
Lecture 14: Planted Sparse Vector

Lecture Outline

• Part I: Planted Sparse Vector and 2 to 4 Norm

• Part II: SOS and 2 to 4 Norm on Random
Subspaces

• Part III: Warmup: Showing 𝑥 ≈ 1

• Part IV: 4-Norm Analysis

• Part V: SOS-symmetry to the Rescue

• Part VI: Observations and Loose Ends

• Part VII: Open Problems

Part I: Planted Sparse Vector and
2 to 4 Norm

• Planted Sparse Vector problem: Given the span
of 𝑑 − 1 random vectors in ℝ𝑛 and one unit
vector 𝑣 ∈ ℝ𝑛 of sparsity 𝑘, can we recover 𝑣?

• More precisely, let 𝑉 be an n × 𝑑 matrix where:

1. 𝑑 − 1 columns of 𝑉 are vectors of length ≈ 1
chosen randomly from ℝ𝑛

2. One column of 𝑉 is a unit vector 𝑣 with ≤ 𝑘
nonzero entries.

• Given 𝑉𝑅 where 𝑅 is an arbitrary invertible 𝑑 × 𝑑
matrix, can we recover 𝑣?

Planted Sparse Vector

• Theorem 1.4 [BKS14]: There is a constant 𝑐 > 0
and an algorithm based on constant degree SOS
such that for every vector 𝑣0 supported on at
most 𝑐𝑛 ⋅ min{1, 𝑛/𝑑2} coordinates, if 𝑣1, … , 𝑣𝑑
are chosen independently at random from the
Gaussian distribution on 𝑅𝑛, then given any
basis for 𝑉 = 𝑠𝑝𝑎𝑛{𝑣0, … , 𝑣𝑑}, the algorithm
outputs an 𝜖-approximation to 𝑣0 in
𝑝𝑜𝑙𝑦(𝑛, log(1/𝜖)) time.

Theorem Statement

• Random Distribution: We choose each entry of 𝑉

independently from 𝑁 0,
1

𝑛
, the normal

distribution with mean 0 and standard deviation
1

𝑛

• We then choose 𝑅 to be a random 𝑑 × 𝑑
orthogonal/rotation matrix and take 𝑉𝑅 to be
our input matrix.

Random Distribution

• Remark: If 𝑅 is any 𝑑 × 𝑑 orthogonal/rotation
matrix then 𝑉𝑅 can also be chosen by taking

each entry of 𝑉 independently from 𝑁 0,
1

𝑛
.

• Idea: Each row of 𝑉 comes from a multivariate

normal distribution with covariance matrix
1

𝑛
𝐼𝑑𝑑,

which is invariant under rotations

Random Distribution

• Planted Distribution: We choose each entry of
the first 𝑑 − 1 columns of 𝑉 independently from

𝑁 0,
1

𝑛
. The last column of 𝑉 is our sparse unit

vector 𝑣.

• We then choose 𝑅 to be a random 𝑑 × 𝑑
orthogonal/rotation matrix and take 𝑉𝑅 to be
our input matrix.

Planted Distribution

• We ask for an 𝑥 such that

1. 𝑉𝑅𝑥 = 1

2. 𝑉𝑅𝑥 is k-sparse (i.e. at most 𝑘 indices of 𝑉𝑅𝑥 are
nonzero).

• Hard to search for 𝑥 such that 𝑉𝑅𝑥 is k-sparse,
so we’ll need to relax the problem.

Output

• Key idea: All unit vectors have the same 2-norm.
However, sparse vectors will have higher 4-norm

• 4-norm for a 𝑘-sparse unit vector in ℝ𝑛 is at

least
4
k ⋅

1

𝑘2
=

1
4
𝑘

(obtained by setting 𝑘

coordinates to
±1

𝑘
and the rest to 0)

• Relaxation Attempt #1: Search for an 𝑥 such that
1. 𝑉𝑅𝑥 = 1

2. 𝑉𝑅𝑥 4 ≥
1
4
𝑘

Distinguishing Sparse Vectors

• This is the 2 to 4 Norm Problem: Given a matrix

𝐴, find the vector 𝑥 which maximizes
𝐴𝑥 4

𝐴𝑥

2 to 4 Norm Problem

Part II: SOS and 2 to 4 Norm on
Random Subspaces

• Unfortunately, the 2 to 4 norm problem is hard
[BBH+12]:

– NP-hard to obtain an approximation ratio of

1 +
1

𝑛𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛)

– Assuming ETH (the exponential time hypothesis), it is
hard to approximate to within a constant factor.

• Thus, we’ll need to relax our problem further.

2 to 4 Norm Hardness

• Relaxation: Find ෨𝐸 which respects the following
constraints:

1. 𝑉𝑅𝑥 2 = σ𝑖=1
𝑛 𝑉𝑅𝑥 𝑖

2 = 1

2. 𝑉𝑅𝑥 4
4 = σ𝑖=1

𝑛 𝑉𝑅𝑥 𝑖
4 ≥

1

𝑘

SOS Relaxation

• Constraints:

1. 𝑉𝑅𝑥 2 = σ𝑖=1
𝑛 𝑉𝑅𝑥 𝑖

2 = 1

2. 𝑉𝑅𝑥 4
4 = σ𝑖=1

𝑛 𝑉𝑅𝑥 𝑖
4 ≥

1

𝑘

• To show that SOS distinguishes between the
random and planted distribution, it is sufficient
to show that there is no ෨𝐸 which respects these
constraints and has a PSD moment matrix 𝑀.

• Remark: Although the 2 to 4 Norm problem is
hard in general, we just need to show that SOS
can approximate it on random subspaces.

Showing a Distinguishing Algorithm

• Given a random subspace, what is the expected
value of the largest 4-norm of a unit vector in
the subspace?

• Trivial strategy: Any unit vector’s 4-norm is at

least
1
4 𝑛

.

• Can we do better?

2 to 4 Norm on Random Subspaces

• Another strategy: Take a basis for this space and
take a linear combination which maximizes one
coordinate (subject to having length 1)

• If we add together 𝑑 random vectors with entries

≈ ±
1

𝑛
, w.h.p. the result will have norm ෩Θ 𝑑 .

Diving the resulting vector by ෩Θ 𝑑 , the

maximized entry will have magnitude ෩Θ
𝑑

𝑛
,

other entries will have magnitude ෩O
1

𝑛

2 to 4 Norm on Random Subspaces

• Calling our final result 𝑤, w.h.p. the maximized

entry of 𝑤 contributes ෩Θ
𝑑2

𝑛2
to 𝑤 4

4 while the

other entries contribute ෩Θ
1

𝑛
.

• It turns out that this strategy is essentially
optimal. Thus, with high probability the
maximum 4-norm of a unit vector in a d-
dimensional random subspace will be

෩Θ max
𝑑

𝑛
,
1
4 𝑛

.

2 to 4 Norm on Random Subspaces

• Planted dist: max 4-norm ≥
1
4
𝑘

• Random dist: max 4-norm is ෩Θ max
𝑑

𝑛
,
1
4 𝑛

.

• IF SOS can certify the upper bound for a
random subspace, this gives a distinguishing

algorithm when max
𝑑

𝑛
,
1
4 𝑛

≪
1
4
𝑘

(which

happens when 𝑑 ≤ 𝑛 and 𝑘 ≪ 𝑛 or when

𝑑 ≥ 𝑛 and k ≪
𝑛2

𝑑2
)

Algorithm Boundary

Part III: Warmup: Showing 𝑥 ≈ 1

• Take 𝑤 = 𝑉𝑅𝑥.

• We expect that 𝑤 ≈ 𝑥 . Since we require
that 𝑤 = 1, this implies that we will have
𝑥 ≈ 1

• To check that 𝑤 ≈ 𝑥 , observe that 𝑤 2
2 =

𝑥𝑇 RV T VR x. Thus, it is sufficient to show that
RV T VR ≈ 𝐼𝑑.

Showing 𝑥 ≈ 1

• We have that RV T VR ≈ 𝐼𝑑 because the
columns of 𝑉𝑅 are 𝑑 random unit vectors
(where 𝑑 ≪ 𝑛) and are thus approximately
orthonormal.

• However, we will use graph matrices to analyze
the 4-norm, so as a warm-up, let’s check that
RV T VR ≈ 𝐼𝑑 using graph matrices.

Checking RV T VR ≈ 𝐼𝑑

• So far we have worked over {−1,+1}𝑚.

• How can we use graph matrices over 𝑁 0,1 𝑚?

• Key idea: Look at the Fourier characters over
𝑁(0,1).

Graph Matrices Over 𝑁(0,1)

• Inner product on 𝑁 0,1 : 𝑓 ⋅ 𝑔 =
𝐸𝑥∼𝑁 0,1 𝑓 𝑥 𝑔(𝑥)

• Fourier characters: Hermite polynomials

• The first few Hermite polynomials (up to
normalization) are as follows:
1. ℎ0 = 1

2. ℎ1 = 𝑥

3. ℎ2 = 𝑥2 − 1

4. ℎ3 = 𝑥3 − 3𝑥

• To normalize, divide ℎ𝑗 by 𝑗!

Fourier Analysis Over 𝑁(0,1)

• Graph matrices over {−1,1}𝑚: 1 and 𝑥 are a
basis for functions over {−1,1}. We represent 𝑥
by an edge and 1 by the absence of an edge

• Graph matrices over 𝑁 0,1 𝑚: {ℎ𝑗} are a basis

for functions over 𝑁(0,1). We represent ℎ𝑗 by a

multi-edge with multiplicity 𝑗.

Graph Matrices Over 𝑁(0,1)

• For convenience, take 𝐴 = 𝑛𝑅𝑉 and think of
the entries of 𝐴 as the input. Now each entry of
𝐴 is chosen independently from 𝑁(0,1)

• 𝐴𝑖𝑗 is represented by an edge from node 𝑖 to

node 𝑗.

• In class challenge: What is RV T VR in terms
of graph matrices?

Graph Matrices for RV T VR

𝑗1 𝑖 𝑖 𝑗2×
1

𝑛
𝑛 𝑛𝑑 𝑑

• In class challenge answer:

Graph Matrices for RV T VR

𝑗1 𝑖 𝑖 𝑗2×
1

𝑛
𝑛 𝑛𝑑 𝑑

=

d n d

𝑈 𝑉

𝑗1 𝑗2𝑖1

𝑛
+

d

n

𝑈 = 𝑉

𝑗

𝑖

d

n

𝑈 = 𝑉

𝑗

𝑖

1

𝑛
+ 2

𝑛

• Here we have two different types of vertices,
one for the rows of 𝐴 (which has 𝑛 possibilities)
and one for the columns of 𝐴 (which has 𝑑
possibilities)

• Can generalize the rough norm bounds to handle
multiple types of vertices (writing this up is on
my to-do list)

Generalizing Rough Norm Bounds

• Generalized rough norm bounds:

• Each isolated vertex outside of 𝑈 and 𝑉
contributes a factor equal to the number of
possibilities for that vertex

• Each vertex in the minimum separator (which
minimizes the total number of possibilities for its
vertices) contributes nothing

• Each other vertex contributes a factor equal to
the square root of the number of possibilities for
that vertex

Generalizing Rough Norm Bounds

Norm Bounds for RV T VR

𝑗1 𝑖 𝑖 𝑗2×
1

𝑛
𝑛 𝑛𝑑 𝑑

=

d n d

𝑈 𝑉

𝑗1 𝑗2𝑖1

𝑛
+

d

n

𝑈 = 𝑉

𝑗

𝑖

d

n

𝑈 = 𝑉

𝑗

𝑖

1

𝑛
+ 2

𝑛

෨𝑂
𝑑

𝑛
෨𝑂

1

𝑛
= 𝐼𝑑𝑑

Part IV: 4-Norm Analysis

• We want to bound
1

𝑛
𝐴𝑥

4

4

• Take 𝐵 to be the matrix with entries 𝐵𝑖,(𝑗1,𝑗2) =

𝐴𝑖𝑗1𝐴𝑖𝑗2

•
1

𝑛
𝐴𝑥

4

4

=
1

𝑛2
𝑥 ⊗ 𝑥 𝑇𝐵𝑇𝐵(𝑥 ⊗ 𝑥)

• Can try to bound 𝐵𝑇𝐵

4-Norm Analysis

• Picture for 𝐵𝑇𝐵:

Picture for 𝐵𝑇𝐵

𝑗1 𝑖

𝑛𝑑

𝑗1 𝑖

𝑛𝑑

𝑖

𝑛

𝑗1

𝑗2

2

+

+

𝑗3𝑖

𝑛 𝑑

𝑗3𝑖

𝑛 𝑑

𝑖

𝑛

𝑗3

𝑗4

2

+

+

×

• If 𝑑 ≤ 𝑛, the target norm bound on 𝐵𝑇𝐵 is

෩O(𝑛), giving a bound of ෩O
1

𝑛
on 𝑉𝑅𝑥 4

4.

• If 𝑑 ≥ 𝑛, the target norm bound on 𝐵𝑇𝐵 is

෩O 𝑑2 , giving a bound of ෩O
𝑑2

𝑛2
on 𝑉𝑅𝑥 4

4

Targets

Casework

d

n

𝑈

𝑗1

𝑖

d

𝑗2

d

𝑉

𝑗3

d

𝑗4

𝑖

𝑛

𝑗1

𝑗2

× 𝑖

𝑛

𝑗3

𝑗4

Norm ෨𝑂 𝑑 𝑛

if 𝑑 ≤ 𝑛,

norm ෨𝑂 𝑑2 if

𝑑 ≥ 𝑛

Casework

d

n𝑈

𝑗1

𝑖
d

𝑗2

𝑉
d

𝑗4

𝑖

𝑛

𝑗1

𝑗2

× 𝑖

𝑛

𝑗1

𝑗4

Norm ෨𝑂 𝑑𝑛

Note: 0 or 2 edges
between 𝑖 and 𝑗1

Casework

d

n

𝑈 = 𝑉

𝑗1

𝑖

d

𝑗2

𝑖

𝑛

𝑗1

𝑗2

× 𝑖

𝑛

𝑗1

𝑗2

= 𝑛𝐼𝑑 + Norm
෨𝑂 𝑛

Note: 0 or 2 edges
between 𝑖 and 𝑗1,
0 or 2 edges
between 𝑖 and 𝑗2

Casework

d n

𝑈

𝑗1 𝑖 d

𝑉

𝑗3

d

𝑗4

𝑖

𝑛

𝑗1 × 𝑖

𝑛

𝑗3

𝑗4

Norm ෨𝑂 𝑛𝑑3

Too large!

Note: 0 or 2 edges
between 𝑖 and 𝑗1

Note: 0 or 2 edges
between 𝑖 and 𝑗1

Casework

n

𝑈

𝑖 d

𝑉

𝑗1

d

𝑗4

𝑖

𝑛

𝑗1 × 𝑖

𝑛

𝑗1

𝑗4

Norm ෨𝑂 𝑑𝑛Note: 1 or 3 edges
between 𝑖 and 𝑗1

Note: 0 or 2 edges
between 𝑖 and 𝑗1

Casework

d n

𝑈

𝑗1 𝑖

d

𝑉

𝑗2

𝑖

𝑛

𝑗1 × 𝑖

𝑛

𝑗2

Norm ෨𝑂 𝑛𝑑
Too large!

Note: 0 or 2 edges
between 𝑖 and 𝑗1 and
between 𝑖 and 𝑗2

Note: 0 or 2 edges
between 𝑖 and 𝑗1 and
between 𝑖 and 𝑗2

Casework

n

𝑖

d

𝑈 = 𝑉

𝑗1

𝑖

𝑛

𝑗1 × 𝑖

𝑛

𝑗1

Turns out to be
3𝐼𝑑 + Norm
෨𝑂(𝑛)

Note: 0 or 2 edges
between 𝑖 and 𝑗1 on
both ends

Note: 0,2, or 4 edges
between 𝑖 and 𝑗1

• Most cases have sufficiently small norm.

• Two cases have a norm which is too large, so
norm bounds alone are not enough…

Summary

Part V: SOS-Symmetry to the
Rescue

• Instead of looking at max
𝑤: 𝑤 =1

𝑤𝑇𝐵𝑇𝐵𝑤, we only

need to upper bound

max
𝑥: 𝑥 =1

𝑥 ⊗ 𝑥 𝑇𝐵𝑇𝐵(𝑥 ⊗ 𝑥)

• As far as 𝑥 ⊗ 𝑥 𝑇𝐵𝑇𝐵(𝑥 ⊗ 𝑥) is concerned, we
can rearrange indices in pieces of 𝐵𝑇𝐵.

Key Idea: Rearranging Indices

Rearranging Indices Case #1

d n

𝑈

𝑗1 𝑖

d

𝑉

𝑗2

𝑖

𝑛

𝑗1 × 𝑖

𝑛

𝑗2

d

n

𝑈 = 𝑉

𝑗1

𝑖

d

𝑗2

𝑖

𝑛

𝑗1

𝑗2

× 𝑖

𝑛

𝑗1

𝑗2

rearranging indices

Rearranging Indices Case #2

rearranging indices

d n

𝑈

𝑗1 𝑖 d

𝑉

𝑗3

d

𝑗4

𝑖

𝑛

𝑗1 × 𝑖

𝑛

𝑗3

𝑗4

d

n𝑈

𝑗1

𝑖
d

𝑗2

𝑉
d

𝑗4

𝑖

𝑛

𝑗1

𝑗2

× 𝑖

𝑛

𝑗1

𝑗4

• For the two cases whose norm is too high, their
norm can be reduced by rearranging indices.

• This proves the upper bound on

max
𝑥: 𝑥 =1

𝑥 ⊗ 𝑥 𝑇𝐵𝑇𝐵(𝑥 ⊗ 𝑥)

Effect of Rearranging Indices

Part VI: Observations and Loose Ends

• Note: This 4-norm analysis roughly
corresponds to p.33-37 of [BBH+12]

• Remark: When 𝑑 ≪ 𝑛, with a slightly
more careful analysis we can show that

𝑥 ⊗ 𝑥 𝑇𝐵𝑇𝐵 𝑥 ⊗ 𝑥 = 3 ± 𝑜 1 𝑥 2
4,

matching the results in [BBH+12].

Observations: 4-Norm Analysis

• How can we handle arbitrary 𝑅 rather than a
random orthogonal 𝑅 (i.e. any span of the
vectors)?

• SOS handles it automatically!

• Idea: The SOS-symmetry and 𝑀 ≽ 0 constraints
are invariant under linear transformations of the
variables. Thus, having a different 𝑅 merely
applies a linear transformation to the pseudo-
expectation values.

Loose Ends: Arbitrary 𝑅

• We have only shown a distinguishing algorithm
between the random and planted cases. How
can we find the planted sparse vector 𝑣 exactly?

• Can be done in two steps:
1. The analysis shows that degree 4 SOS will output a

vector 𝑣′ which is highly correlated with 𝑣 (because
the random part of the subspace has nothing with
high 4-norm)

2. Using 𝑣′ as a guide, find 𝑣. This can be done by
minimizing then 𝐿1 norm of a vector 𝑣 in the
subspace subject to 𝑣 ⋅ 𝑣′ = 1, see [BKS14] for
details.

Loose Ends: Finding 𝑣 Exactly

Part VII: Open Problems

• What more can we say when 𝑑 ≫ 𝑛?

• More specifically, can we find a better algorithm
using more than the 4-norm? Is there an SOS

lower bound showing that 𝑘 =
𝑛2

𝑑2
is tight?

Open Problems

References

• [BBH+12] B. Barak, F. G. S. L. Brandão, A. W. Harrow, J. A. Kelner, D. Steurer, and Y.
Zhou. Hypercontractivity, sum-of-squares proofs, and their applications. STOC p.
307–326, 2012.

• [BKS14] B. Barak, J. A. Kelner, and D. Steurer. Rounding Sum of Squares Relaxations.
STOC 2014.

