Lecture 5: SOS Proofs and the Motzkin Polynomial

Lecture Outline

- Part I: SOS proofs and examples
- Part II: Motzkin Polynomial

Part I: SOS proofs and examples

SOS proofs

- Fundamental question: What can we say about the pseudo-expectation values SOS gives us?
- In other words, which statements that are true for any expectation of an actual distribution of solutions must also be true for pseudoexpectation values?

Non-negativity of Squares

- Trivial but extremely useful: If f is a sum of squares i.e. $f=\sum_{j} g_{j}^{2}$ then $\tilde{E}[f] \geq 0$
- Example: If $f=x^{2}-4 x+5$ then $\tilde{E}[f] \geq 0$ as $f=(x-2)^{2}+1$. In fact, $\tilde{E}[f] \geq 1$

Single Variable Polynomials

- Theorem: For a single-variable polynomial $\mathrm{p}(\mathrm{x})$, $p(x)$ is non-negative $\Leftrightarrow p(x)$ is a sum of squares.
- Proof: By induction on the degree d
- Base case $d=0$ is trivial
- If $d>0$, let $c \geq 0$ be the minimal value of $p(x)$ and let a be a zero of $p(x)-c$. Since $p(x)-c$ is nonnegative, it has a zero of order $2 k$ at a for some integer $k \geq 1$ (the order must be even).
- Write $p=(x-a)^{2 k} p^{\prime}+c$ where $p^{\prime}=\frac{p-c}{(x-a)^{2 k}}$ is non-negative and thus a sum of squares.

Degree 2 Polynomials

- Given a degree 2 polynomial f, we can write $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i, j} c_{i j} x_{i} x_{j}$ where $\mathrm{c}_{j i}=c_{i j}$ for all i and j.
- Taking M to be the coefficient matrix where $M_{i j}=c_{i j}$, we can write $M=\sum_{i} \lambda_{i} v_{i} v_{i}^{T}$ where the $\left\{v_{i}\right\}$ are orthonormal. Now

1. $f(x)=x^{T} M x$.
2. $f(x)=\sum_{i} \lambda_{i} x^{T} v_{i} v_{i}^{T} x=\sum_{i} \lambda_{i}\left(\sum_{j=1}^{n} v_{i j} x_{j}\right)^{2}$

Degree 2 Polynomials

- We have that

1. $\quad M=\sum_{i} \lambda_{i} v_{i} v_{i}^{T}$ where the $\left\{v_{i}\right\}$ are orthonormal.
2. $f(x)=x^{T} M x$
3. $f=\sum_{i} \lambda_{i}\left(\sum_{j=1}^{n} v_{i j} x_{j}\right)^{2}$

- If $M \succcurlyeq 0$ then $\forall i, \lambda_{i} \geq 0$ so f is a sum of squares
- If M is not PSD then $\lambda_{i}<0$ for some i. Taking $x=v_{i}, f(x)=v_{i}^{T} M v_{i}<0$ so f is not nonnegative.
- Thus if $\operatorname{deg}(f)=2, f$ is non-negative $\Leftrightarrow f$ is SOS

Cauchy Schwarz Inequality

- Cauchy-Schwarz inequality:

$$
\left(\sum_{i} f_{i} g_{i}\right)^{2} \leq\left(\sum_{i} f_{i}^{2}\right)\left(\sum_{i} g_{i}^{2}\right)
$$

- Extremely useful
- Proof: Consider f and g as vectors. CauchySchwarz is equivalent to $(f \cdot g)^{2} \leq\|f\|^{2}\|g\|^{2}$
- This is true as $(f \cdot g)^{2}=\|f\|^{2}\|g\|^{2} \cos ^{2} \Theta$ where Θ is the angle between f and g.
- How about an SOS proof?

Cauchy Schwarz: SOS Proof

- Cauchy-Schwarz: $\left(\sum_{i} f_{i} g_{i}\right)^{2} \leq\left(\sum_{i} f_{i}^{2}\right)\left(\sum_{i} g_{i}^{2}\right)$
- Building block: For all i and j,

$$
\left(f_{i} g_{j}-f_{j} g_{i}\right)^{2}=f_{i}^{2} g_{j}^{2}+f_{j}^{2} g_{i}^{2}-2 f_{i} g_{i} f_{j} g_{j} \geq 0
$$

- Note that:

1. $\sum_{i<j}\left(f_{i}^{2} g_{j}^{2}+f_{j}^{2} g_{i}^{2}\right)=\left(\sum_{i} f_{i}^{2}\right)\left(\sum_{i} g_{i}^{2}\right)-\sum_{i} f_{i}^{2} g_{i}^{2}$
2. $2 \sum_{i<j}\left(f_{i} g_{i} f_{j} g_{j}\right)=\left(\sum_{i} f_{i} g_{i}\right)^{2}-\sum_{i} f_{i}^{2} g_{i}^{2}$

- Final proof: $\sum_{i, j: i<j}\left(f_{i} g_{j}-f_{j} g_{i}\right)^{2}=$

$$
\left(\sum_{i} f_{i}^{2}\right)\left(\sum_{i} g_{i}^{2}\right)-\left(\sum_{i} f_{i} g_{i}\right)^{2} \geq 0
$$

SOS Proofs With Constraints

- What if we also have constraints

$$
s_{1}\left(x_{1}, \ldots, x_{n}\right)=0, s_{2}\left(x_{1}, \ldots, x_{n}\right)=0, \text { etc.? }
$$

- An SOS proof that $h \geq c$ now takes the form $h=c+\sum_{i} f_{i} s_{i}+\sum_{j} g_{j}^{2}$
- Example: If $x^{2}=1$ then $\mathrm{x} \geq-1$. Proof:

$$
x+1=\frac{x^{2}}{2}+x+\frac{1}{2}=\frac{1}{2}(x+1)^{2} \geq 0
$$

Combining Proofs

- If there is an SOS proof of degree d_{1} that $f \geq 0$ and an SOS proof of degree d_{2} that $g \geq 0$ then:

1. There is an SOS proof of degree $\max \left\{d_{1}, d_{2}\right\}$ that $f+g \geq 0$
2. There is an SOS proof of degree $d_{1}+d_{2}$ that $f g \geq 0$

Products of Pseudo-expectation Values

- What if our statements involve products of pseudo-expectation values?
- Example: We showed that

$$
\tilde{E}\left[\left(\sum_{i} f_{i} g_{i}\right)^{2}\right] \leq \tilde{E}\left[\left(\sum_{i} f_{i}^{2}\right)\left(\sum_{i} g_{i}^{2}\right)\right]
$$

What if we instead want to show that

$$
\left(\widetilde{E}\left[\sum_{i} f_{i} g_{i}\right]\right)^{2} \leq \tilde{E}\left[\sum_{i} f_{i}^{2}\right] \tilde{E}\left[\sum_{i} g_{i}^{2}\right] ?
$$

- Requires modified proof, see problem set
- Can often prove such statements by using \tilde{E} values as constants in the proof.

Example: Variance

- For any random variable $x, E\left[x^{2}\right] \geq(E[x])^{2}$
- Also true for pseudo-expectation values, i.e. for any polynomial $f, \tilde{E}\left[f^{2}\right] \geq(\tilde{E}[f])^{2}$
- Proof: Given \tilde{E}, let $c=\tilde{E}[f]$ and observe that

$$
\begin{aligned}
& \tilde{E}\left[(f-c)^{2}\right]=\tilde{E}\left[f^{2}\right]-2 c \tilde{E}[f]+\mathrm{c}^{2} \\
& =\tilde{E}\left[f^{2}\right]-(\tilde{E}[f])^{2} \geq 0
\end{aligned}
$$

In-class exercises

1. Prove that $\tilde{E}\left[x^{4}-4 x+3\right] \geq 0$
2. Prove that
$\tilde{E}\left[x^{2}+2 y^{2}+6 z^{2}+2 x y+2 x z+6 y z\right] \geq 0$
3. Prove that if $x^{2}+y^{2}=1$ then $x+y \leq \sqrt{2}$
4. Prove that if $\tilde{E}\left[x^{2}\right]=0$ then for any function f of degree at most $\frac{d}{2}, \tilde{E}[x f]=0$.

In-class exercise answers

1. Prove that $\tilde{E}\left[x^{4}-4 x+3\right] \geq 0$

Answer: $x^{4}-4 x+3=(x-1)^{2}\left(x^{2}+2 x+3\right)=$ $(x-1)^{2}\left((x+1)^{2}+2\right)$

In-class exercise answers

2. Prove that
$\tilde{E}\left[x^{2}+2 y^{2}+6 z^{2}+2 x y+2 x z+6 y z\right] \geq 0$
Answer: The coefficient matrix for this
polynomial is $M=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6\end{array}\right]$
One non-orthonormal factorization is $M=$
$v_{1} v_{1}^{T}+v_{2} v_{2}^{T}+v_{3} v_{3}^{T}$ where $v_{1}^{T}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$,
$v_{2}^{T}=\left[\begin{array}{lll}0 & 1 & 2\end{array}\right], v_{3}^{T}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$,

In-class exercise answers

This gives us that

$$
\begin{aligned}
& x^{2}+2 y^{2}+6 z^{2}+2 x y+2 x z+6 y z \\
& =(x+y+z)^{2}+(y+2 z)^{2}+z^{2}
\end{aligned}
$$

In-class exercise answers

3. Prove that if we have the constraint $x^{2}+y^{2}=1$ then $\tilde{E}[x+y] \leq \sqrt{2}$

Answer: $\sqrt{2}-x-y=\frac{x^{2}+y^{2}}{\sqrt{2}}-x-y+\frac{1}{\sqrt{2}}=$

$$
\begin{aligned}
& \frac{(x-y)^{2}}{2 \sqrt{2}}+\frac{(x+y)^{2}}{2 \sqrt{2}}-x-y+\frac{1}{\sqrt{2}}= \\
& \frac{(x-y)^{2}}{2 \sqrt{2}}+\frac{1}{2 \sqrt{2}}(x+y-\sqrt{2})^{2} \geq 0
\end{aligned}
$$

In-class exercise answers

4. Prove that if $\tilde{E}\left[x^{2}\right]=0$ then for any function f of degree at most $\frac{d}{2}-1, \tilde{E}[x f]=0$.
Answer: Observe that for any constant C, $\tilde{E}\left[(f-C x)^{2}\right]=\tilde{E}\left[f^{2}\right]-2 C \tilde{E}[x f]+\tilde{E}\left[x^{2}\right]=$
$\tilde{E}\left[f^{2}\right]-2 C \tilde{E}[x f] \geq 0$
The only way this can be true for all C us if $\tilde{E}[x f]=0$.

Part II: Motzkin Polynomial

Non-negative vs. SOS polynomials

- Unfortunately, not all non-negative polynomials are SOS.
- Are equivalent in the special cases where $n=1$ (single-variable polynomials), $d=2$ (quadratic polynomials), or $n=2, d=4$ (quartic polynomials with two variables)
- Hilbert [Hil1888]: In all other cases, there are non-negative polynomials which are not sums of squares of polynomials.
- Motzkin [Mot67] found the first explicit example.

Motzkin Polynomial

- Motzkin Polynomial:

$$
p(x, y)=x^{4} y^{2}+x^{2} y^{4}-3 x^{2} y^{2}+1
$$

- Question 1: Why is it non-negative?
- Question 2: How can we show it is not a sum of squares of polynomials?

AM-GM inequality

- Arithmetic mean/Geometric mean Inequality:
$\sqrt[n]{\prod_{i=1}^{n} x_{i}} \leq \frac{1}{n} \sum_{i=1}^{n} x_{i}$ if $\forall i, x_{i} \geq 0$ with equality if and only if all of the x_{i} are equal.
- Proof: Minimize $\frac{1}{n} \sum_{i=1}^{n} x_{i}-\sqrt[n]{\prod_{i=1}^{n} x_{i}}$
- Derivative with respect to x_{j} is $\frac{1}{n}\left(1-\frac{\sqrt[n]{\prod_{i \neq j} x_{i}}}{\sqrt[n]{x_{j}^{n-1}}}\right)$
- Setting this to 0 for all $j, \forall j, x_{j}=\sqrt[n]{\prod_{i=1}^{n} x_{i}}$

Motzkin Polynomial Non-negativity

- Motzkin Polynomial:

$$
p(x, y)=x^{4} y^{2}+x^{2} y^{4}-3 x^{2} y^{2}+1
$$

- Applying AM-GM with $x^{4} y^{2}, y^{2} x^{4}, 1$,
$x^{2} y^{2}=\sqrt[3]{\left(x^{4} y^{2}\right) \cdot\left(y^{2} x^{4}\right) \cdot 1} \leq \frac{x^{4} y^{2}+y^{2} x^{4}+1}{3}$
- Multiplying this by $3, p(x, y) \geq 0$

Newton Polytope

- Given a polynomial, assign a point to each monomial based on the degree of each variable.
Examples:

1. $x^{2} y$ is assigned the point $(2,1)$
2. y^{5} is assigned the point $(0,5)$
3. $x y^{2} z^{3}$ is assigned the point $(1,2,3)$

- The Newton polytope of a polynomial is the convex hull of the points assigned to each monomial.

Newton Polytope Example

- Example: Newton Polytope for the polynomial $p(x)=3 x^{2} y^{4}-x^{4} y^{3}-2 x^{3} y+4$
- Note that the coefficients in front of the monomials don't change the polytope.

Newton Polytope of a Sum of Squares

- Let f be a sum of squares, i.e. $f=\sum_{j} g_{j}^{2}$
- Claim: The Newton polytope of f is $2 X$ where X is the convex hull of all the points corresponding to some monomial in some g_{j}
- Proposition: If p, q are monomials with corresponding points a, b then $p q$ corresponds to the point $a+b$
- One direction: Let X_{j} be the Newton polytope of g_{j}. The Newton polytope of $g_{j}^{2} \subseteq 2 X_{j} \subseteq 2 X$.
Thus, the Newton polytope of $f \subseteq 2 X$.

Newton Polytope of a Sum of Squares

- Other direction: If p, q, r are monomials where $p r=q^{2}$ and a, b, c are the corresponding points, $a+c=2 b$
- Corollary: If b is a vertex of X corresponding to a monomial q then if

1. p, r are monomials appearing in some g_{j} (and thus their corresponding points a, c are in X)
2. $p r=q^{2}$
then $p=r=q$.

Newton Polytope of a Sum of Squares

- Corollary: If b is a vertex of X corresponding to a monomial q then q^{2} appears with positive coefficient in $f=\sum_{j} g_{j}^{2}$.
- This implies that $2 X \subseteq$ the Newton polytope of f
- Putting everthing together, the Newton polytope of f is $2 X$.

Motzkin Polynomial Newton Polytope

- Motzkin polynomial:

$$
p(x)=x^{4} y^{2}+x^{2} y^{4}-3 x^{2} y^{2}+1
$$

Motzkin Polynomial Newton Polytope

- If $p(x)$ were a sum of squares of polynomials, their corresponding points would have to be inside the following polytope.

Motzkin is not a Sum of Squares

- If $p(x)=x^{4} y^{2}+x^{2} y^{4}-3 x^{2} y^{2}+1$ were a sum of squares of polynomials, it would have to be a sum of terms of the form

$$
\left(a x^{2} y+b x y^{2}+c x y+d\right)^{2}
$$

- However, no such term has a negative coefficient of $x^{2} y^{2}$. Contradiction.

Showing Polynomials are not SOS

- Is there a more general way to show a polynomial is not a sum of squares?
- Observation: By definition, if $f=\sum_{j} g_{j}^{2}$ then for any valid pseudo-expectation values,

$$
\tilde{E}[f]=\sum_{j} \tilde{E}\left[g_{j}^{2}\right] \geq 0
$$

- Thus, if we can find pseudo-expectation values such that $\tilde{E}[f]<0$, then f is not a sum of squares of polynomials.

Motzkin is a Rational Function of

Sums of Squares

- $p(x)=x^{4} y^{2}+x^{2} y^{4}-3 x^{2} y^{2}+1$
- $\left(x^{2}+y^{2}+1\right) p(x)=x^{6} y^{2}+2 y^{4} x^{4}+x^{2} y^{6}-$ $2 x^{4} y^{2}-2 x^{2} y^{4}-3 x^{2} y^{2}+x^{2}+y^{2}+1$
- This is a sum of squares. The components are:

1. $2\left(\frac{1}{2} x^{3} y+\frac{1}{2} x y^{3}-x y\right)^{2}=\frac{1}{2}\left(x^{6} y^{2}+2 y^{4} x^{4}+x^{2} y^{6}\right)-2 x^{4} y^{2}-2 x^{2} y^{4}+$
2. $\left(x^{2} y-y\right)^{2}=x^{4} y^{2}-2 x^{2} y^{2}+y^{2}$
3. $\left(x y^{2}-x\right)^{2}=x^{2} y^{4}-2 x^{2} y^{2}+x^{2}$
4. $\quad \frac{1}{2}\left(x^{3} y-x y\right)^{2}=\frac{1}{2} x^{6} y^{2}-x^{4} y^{2}+\frac{1}{2} x^{2} y^{2}$
5. $\frac{1}{2}\left(x y^{3}-x y\right)^{2}=\frac{1}{2} x^{2} y^{6}-x^{2} y^{4}+\frac{1}{2} x^{2} y^{2}$
6. $\left(x^{2} y^{2}-1\right)^{2}=x^{4} y^{4}-2 x^{2} y^{2}+1$

Can SOS use Rational Functions?

- $p(x)=x^{4} y^{2}+x^{2} y^{4}-3 x^{2} y^{2}+1$
- $p(x)=\frac{\sum_{j} g_{j}^{2}}{x^{2}+y^{2}+1} \geq 0$
- Can the SOS hierarchy use such reasoning?
- Yes and no... (see problem set)

References

- [Hil1888] D. Hilbert. Uber die darstellung definiter formen als summe von formenquadraten. Annals of Mathematics 32:342-350, 1888.
- [Mot67] T. Motzkin. The arithmetic-geometric inequality. In Proc. Symposium on Inequalities p. 205-224, 1967.

