
Lecture 5: SOS Proofs and the 
Motzkin Polynomial



Lecture Outline

• Part I: SOS proofs and examples

• Part II: Motzkin Polynomial



Part I: SOS proofs and examples



SOS proofs

• Fundamental question: What can we say about 
the pseudo-expectation values SOS gives us?

• In other words, which statements that are true 
for any expectation of an actual distribution of 
solutions must also be true for pseudo-
expectation values?



Non-negativity of Squares

• Trivial but extremely useful: If 𝑓 is a sum of 

squares i.e. 𝑓 = σ𝑗 𝑔𝑗
2 then ෨𝐸 𝑓 ≥ 0

• Example: If 𝑓 = 𝑥2 − 4𝑥 + 5 then ෨𝐸 𝑓 ≥ 0 as 
𝑓 = 𝑥 − 2 2 + 1. In fact, ෨𝐸 𝑓 ≥ 1



Single Variable Polynomials

• Theorem: For a single-variable polynomial p(x), 
𝑝(𝑥) is non-negative ⬄ 𝑝(𝑥) is a sum of squares.

• Proof: By induction on the degree 𝑑

• Base case 𝑑 = 0 is trivial

• If 𝑑 > 0, let 𝑐 ≥ 0 be the minimal value of 𝑝(𝑥) and 
let 𝑎 be a zero of 𝑝 𝑥 − 𝑐. Since 𝑝 𝑥 − 𝑐 is non-
negative, it has a zero of order 2𝑘 at 𝑎 for some 
integer 𝑘 ≥ 1 (the order must be even).

• Write 𝑝 = 𝑥 − 𝑎 2𝑘𝑝′ + 𝑐 where 𝑝′ =
𝑝−𝑐

𝑥−𝑎 2𝑘 is 

non-negative and thus a sum of squares.



Degree 2 Polynomials

• Given a degree 2 polynomial 𝑓, we can write 
𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 = σ𝑖,𝑗 𝑐𝑖𝑗𝑥𝑖𝑥𝑗 where c𝑗𝑖 = 𝑐𝑖𝑗

for all 𝑖 and 𝑗.

• Taking 𝑀 to be the coefficient matrix where 
𝑀𝑖𝑗 = 𝑐𝑖𝑗, we can write 𝑀 = σ𝑖 𝜆𝑖𝑣𝑖𝑣𝑖

𝑇 where 

the {𝑣𝑖} are orthonormal. Now

1. 𝑓 𝑥 = 𝑥𝑇𝑀𝑥.

2. 𝑓(𝑥) = σ𝑖 𝜆𝑖 𝑥𝑇𝑣𝑖𝑣𝑖
𝑇𝑥 = σ𝑖 𝜆𝑖 σ𝑗=1

𝑛 𝑣𝑖𝑗𝑥𝑗

2



Degree 2 Polynomials

• We have that

1. 𝑀 = σ𝑖 𝜆𝑖𝑣𝑖𝑣𝑖
𝑇 where the {𝑣𝑖} are orthonormal. 

2. 𝑓 𝑥 = 𝑥𝑇𝑀𝑥

3. 𝑓 = σ𝑖 𝜆𝑖 σ𝑗=1
𝑛 𝑣𝑖𝑗𝑥𝑗

2

• If 𝑀 ≽ 0 then ∀𝑖, 𝜆𝑖 ≥ 0 so 𝑓 is a sum of squares

• If 𝑀 is not PSD then 𝜆𝑖 < 0 for some 𝑖. Taking 
𝑥 = 𝑣𝑖, 𝑓 𝑥 = 𝑣𝑖

𝑇𝑀𝑣𝑖 < 0 so 𝑓 is not non-
negative.

• Thus if deg 𝑓 = 2, 𝑓 is non-negative ⬄𝑓 is SOS



Cauchy Schwarz Inequality

• Cauchy-Schwarz inequality:

σ𝑖 𝑓𝑖𝑔𝑖
2

≤ σ𝑖 𝑓𝑖
2 σ𝑖 𝑔𝑖

2

• Extremely useful

• Proof: Consider 𝑓 and 𝑔 as vectors. Cauchy-
Schwarz is equivalent to 𝑓 ⋅ 𝑔 2 ≤ 𝑓 2 𝑔 2

• This is true as 𝑓 ⋅ 𝑔 2 = 𝑓 2 𝑔 2 cos2 Θ
where Θ is the angle between 𝑓 and 𝑔.

• How about an SOS proof?



Cauchy Schwarz: SOS Proof

• Cauchy-Schwarz: σ𝑖 𝑓𝑖𝑔𝑖
2

≤ σ𝑖 𝑓𝑖
2 σ𝑖 𝑔𝑖

2

• Building block: For all 𝑖 and 𝑗,

𝑓𝑖𝑔𝑗 − 𝑓𝑗𝑔𝑖
2

= 𝑓𝑖
2𝑔𝑗

2 + 𝑓𝑗
2𝑔𝑖

2 − 2𝑓𝑖𝑔𝑖𝑓𝑗𝑔𝑗 ≥ 0

• Note that:

1. σ𝑖<𝑗(𝑓𝑖
2𝑔𝑗

2 + 𝑓𝑗
2𝑔𝑖

2) = σ𝑖 𝑓𝑖
2 σ𝑖 𝑔𝑖

2 − σ𝑖 𝑓𝑖
2𝑔𝑖

2

2. 2 σ𝑖<𝑗(𝑓𝑖𝑔𝑖𝑓𝑗𝑔𝑗) = σ𝑖 𝑓𝑖𝑔𝑖
2

− σ𝑖 𝑓𝑖
2𝑔𝑖

2

• Final proof: σ𝑖,𝑗:𝑖<𝑗 𝑓𝑖𝑔𝑗 − 𝑓𝑗𝑔𝑖
2

=

σ𝑖 𝑓𝑖
2 σ𝑖 𝑔𝑖

2 − σ𝑖 𝑓𝑖𝑔𝑖
2

≥ 0



SOS Proofs With Constraints

• What if we also have constraints 
𝑠1 𝑥1, … , 𝑥𝑛 = 0, 𝑠2 𝑥1, … , 𝑥𝑛 = 0, etc.?

• An SOS proof that ℎ ≥ 𝑐 now takes the form 

ℎ = 𝑐 + σ𝑖 𝑓𝑖𝑠𝑖 + σ𝑗 𝑔𝑗
2

• Example: If 𝑥2 = 1 then x ≥ −1. Proof: 

𝑥 + 1 =
𝑥2

2
+ 𝑥 +

1

2
=

1

2
𝑥 + 1 2 ≥ 0



Combining Proofs

• If there is an SOS proof of degree 𝑑1 that 𝑓 ≥ 0
and an SOS proof of degree 𝑑2 that 𝑔 ≥ 0 then:

1. There is an SOS proof of degree 𝑚𝑎𝑥{𝑑1, 𝑑2} that 
𝑓 + 𝑔 ≥ 0

2. There is an SOS proof of degree 𝑑1 + 𝑑2 that 
𝑓𝑔 ≥ 0



Products of Pseudo-expectation Values

• What if our statements involve products of 
pseudo-expectation values?

• Example: We showed that 

෨𝐸 σ𝑖 𝑓𝑖𝑔𝑖
2

≤ ෨𝐸 σ𝑖 𝑓𝑖
2 σ𝑖 𝑔𝑖

2

What if we instead want to show that

෨𝐸 σ𝑖 𝑓𝑖𝑔𝑖
2

≤ ෨𝐸 σ𝑖 𝑓𝑖
2 ෨𝐸 σ𝑖 𝑔𝑖

2 ?

• Requires modified proof, see problem set

• Can often prove such statements by using ෨𝐸
values as constants in the proof.



Example: Variance

• For any random variable 𝑥, 𝐸 𝑥2 ≥ 𝐸 𝑥 2

• Also true for pseudo-expectation values, i.e. for 

any polynomial 𝑓, ෨𝐸 𝑓2 ≥ ෨𝐸 𝑓
2

• Proof: Given ෨𝐸, let 𝑐 = ෨𝐸[𝑓] and observe that 
෨𝐸 𝑓 − 𝑐 2 = ෨𝐸 𝑓2 − 2𝑐 ෨𝐸 𝑓 + c2

= ෨𝐸 𝑓2 − ෨𝐸 𝑓
2

≥ 0



In-class exercises

1. Prove that ෨𝐸 𝑥4 − 4𝑥 + 3 ≥ 0

2. Prove that 
෨𝐸 𝑥2 + 2𝑦2 + 6𝑧2 + 2𝑥𝑦 + 2𝑥𝑧 + 6𝑦𝑧 ≥ 0

3. Prove that if 𝑥2 + 𝑦2 = 1 then 𝑥 + 𝑦 ≤ 2

4. Prove that if ෨𝐸 𝑥2 = 0 then for any function 𝑓

of degree at most 
𝑑

2
, ෨𝐸 𝑥𝑓 = 0.



In-class exercise answers

1. Prove that ෨𝐸 𝑥4 − 4𝑥 + 3 ≥ 0

Answer: 𝑥4 − 4𝑥 + 3 = 𝑥 − 1 2 𝑥2 + 2𝑥 + 3 =

𝑥 − 1 2( 𝑥 + 1 2 + 2)



In-class exercise answers

2. Prove that 
෨𝐸 𝑥2 + 2𝑦2 + 6𝑧2 + 2𝑥𝑦 + 2𝑥𝑧 + 6𝑦𝑧 ≥ 0

Answer: The coefficient matrix for this 

polynomial is M =
1 1 1
1 2 3
1 3 6

One non-orthonormal factorization is 𝑀 =
𝑣1𝑣1

𝑇 + 𝑣2𝑣2
𝑇 + 𝑣3𝑣3

𝑇 where 𝑣1
𝑇 = [1 1 1], 

𝑣2
𝑇 = [0 1 2], 𝑣3

𝑇 = [0 0 1], 



In-class exercise answers

This gives us that 
𝑥2 + 2𝑦2 + 6𝑧2 + 2𝑥𝑦 + 2𝑥𝑧 + 6𝑦𝑧
= 𝑥 + 𝑦 + 𝑧 2 + 𝑦 + 2𝑧 2 + 𝑧2



In-class exercise answers

3. Prove that if we have the constraint 𝑥2 + 𝑦2 = 1

then ෨𝐸 𝑥 + 𝑦 ≤ 2

Answer: 2 − 𝑥 − 𝑦 =
𝑥2+𝑦2

2
− 𝑥 − 𝑦 +

1

2
=

𝑥−𝑦 2

2 2
+

𝑥+𝑦 2

2 2
− 𝑥 − 𝑦 +

1

2
=

𝑥−𝑦 2

2 2
+

1

2 2
𝑥 + 𝑦 − 2

2
≥ 0



In-class exercise answers

4. Prove that if ෨𝐸 𝑥2 = 0 then for any function 𝑓

of degree at most 
𝑑

2
− 1, ෨𝐸 𝑥𝑓 = 0.

Answer: Observe that for any constant 𝐶,

෨𝐸 𝑓 − 𝐶𝑥 2 = ෨𝐸 𝑓2 − 2𝐶 ෨𝐸 𝑥𝑓 + ෨𝐸 𝑥2 =
෨𝐸 𝑓2 − 2𝐶 ෨𝐸 𝑥𝑓 ≥ 0

The only way this can be true for all 𝐶 us if 
෨𝐸 𝑥𝑓 = 0.



Part II: Motzkin Polynomial



Non-negative vs. SOS polynomials

• Unfortunately, not all non-negative polynomials 
are SOS.

• Are equivalent in the special cases where 𝑛 = 1
(single-variable polynomials), 𝑑 = 2 (quadratic 
polynomials), or 𝑛 = 2, 𝑑 = 4 (quartic 
polynomials with two variables)

• Hilbert [Hil1888]: In all other cases, there are 
non-negative polynomials which are not sums of 
squares of polynomials.

• Motzkin [Mot67] found the first explicit example.



Motzkin Polynomial

• Motzkin Polynomial:
𝑝 𝑥, 𝑦 = 𝑥4𝑦2 + 𝑥2𝑦4 − 3𝑥2𝑦2 + 1

• Question 1: Why is it non-negative?

• Question 2: How can we show it is not a sum of 
squares of polynomials?



AM-GM inequality

• Arithmetic mean/Geometric mean Inequality: 
𝑛 ς𝑖=1

𝑛 𝑥𝑖 ≤
1

𝑛
σ𝑖=1

𝑛 𝑥𝑖 if ∀𝑖, 𝑥𝑖 ≥ 0 with equality if 

and only if all of the 𝑥𝑖 are equal.

• Proof: Minimize 
1

𝑛
σ𝑖=1

𝑛 𝑥𝑖 − 𝑛 ς𝑖=1
𝑛 𝑥𝑖

• Derivative with respect to 𝑥𝑗 is 
1

𝑛
1 −

𝑛 ς𝑖≠𝑗 𝑥𝑖

𝑛
𝑥𝑗

𝑛−1

• Setting this to 0 for all 𝑗, ∀𝑗, 𝑥𝑗 = 𝑛 ς𝑖=1
𝑛 𝑥𝑖



Motzkin Polynomial Non-negativity

• Motzkin Polynomial:
𝑝 𝑥, 𝑦 = 𝑥4𝑦2 + 𝑥2𝑦4 − 3𝑥2𝑦2 + 1

• Applying AM-GM with 𝑥4𝑦2, 𝑦2𝑥4, 1,

𝑥2𝑦2 =
3

𝑥4𝑦2 ⋅ 𝑦2𝑥4 ⋅ 1 ≤
𝑥4𝑦2+ 𝑦2𝑥4+ 1

3
• Multiplying this by 3, 𝑝 𝑥, 𝑦 ≥ 0



Newton Polytope 

• Given a polynomial, assign a point to each 
monomial based on the degree of each variable. 
Examples:

1. 𝑥2𝑦 is assigned the point (2,1)

2. 𝑦5 is assigned the point (0,5)

3. 𝑥𝑦2𝑧3 is assigned the point (1,2,3)

• The Newton polytope of a polynomial is the 
convex hull of the points assigned to each 
monomial.



Newton Polytope Example 

• Example: Newton Polytope for the polynomial 
𝑝 𝑥 = 3𝑥2𝑦4 − 𝑥4𝑦3 − 2𝑥3𝑦 + 4

• Note that the coefficients in front of the 
monomials don’t change the polytope.

0 1 2 3 4 5 6
0
1
2
3
4
5
6



Newton Polytope of a Sum of Squares 

• Let 𝑓 be a sum of squares, i.e. 𝑓 = σ𝑗 𝑔𝑗
2

• Claim: The Newton polytope of 𝑓 is 2𝑋 where 𝑋
is the convex hull of all the points corresponding 
to some monomial in some 𝑔𝑗

• Proposition: If 𝑝, 𝑞 are monomials with 
corresponding points 𝑎, 𝑏 then 𝑝𝑞 corresponds 
to the point 𝑎 + 𝑏

• One direction: Let 𝑋𝑗 be the Newton polytope of 
𝑔𝑗. The Newton polytope of 𝑔𝑗

2 ⊆ 2𝑋𝑗 ⊆ 2𝑋. 
Thus, the Newton polytope of 𝑓 ⊆ 2𝑋.



Newton Polytope of a Sum of Squares 

• Other direction: If 𝑝, 𝑞, 𝑟 are monomials where 
𝑝𝑟 = 𝑞2 and 𝑎, 𝑏, 𝑐 are the corresponding 
points, 𝑎 + 𝑐 = 2𝑏

• Corollary: If 𝑏 is a vertex of 𝑋 corresponding to a 
monomial 𝑞 then if

1. 𝑝, 𝑟 are monomials appearing in some 𝑔𝑗 (and thus 

their corresponding points 𝑎, 𝑐 are in 𝑋)

2. 𝑝𝑟 = 𝑞2

then 𝑝 = 𝑟 = 𝑞.



Newton Polytope of a Sum of Squares 

• Corollary: If 𝑏 is a vertex of 𝑋 corresponding 
to a monomial 𝑞 then 𝑞2 appears with 

positive coefficient in 𝑓 = σ𝑗 𝑔𝑗
2.

• This implies that 2𝑋 ⊆ the Newton polytope 
of 𝑓

• Putting everthing together, the Newton 
polytope of 𝑓is 2𝑋.



Motzkin Polynomial Newton Polytope

• Motzkin polynomial: 
𝑝 𝑥 = 𝑥4𝑦2 + 𝑥2𝑦4 − 3𝑥2𝑦2 + 1

0 1 2 3 4 5 6
0
1
2
3
4
5
6



Motzkin Polynomial Newton Polytope

• If 𝑝(𝑥) were a sum of squares of polynomials, 
their corresponding points would have to be 
inside the following polytope.

0 1 2 3 4 5 6
0
1
2
3
4
5
6



Motzkin is not a Sum of Squares

• If 𝑝 𝑥 = 𝑥4𝑦2 + 𝑥2𝑦4 − 3𝑥2𝑦2 + 1 were a 
sum of squares of polynomials, it would have to 
be a sum of terms of the form

𝑎𝑥2𝑦 + 𝑏𝑥𝑦2 + 𝑐𝑥𝑦 + 𝑑
2

• However, no such term has a negative coefficient 
of 𝑥2𝑦2. Contradiction.



Showing Polynomials are not SOS

• Is there a more general way to show a 
polynomial is not a sum of squares?

• Observation: By definition, if 𝑓 = σ𝑗 𝑔𝑗
2 then 

for any valid pseudo-expectation values, 

෨𝐸 𝑓 = σ𝑗
෨𝐸 𝑔𝑗

2 ≥ 0

• Thus, if we can find pseudo-expectation values 
such that ෨𝐸 𝑓 < 0, then 𝑓 is not a sum of 
squares of polynomials.



Motzkin is a Rational Function of 
Sums of Squares

• 𝑝 𝑥 = 𝑥4𝑦2 + 𝑥2𝑦4 − 3𝑥2𝑦2 + 1

• 𝑥2 + 𝑦2 + 1 𝑝 𝑥 = 𝑥6𝑦2 + 2𝑦4𝑥4 + 𝑥2𝑦6 −

2𝑥4𝑦2 − 2𝑥2𝑦4 − 3𝑥2𝑦2 + 𝑥2 + 𝑦2 + 1

• This is a sum of squares. The components are:
1. 2

1

2
𝑥3𝑦 +

1

2
𝑥𝑦3 − 𝑥𝑦

2
=

1

2
𝑥6𝑦2 + 2𝑦4𝑥4 + 𝑥2𝑦6 − 2𝑥4𝑦2 − 2𝑥2𝑦4 +

2𝑥2𝑦2

2. 𝑥2𝑦 − 𝑦
2

= 𝑥4𝑦2 − 2𝑥2𝑦2 + 𝑦2

3. 𝑥𝑦2 − 𝑥
2

= 𝑥2𝑦4 − 2𝑥2𝑦2 + 𝑥2

4.
1

2
𝑥3𝑦 − 𝑥𝑦

2
=

1

2
𝑥6𝑦2 − 𝑥4𝑦2 +

1

2
𝑥2𝑦2

5.
1

2
𝑥𝑦3 − 𝑥𝑦

2
=

1

2
𝑥2𝑦6 − 𝑥2𝑦4 +

1

2
𝑥2𝑦2

6. 𝑥2𝑦2 − 1
2

= 𝑥4𝑦4 − 2𝑥2𝑦2 + 1



Can SOS use Rational Functions?

• 𝑝 𝑥 = 𝑥4𝑦2 + 𝑥2𝑦4 − 3𝑥2𝑦2 + 1

• 𝑝 𝑥 =
σ𝑗 𝑔𝑗

2

𝑥2+𝑦2+1
≥ 0

• Can the SOS hierarchy use such reasoning?

• Yes and no… (see problem set)
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