
Lecture 6: Linear Programming 
for Sparsest Cut



Sparsest Cut and SOS

• The SOS hierarchy captures the algorithms for 
sparsest cut, but they were discovered directly 
without thinking about SOS (and this is how 
we’ll present them)

• Why we are covering sparsest cut in detail:

1. Quite interesting in its own right

2. Illustrates the kinds of things SOS can capture

3. Determining if SOS can do better is a major open 
problem on SOS.



Lecture Outline

• Part I: Sparsest cut

• Part II: Linear programming relaxation and 
analysis via metric embeddings

• Part III: Bourgain’s Theorem

• Part IV: Tight example: expanders



Part I: Sparsest Cut



Flaw of Minimum Cut

• We’ve seen that MIN-CUT can be solved 
efficiently

• However, MIN-CUT may not be the best way to 
decompose a graph

• Example:



Flaw of Minimum Cut

• MIN-CUT:

• Desired Cut:



Sparsest Cut Problem

• Idea: Divide # of cut edges by # of possible 
which could have been cut

• Definition: Given a cut 𝐶 = (𝑆, ҧ𝑆), define 

𝜙 𝐶 =
# 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑐𝑢𝑡

𝑆 ⋅ ҧ𝑆

• Sparsest cut problem: Minimize 𝜙(𝐶)

• Can also have a weighted version:

𝜙 𝐶 =
σ𝑖,𝑗:𝑖∈𝑆,𝑗∈ ҧ𝑆, 𝑖,𝑗 ∈𝐸(𝐺)𝑤(𝑖, 𝑗)

σ𝑖,𝑗:𝑖∈𝑆,𝑗∈ ҧ𝑆 𝑤(𝑖, 𝑗)



Linear Programming for Sparsest Cut

• Theorem [LR99]: There is a linear programming 
relaxation for sparsest cut which gives an 
𝑂(log 𝑛) approximation.



Part II: Linear Programming 
Relaxation and Analysis via 

Metric Embeddings



Metric and Pseudo-metric Spaces

• Definition: A metric space (𝑋, 𝑑) is a set of 
points 𝑋 and a distance function 𝑑: 𝑋 × 𝑋 →
ℝ≥0 where
1. ∀𝑥1, 𝑥2 ∈ 𝑋, 𝑑 𝑥1, 𝑥2 = 𝑑(𝑥1, 𝑥2)

2. ∀𝑥1, 𝑥2 ∈ 𝑋, 𝑑 𝑥1, 𝑥2 = 0⬄ 𝑥1 = 𝑥2
3. ∀𝑥1, 𝑥2, 𝑥3 ∈ 𝑋, d x1, x3 ≤ 𝑑 𝑥1, 𝑥2 + 𝑑(𝑥2, 𝑥3)

• Example 1: Euclidean Space: 𝑑 𝑥, 𝑦 = 𝑦 − 𝑥

• Example 2: 𝐿1 distance: 𝑑 𝑥, 𝑦 = σ𝑖 |𝑦𝑖 − 𝑥𝑖|

• Without the second condition, this is called a 
pseudo-metric space



Cut Spaces

• A cut 𝐶 = (𝑆, ҧ𝑆) induces a pseudo-metric space 
on a graph 𝐺: Take 𝑑(𝑢, 𝑣) = 0 if 𝑢, 𝑣 ∈ 𝑆 or 
𝑢, 𝑣 ∈ ҧ𝑆 and otherwise take 𝑑 𝑢, 𝑣 = 𝑐 for 
some 𝑐 > 0.

• We call this a cut space.



Problem Reformulation

• Reformulation: Minimize 
σ𝑖,𝑗:𝑖<𝑗, 𝑖,𝑗 ∈𝐸(𝐺) 𝑑(𝑖,𝑗)

σ𝑖,𝑗:𝑖<𝑗 𝑑(𝑖,𝑗)
over 

all cut spaces

• First issue: Objective function is nonlinear

• Fix: Set denominator equal to 1. 

• Modified Reformulation: Minimize 
σ𝑖,𝑗:𝑖<𝑗, 𝑖,𝑗 ∈𝐸(𝐺)𝑑(𝑖, 𝑗) over all cut spaces

normalized so that σ𝑖,𝑗:𝑖<𝑗 𝑑(𝑖, 𝑗) = 1



• Want to minimize σ𝑖,𝑗:𝑖<𝑗, 𝑖,𝑗 ∈𝐸(𝐺)𝑑(𝑖, 𝑗) over 

all cut spaces normalized so that 
σ𝑖,𝑗:𝑖<𝑗 𝑑(𝑖, 𝑗) = 1

• Relaxation: Minimize σ𝑖,𝑗:𝑖<𝑗, 𝑖,𝑗 ∈𝐸(𝐺)𝑑(𝑖, 𝑗)

over all pseudo-metrics normalized so that 
σ𝑖,𝑗:𝑖<𝑗 𝑑(𝑖, 𝑗) = 1. Linear program constraints:

1. ∀𝑖, 𝑗, 𝑑 𝑖, 𝑗 = 𝑑(𝑗, 𝑖) ≥ 0

2. ∀𝑖, 𝑗, 𝑘, 𝑑(𝑖, 𝑘) ≤ 𝑑(𝑖, 𝑗) + 𝑑(𝑗, 𝑘)

3. σ𝑖,𝑗:𝑖<𝑗 𝑑(𝑖, 𝑗) = 1

Problem Relaxation



• Definition: We say that a pseudo-metric (𝑋, 𝑑) is 
an 𝐿1 space if there is a mapping f: 𝑋 → ℝn such 
that ∀𝑥, 𝑦 ∈ 𝑋,

𝑑 𝑥, 𝑦 = σ𝑖 |𝑓 𝑦 𝑖 − 𝑓 𝑥 𝑖|

• In this case, we may as well pretend we are 
already in ℝ𝑛 with the 𝐿1 distance function

• Lemma: For the sparsest cut relaxation, there is 
no gap between 𝐿1 spacs and cut spaces!

𝐿1 Spaces



• If 𝑥1 = 1,2 , 𝑥2 = (0,3), and 𝑥3 = (4,4), then 
in the 𝐿1 metric, 𝑑 𝑥1, 𝑥2 = 2, 𝑑 𝑥1, 𝑥3 = 5, 
and 𝑑 𝑥2, 𝑥3 = 5

𝐿1 Space Example
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• Lemma: Any finite 𝐿1 space can be decomposed 
as a linear combination of cut spaces.

• Proof sketch: We can work coordinate by 
coordinate. For a single coordinate, here is the 
picture:

Decomposing 𝐿1 Pseudo-metrics
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Useful Lemma

• Lemma: If 𝑎, 𝑏 ≥ 0 and 𝑐, 𝑑 > 0 then

min
𝑎

𝑐
,
𝑏

𝑑
≤
𝑎 + 𝑏

𝑐 + 𝑑
≤ max

𝑎

𝑐
,
𝑏

𝑑

• Proof: Without loss of generality, assume that 
𝑎

𝑐
≤

𝑏

𝑑
. Take 𝑎′ =

𝑏𝑐

𝑑
≥ 𝑎 and take 𝑏′ =

𝑑𝑎

𝑐
≤ 𝑏. 

Now 
𝑎

𝑐
=

𝑎+𝑏′

𝑐+𝑑
≤

𝑎+𝑏

𝑐+𝑑
≤

𝑎′+𝑏

𝑐+𝑑
=

𝑏

𝑑

• Together with the previous decomposition, this 
shows that for any 𝐿1 space, there’s always a cut 
spacec which is as good or better.



Metric Embeddings and Distortion

• Often want to embed a more complicated 
metric space into a simpler one. This embedding 
won’t be perfect, but may still be useful

• Given metric spaces 𝑋, 𝑑 , (𝑌, 𝑑′) and a map 
𝑓: 𝑋 → 𝑌:

1. Define the expansion of 𝑓 to be m𝑎𝑥
𝑢,𝑣∈𝑋

𝑑′(𝑓 𝑢 ,𝑓(𝑣))

𝑑(𝑢,𝑣)

2. Define the contraction of 𝑓 to be m𝑎𝑥
𝑢,𝑣∈𝑋

𝑑(𝑢,𝑣)

𝑑′(𝑓 𝑢 ,𝑓(𝑣))

3. Define the distortion of 𝑓 to be the product of the 
expansion and the contraction of 𝑓



Metric Embeddings into 𝐿1

• If the pseudo-metric given by our linear 
program can be embedded into 𝐿1 with 
distortion 𝛼, this gives an 𝛼-approximation for 
the value of the sparsest cut.

• Question: How well can general finite pseudo-
metric spaces be embedded into 𝐿1? 



Part III: Bourgain’s Theorem



Bourgain’s Theorem

• Theorem [Bou85]: Every metric on 𝑛 points can 
be embedded into an 𝐿1 metric with distortion 
𝑂(log 𝑛). Moreover, 𝑂( 𝑙𝑜𝑔𝑛 2) coordinates are 
sufficient

• Note: the bound on the number of coordinates 
is due to Linial, London, and Rabinovich [LLR95]



Fréchet Embeddings

• Def: Given a set of points 𝑆, define 
𝑑 𝑥, 𝑆 = min

𝑠∈𝑆
𝑑 𝑥, 𝑠

• Fréchet embedding: Gives a value to each point 
based on its distance from some subset 𝑆 of 
points and takes the distance between. In other 
words,

𝑑𝑆 𝑥, 𝑦 = |𝑑 𝑦, 𝑆 − 𝑑(𝑥, 𝑆)|

• Proposition: For any 𝑆, 𝑑𝑆 𝑥, 𝑦 ≤ 𝑑(𝑥, 𝑦)



Fréchet Embedding Example

• Start with the distance metric 𝑑 𝑢, 𝑣 = length 
of the shortest path from 𝑢 to 𝑣 on the graph 
shown. If we take 𝑆 to be the set of red vertices, 
we get the values shown for 𝑑(𝑣, 𝑆).
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Fréchet Embeddings Bound

• 𝑑 𝑥, 𝑆 = min
𝑠∈𝑆

𝑑 𝑥, 𝑠

• 𝑑𝑆 𝑥, 𝑦 = |𝑑 𝑦, 𝑆 − 𝑑(𝑥, 𝑆)|

• Proposition: For any 𝑆, 𝑑𝑆 𝑥, 𝑦 ≤ 𝑑(𝑥, 𝑦)

• Proof: Let 𝑠 be the point in 𝑆 of minimal distance 
from 𝑥.
𝑑 𝑦, 𝑆 ≤ 𝑑 𝑦, 𝑠 ≤ 𝑑 𝑥, 𝑠 + 𝑑 𝑥, 𝑦 = 𝑑 𝑥, 𝑦 + 𝑑(𝑥, 𝑆)

• By symmetry, d 𝑥, 𝑆 ≤ 𝑑 𝑥, 𝑦 + 𝑑(𝑦, 𝑆) so 
dS x, y = 𝑑 𝑦, 𝑆 − 𝑑 𝑥, 𝑆 ≤ 𝑑(𝑥, 𝑦), as 
needed.



Bourgain’s Theorem Proof Idea

• Proof idea: Choose many Fréchet embeddings, 
have a coordinate for each one.

• Resulting expansion is at most the sum of the 
weights on the embeddings (this will be 
𝑂(𝑙𝑜𝑔𝑛) for us)

• Challenge: Ensure that the contraction is 𝑂(1). 
In other words, ensure that some of the Fréchet 
embeddings preserve some of the distance 
between each pair of points 𝑥 and 𝑦.



Bad Case #1

• Issue: Could have that 𝑓𝑆 𝑥, 𝑦 ≪ 𝑑(𝑥, 𝑦). In 
fact, 𝑓𝑆(𝑥, 𝑦) can easily be zero!

• Case 1: All points in 𝑆 are far from 𝑥 and 𝑦 and 
𝑑 𝑥, 𝑆 = 𝑑(𝑦, 𝑆).

• Example:

x

y

Nearest point in 𝑆



Bad Case #2

• Case 2: There two points 𝑠𝑥 and 𝑠𝑦 in 𝑆 where 𝑠𝑥
is very close to 𝑥 and 𝑠𝑦 is very close to 𝑦. If so, 
can have that

d x, S = 𝑑 𝑥, 𝑠𝑥 = 𝑑 𝑦, 𝑠𝑦 = 𝑑(𝑦, 𝑆)

• Example:

x y

𝑠𝑥 𝑠𝑦



Attempt #1

• Want 𝑆 to contain exactly one point 𝑝 which is 
very close to 𝑥 or 𝑦. 

• Let 𝑑 = 𝑑(𝑥, 𝑦). Pick 𝑆 so that 𝑆 has precisely 

one point 𝑝 which is within distance 
𝑑

3
of either 𝑥

or 𝑦.

• Can be accomplished with constant probability 
by taking a random S of the appropriate size.

x y



Attempt #1

• Attempt #1: Pick 𝑆 so that 𝑆 has precisely one 

point 𝑝 which is within distance 
𝑑

3
of either 𝑥 or 

𝑦.

• Danger: 𝑆 also contains point(s) of distance 

slightly more than 
𝑑

3
from the other point.

x y



Attempt #1

• Possible fix: Require that 𝑆 contains exactly one 

point within distance 
𝑑

3
of 𝑥 or 𝑦 and no other 

points within distance 
𝑑

2
of 𝑥 or 𝑦

• This implies 𝑑𝑆 𝑥, 𝑦 ≥
𝑑

6

• However, may be too much to ask for…

x y



Actual Analysis

• Def: Given 𝑟, 𝑝, define 𝐵𝑟 𝑝 = {𝑥: 𝑑 𝑥, 𝑝 ≤ 𝑟}

• For each 𝑖 ∈ [1, ⌈log2 𝑛⌉], define 𝑑𝑖 to be 

𝑑𝑖 = min min{𝑟 : 𝐵𝑟 𝑥 ∪ 𝐵𝑟 𝑦 ≥ 2𝑖},
𝑑

3

• Lemma: If 𝑆 consists of 
𝑛

2𝑖
points chosen at 

random then P 𝑓𝑆 𝑥, 𝑦 ≥ 𝑑𝑖+1 − 𝑑𝑖 is Ω(1)

• Proof: With probability Ω(1),

1. ∃𝑝 ∈ 𝑆: 𝑝 ∈ 𝐵𝑑𝑖 𝑥 ∪ 𝐵𝑑𝑖(𝑦)

2. ∄𝑝′: 𝑝′ ∈ 𝑆, 𝑝′ ≠ 𝑝,𝑚𝑖𝑛{𝑑 𝑥, 𝑝′ , 𝑑 𝑦, 𝑝′ } < 𝑑𝑖+1



Actual Analysis Picture

• If 𝑆 consists of 
𝑛

2𝑖
points chosen at random then 

with probability Ω(1):

x y

s𝑑𝑖
𝑑𝑖+1



Actual Analysis Continued

• Lemma: If 𝑆 consists of
𝑛

2𝑖
points chosen at 

random then with constant probability, 
𝑓𝑆 𝑥, 𝑦 ≥ 𝑑𝑖+1 − 𝑑𝑖

• Corollary: Averaging over all 𝑖 ∈ [1, 𝑙𝑜𝑔𝑛 ], the 

expected value of 𝑓𝑆(𝑥, 𝑦) is at least Ω
𝑑

𝑙𝑜𝑔𝑛

• For each 𝑖 ∈ [0, 𝑙𝑜𝑔𝑛 ], take 𝑂(𝑙𝑜𝑔𝑛) 𝑆 of size 
2𝑖 at random. This ensures that everything is 
close to its expectation with high probability.



Actual Analysis Continued

• Full embedding procedure: For each 𝑖 ∈
[0, 𝑙𝑜𝑔𝑛 − 1], take m = 𝑂(𝑙𝑜𝑔𝑛) 𝑆 of size 2𝑖

at random. For each such 𝑆, create a coordinate 

where each point 𝑥 has value 
1

𝑚
𝑑 𝑥, 𝑆 .

• Averaging over many subsets of each size 
ensures that everything is close to its 
expectation with high probability.



Part IV: Tight Example: Expanders



Expander Graphs

• A vertex/edge expander is a graph 𝐺 where 
every subset of 𝐺 has a lot of 
neighbors/outgoing edges 

• Definition: The vertex expansion of a graph 𝐺 is 

min
𝑆:0< 𝑆 ≤

𝑛

2

𝑁(𝑆)

|𝑆|
where 

𝑁 𝑆 = {𝑣: ∃𝑢 ∈ 𝑆: 𝑢, 𝑣 ∈ 𝐸(𝐺)}

• Definition: The edge expansion of a graph 𝐺 is 

min
𝑆:0< 𝑆 ≤

𝑛

2

𝛿(𝑆)

|𝑆|
where 

𝛿 𝑆 = { 𝑢, 𝑣 : 𝑢 ∈ 𝑆, 𝑣 ∉ 𝑆, 𝑢, 𝑣 ∈ 𝐸(𝐺)}



Observations on Expander Graphs

• Expander graphs are extremely useful in 
complexity theory.

• Derandomization: random walks mix well

• Here: Edge expanders have no sparse cuts. 

• Proposition: If 𝐺 has edge expansion 𝑐 then for 

all cuts C = (𝑆, ҧ𝑆), 𝜙 𝐶 =
# 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑐𝑢𝑡

𝑆 ⋅ ҧ𝑆
≥

𝑐

𝑛

• Proof: By definition, # 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑐𝑢𝑡 ≥ 𝑐|𝑆| and 
ҧ𝑆 ≤ 𝑛



Constructing Expanders

• With high probability, random graphs are 
excellent expanders.

• Constructing expanders explicitly is more 
challenging and is an entire field of research on 
its own.



Ω(log 𝑛) gap with expanders

• Use the distance metric 𝑑𝑖𝑗 = smallest length of 
a path from 𝑖 to 𝑗.

• For a 𝑑-regular expander with edge expansion 
𝑑

4
:

1. σ𝑖,𝑗:𝑖<𝑗, 𝑖,𝑗 ∈𝐸(𝐺)𝑑𝑖𝑗 = |𝐸 𝐺 | which is 𝑂(𝑛𝑑)

2. σ𝑖,𝑗:𝑖<𝑗 𝑑𝑖𝑗 is Ω(𝑛2log(𝑛)) as most pairs of 
vertices are logarithmic distance apart

• Linear programming relaxation value: 𝑂
𝑑

𝑛𝑙𝑜𝑔𝑛

• Actual value is Ω
𝑑

𝑛
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