqrt{d})$. Diving the resulting vector by $\widetilde{\Theta}(\sqrt{d})$, the maximized entry will have magnitude $\widetilde{\Theta}\left(\frac{\sqrt{d}}{\sqrt{n}}\right)$, other entries will have magnitude $\widetilde{\mathrm{O}}\left(\frac{1}{\sqrt{n}}\right)$

2 to 4 Norm on Random Subspaces

- Calling our final result w, w.h.p. the maximized entry of w contributes $\widetilde{\Theta}\left(\frac{d^{2}}{n^{2}}\right)$ to $\|w\|_{4}^{4}$ while the other entries contribute $\widetilde{\Theta}\left(\frac{1}{n}\right)$.
- It turns out that this strategy is essentially optimal. Thus, with high probability the maximum 4-norm of a unit vector in a ddimensional random subspace will be
$\widetilde{\Theta}\left(\max \left\{\frac{\sqrt{d}}{\sqrt{n}}, \frac{1}{\sqrt[4]{n}}\right\}\right)$.

Algorithm Boundary

- Planted dist: $\max 4$-norm $\geq \frac{1}{\sqrt[4]{k}}$
- Random dist: $\max 4$-norm is $\widetilde{\Theta}\left(\max \left\{\frac{\sqrt{d}}{\sqrt{n}}, \frac{1}{\sqrt[4]{n}}\right\}\right)$.
- IF SOS can certify the upper bound for a random subspace, this gives a distinguishing algorithm when $\max \left\{\frac{\sqrt{d}}{\sqrt{n}}, \frac{1}{\sqrt[4]{n}}\right\} \ll \frac{1}{\sqrt[4]{k}}$ (which happens when $d \leq \sqrt{n}$ and $k \ll n$ or when $d \geq \sqrt{n}$ and $\left.\mathrm{k} \ll \frac{n^{2}}{d^{2}}\right)$

Part III: Warmup: Showing $\|x\| \approx 1$

Showing $\|x\| \approx 1$

- Take $w=V R x$.
- We expect that $\|w\| \approx\|x\|$. Since we require that $\|w\|=1$, this implies that we will have $\|x\| \approx 1$
- To check that $\|w\| \approx\|x\|$, observe that $\|w\|_{2}^{2}=$ $x^{T}(\mathrm{RV})^{\mathrm{T}}(\mathrm{VR}) \mathrm{x}$. Thus, it is sufficient to show that $(\mathrm{RV})^{\mathrm{T}}(\mathrm{VR}) \approx I d$.

Checking (RV) ${ }^{\mathrm{T}}(\mathrm{VR}) \approx I d$

- We have that $(R V)^{T}(V R) \approx I d$ because the columns of $V R$ are d random unit vectors (where $d \ll n$) and are thus approximately orthonormal.
- However, we will use graph matrices to analyze the 4 -norm, so as a warm-up, let's check that $(\mathrm{RV})^{\mathrm{T}}(\mathrm{VR}) \approx I d$ using graph matrices.

Graph Matrices Over $N(0,1)$

- So far we have worked over $\{-1,+1\}^{m}$.
- How can we use graph matrices over $N(0,1)^{m}$?
- Key idea: Look at the Fourier characters over $N(0,1)$.

Fourier Analysis Over $N(0,1)$

- Inner product on $N(0,1): f \cdot g=$ $E_{x \sim N(0,1)} f(x) g(x)$
- Fourier characters: Hermite polynomials
- The first few Hermite polynomials (up to normalization) are as follows:

1. $h_{0}=1$
2. $h_{1}=x$
3. $h_{2}=x^{2}-1$
4. $h_{3}=x^{3}-3 x$

- To normalize, divide h_{j} by $\sqrt{j!}$

Graph Matrices Over $N(0,1)$

- Graph matrices over $\{-1,1\}^{m}: 1$ and x are a basis for functions over $\{-1,1\}$. We represent x by an edge and 1 by the absence of an edge
- Graph matrices over $N(0,1)^{m}:\left\{h_{j}\right\}$ are a basis for functions over $N(0,1)$. We represent h_{j} by a multi-edge with multiplicity j.

Graph Matrices for $(\mathrm{RV})^{\mathrm{T}}(\mathrm{VR})$

- For convenience, take $A=\sqrt{n} R V$ and think of the entries of A as the input. Now each entry of A is chosen independently from $N(0,1)$
- $A_{i j}$ is represented by an edge from node i to node j.
- In class challenge: What is $(R V)^{T}(V R)$ in terms of graph matrices?

Graph Matrices for $(\mathrm{RV})^{\mathrm{T}}(\mathrm{VR})$

- In class challenge answer:

Generalizing Rough Norm Bounds

- Here we have two different types of vertices, one for the rows of A (which has n possibilities) and one for the columns of A (which has d possibilities)
- Can generalize the rough norm bounds to handle multiple types of vertices (writing this up is on my to-do list)

Generalizing Rough Norm Bounds

- Generalized rough norm bounds:
- Each isolated vertex outside of U and V contributes a factor equal to the number of possibilities for that vertex
- Each vertex in the minimum separator (which minimizes the total number of possibilities for its vertices) contributes nothing
- Each other vertex contributes a factor equal to the square root of the number of possibilities for that vertex

Norm Bounds for (RV) ${ }^{\mathrm{T}}(\mathrm{VR})$

$\tilde{O}\left(\frac{\sqrt{d}}{\sqrt{n}}\right)$
$=I d_{d}$
$\tilde{O}\left(\frac{1}{\sqrt{n}}\right)$

Part IV: 4-Norm Analysis

4-Norm Analysis

- We want to bound $\left\|\frac{1}{\sqrt{n}} A x\right\|_{4}^{4}$
- Take B to be the matrix with entries $B_{i,\left(j_{1}, j_{2}\right)}=$ $A_{i j_{1}} A_{i j_{2}}$
- $\left\|\frac{1}{\sqrt{n}} A x\right\|_{4}^{4}=\frac{1}{n^{2}}(x \otimes x)^{T} B^{T} B(x \otimes x)$
- Can try to bound $\left\|B^{T} B\right\|$

Picture for $B^{T} B$

- Picture for $B^{T} B$:

Targets

- If $d \leq \sqrt{n}$, the target norm bound on $B^{T} B$ is $\widetilde{\mathrm{O}}(n)$, giving a bound of $\widetilde{\mathrm{O}}\left(\frac{1}{n}\right)$ on $\|V R x\|_{4}^{4}$.
- If $d \geq \sqrt{n}$, the target norm bound on $B^{T} B$ is
$\widetilde{\mathrm{O}}\left(d^{2}\right)$, giving a bound of $\widetilde{\mathrm{O}}\left(\frac{d^{2}}{n^{2}}\right)$ on $\|V R x\|_{4}^{4}$

Casework

Casework

Note: 0 or 2 edges between i and j_{1}

Norm $\tilde{O}(\sqrt{d n})$

Casework

Casework

Note: 0 or 2 edges between i and j_{1}

Note: 0 or 2 edges between i and j_{1}

Casework

Note: 0 or 2 edges between i and j_{1}

Note: 1 or 3 edges between i and j_{1}

Norm $\tilde{O}(\sqrt{d n})$

Casework

Note: 0 or 2 edges
between i and j_{1} and between i and j_{2}

Norm $\tilde{O}(n d)$
Too large!
Note: 0 or 2 edges
between i and j_{1} and between i and j_{2}

Casework

Note: 0 or 2 edges
between i and j_{1} on both ends

Note: 0,2 , or 4 edges

$$
U=V
$$

Turns out to be $3 I d+$ Norm $\tilde{O}(\sqrt{n})$
between i and j_{1}

Summary

- Most cases have sufficiently small norm.
- Two cases have a norm which is too large, so norm bounds alone are not enough...

Part V: SOS-Symmetry to the Rescue

Key Idea: Rearranging Indices

- Instead of looking at $\max _{w:\|w\|=1} w^{T} B^{T} B w$, we only need to upper bound

$$
\max _{x:\|x\|=1}(x \otimes x)^{T} B^{T} B(x \otimes x)
$$

- As far as $(x \otimes x)^{T} B^{T} B(x \otimes x)$ is concerned, we can rearrange indices in pieces of $B^{T} B$.

Rearranging Indices Case \#1

Rearranging Indices Case \#2

Effect of Rearranging Indices

- For the two cases whose norm is too high, their norm can be reduced by rearranging indices.
- This proves the upper bound on

$$
\max _{x:\|x\|=1}(x \otimes x)^{T} B^{T} B(x \otimes x)
$$

Part VI: Observations and Loose Ends

Observations: 4-Norm Analysis

- Note: This 4-norm analysis roughly corresponds to p.33-37 of [BBH+12]
- Remark: When $d \ll \sqrt{n}$, with a slightly more careful analysis we can show that $(x \otimes x)^{T} B^{T} B(x \otimes x)=(3 \pm o(1))\|x\|_{2}^{4}$, matching the results in [BBH+12].

Loose Ends: Arbitrary R

- How can we handle arbitrary R rather than a random orthogonal R (i.e. any span of the vectors)?
- SOS handles it automatically!
- Idea: The SOS-symmetry and $M \succcurlyeq 0$ constraints are invariant under linear transformations of the variables. Thus, having a different R merely applies a linear transformation to the pseudoexpectation values.

Loose Ends: Finding v Exactly

- We have only shown a distinguishing algorithm between the random and planted cases. How can we find the planted sparse vector v exactly?
- Can be done in two steps:

1. The analysis shows that degree 4 SOS will output a vector v^{\prime} which is highly correlated with v (because the random part of the subspace has nothing with high 4-norm)
2. Using v^{\prime} as a guide, find v. This can be done by minimizing then L^{1} norm of a vector v in the subspace subject to $v \cdot v^{\prime}=1$, see [BKS14] for details.

Part VII: Open Problems

Open Problems

- What more can we say when $d \gg \sqrt{n}$?
- More specifically, can we find a better algorithm using more than the 4-norm? Is there an SOS lower bound showing that $k=\frac{n^{2}}{d^{2}}$ is tight?

References

- [BBH+12] B. Barak, F. G. S. L. Brandão, A. W. Harrow, J. A. Kelner, D. Steurer, and Y. Zhou. Hypercontractivity, sum-of-squares proofs, and their applications. STOC p. 307-326, 2012.
- [BKS14] B. Barak, J. A. Kelner, and D. Steurer. Rounding Sum of Squares Relaxations. STOC 2014.

