Lecture 6: Linear Programming for Sparsest Cut

Sparsest Cut and SOS

- The SOS hierarchy captures the algorithms for sparsest cut, but they were discovered directly without thinking about SOS (and this is how we'll present them)
- Why we are covering sparsest cut in detail:

1. Quite interesting in its own right
2. Illustrates the kinds of things SOS can capture
3. Determining if SOS can do better is a major open problem on SOS.

Lecture Outline

- Part I: Sparsest cut
- Part II: Linear programming relaxation and analysis via metric embeddings
- Part III: Bourgain's Theorem
- Part IV: Tight example: expanders

Part I: Sparsest Cut

Flaw of Minimum Cut

- We've seen that MIN-CUT can be solved efficiently
- However, MIN-CUT may not be the best way to decompose a graph
- Example:

Flaw of Minimum Cut

- MIN-CUT:

- Desired Cut:

Sparsest Cut Problem

- Idea: Divide \# of cut edges by \# of possible which could have been cut
- Definition: Given a cut $C=(S, \bar{S})$, define

$$
\phi(C)=\frac{\# \text { of edges cut }}{|S| \cdot|\bar{S}|}
$$

- Sparsest cut problem: Minimize $\phi(C)$
- Can also have a weighted version:

$$
\phi(C)=\frac{\sum_{i, j: i \in S, j \in \bar{S},(i, j) \in E(G)} w(i, j)}{\sum_{i, j: i \in S, j \in \bar{S}} w(i, j)}
$$

Linear Programming for Sparsest Cut

- Theorem [LR99]: There is a linear programming relaxation for sparsest cut which gives an $O(\log n)$ approximation.

Part II: Linear Programming Relaxation and Analysis via Metric Embeddings

Metric and Pseudo-metric Spaces

- Definition: A metric space (X, d) is a set of points X and a distance function $d: X \times X \rightarrow$ $\mathbb{R}_{\geq 0}$ where

1. $\forall x_{1}, x_{2} \in X, d\left(x_{1}, x_{2}\right)=d\left(x_{1}, x_{2}\right)$
2. $\forall x_{1}, x_{2} \in X, d\left(x_{1}, x_{2}\right)=0 \Leftrightarrow x_{1}=x_{2}$
3. $\forall x_{1}, x_{2}, x_{3} \in X, \mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{3}\right) \leq d\left(x_{1}, x_{2}\right)+d\left(x_{2}, x_{3}\right)$

- Example 1: Euclidean Space: $d(x, y)=\|y-x\|$
- Example 2: L^{1} distance: $d(x, y)=\sum_{i}\left|y_{i}-x_{i}\right|$
- Without the second condition, this is called a pseudo-metric space

Cut Spaces

- A cut $C=(S, \bar{S})$ induces a pseudo-metric space on a graph G : Take $d(u, v)=0$ if $u, v \in S$ or $u, v \in \bar{S}$ and otherwise take $d(u, v)=c$ for some $c>0$.
- We call this a cut space.

Problem Reformulation

- Reformulation: Minimize $\frac{\sum_{i, j: i<j,(i, j) \in E(G)} d(i, j)}{\sum_{i, j i<j} d(i, j)}$ over all cut spaces
- First issue: Objective function is nonlinear
- Fix: Set denominator equal to 1.
- Modified Reformulation: Minimize $\sum_{i, j: i<j,(i, j) \in E(G)} d(i, j)$ over all cut spaces normalized so that $\sum_{i, j: i<j} d(i, j)=1$

Problem Relaxation

- Want to minimize $\sum_{i, j: i<j,(i, j) \in E(G)} d(i, j)$ over all cut spaces normalized so that $\sum_{i, j: i<j} d(i, j)=1$
- Relaxation: Minimize $\sum_{i, j: i<j,(i, j) \in E(G)} d(i, j)$ over all pseudo-metrics normalized so that $\sum_{i, j: i<j} d(i, j)=1$. Linear program constraints:

1. $\forall i, j, d(i, j)=d(j, i) \geq 0$
2. $\forall i, j, k, d(i, k) \leq d(i, j)+d(j, k)$
3. $\sum_{i, j: i<j} d(i, j)=1$

L^{1} Spaces

- Definition: We say that a pseudo-metric (X, d) is an L^{1} space if there is a mapping $\mathrm{f}: X \rightarrow \mathbb{R}^{\mathrm{n}}$ such that $\forall x, y \in X$,

$$
d(x, y)=\sum_{i}\left|f(y)_{i}-f(x)_{i}\right|
$$

- In this case, we may as well pretend we are already in \mathbb{R}^{n} with the L^{1} distance function
- Lemma: For the sparsest cut relaxation, there is no gap between L^{1} spacs and cut spaces!

L^{1} Space Example

- If $x_{1}=(1,2), x_{2}=(0,3)$, and $x_{3}=(4,4)$, then in the L^{1} metric, $d\left(x_{1}, x_{2}\right)=2, d\left(x_{1}, x_{3}\right)=5$, and $d\left(x_{2}, x_{3}\right)=5$

Decomposing L^{1} Pseudo-metrics

- Lemma: Any finite L^{1} space can be decomposed as a linear combination of cut spaces.
- Proof sketch: We can work coordinate by coordinate. For a single coordinate, here is the picture:

Useful Lemma

- Lemma: If $a, b \geq 0$ and $c, d>0$ then

$$
\min \left\{\frac{a}{c}, \frac{b}{d}\right\} \leq \frac{a+b}{c+d} \leq \max \left\{\frac{a}{c}, \frac{b}{d}\right\}
$$

- Proof: Without loss of generality, assume that $\frac{a}{c} \leq \frac{b}{d}$. Take $a^{\prime}=\frac{b c}{d} \geq a$ and take $b^{\prime}=\frac{d a}{c} \leq b$. Now $\frac{a}{c}=\frac{a+b^{\prime}}{c+d} \leq \frac{a+b}{c+d} \leq \frac{a^{\prime}+b}{c+d}=\frac{b}{d}$
- Together with the previous decomposition, this shows that for any L^{1} space, there's always a cut spacec which is as good or better.

Metric Embeddings and Distortion

- Often want to embed a more complicated metric space into a simpler one. This embedding won't be perfect, but may still be useful
- Given metric spaces $(X, d),\left(Y, d^{\prime}\right)$ and a map $f: X \rightarrow Y$:

1. Define the expansion of f to be $\max _{u, v \in X} \frac{d^{\prime}(f(u), f(v))}{d(u, v)}$
2. Define the contraction of f to be $\max _{u, v \in X} \frac{d(u, v)}{d^{\prime}(f(u), f(v))}$
3. Define the distortion of f to be the product of the expansion and the contraction of f

Metric Embeddings into L^{1}

- If the pseudo-metric given by our linear program can be embedded into L^{1} with distortion α, this gives an α-approximation for the value of the sparsest cut.
- Question: How well can general finite pseudometric spaces be embedded into L^{1} ?

Part III: Bourgain's Theorem

Bourgain's Theorem

- Theorem [Bou85]: Every metric on n points can be embedded into an L^{1} metric with distortion $O(\log n)$. Moreover, $O\left((\log n)^{2}\right)$ coordinates are sufficient
- Note: the bound on the number of coordinates is due to Linial, London, and Rabinovich [LLR95]

Fréchet Embeddings

- Def: Given a set of points S, define

$$
d(x, S)=\min _{s \in S} d(x, s)
$$

- Fréchet embedding: Gives a value to each point based on its distance from some subset S of points and takes the distance between. In other words,

$$
d_{S}(x, y)=|d(y, S)-d(x, S)|
$$

- Proposition: For any $S, d_{S}(x, y) \leq d(x, y)$

Fréchet Embedding Example

- Start with the distance metric $d(u, v)=$ length of the shortest path from u to v on the graph shown. If we take S to be the set of red vertices, we get the values shown for $d(v, S)$.

Fréchet Embeddings Bound

- $d(x, S)=\min _{s \in S} d(x, s)$
- $d_{S}(x, y)=|d(y, S)-d(x, S)|$
- Proposition: For any $S, d_{S}(x, y) \leq d(x, y)$
- Proof: Let s be the point in S of minimal distance from x.

$$
d(y, S) \leq d(y, s) \leq d(x, s)+d(x, y)=d(x, y)+d(x, S)
$$

- By symmetry, $\mathrm{d}(x, S) \leq d(x, y)+d(y, S)$ so $\mathrm{d}_{\mathrm{S}}(\mathrm{x}, \mathrm{y})=|d(y, S)-d(x, S)| \leq d(x, y)$, as needed.

Bourgain's Theorem Proof Idea

- Proof idea: Choose many Fréchet embeddings, have a coordinate for each one.
- Resulting expansion is at most the sum of the weights on the embeddings (this will be O ($\log n$) for us)
- Challenge: Ensure that the contraction is $O(1)$. In other words, ensure that some of the Fréchet embeddings preserve some of the distance between each pair of points x and y.

Bad Case \#1

- Issue: Could have that $f_{S}(x, y) \ll d(x, y)$. In fact, $f_{S}(x, y)$ can easily be zero!
- Case 1: All points in S are far from x and y and $d(x, S)=d(y, S)$.
- Example:

Bad Case \#2

- Case 2: There two points s_{x} and s_{y} in S where s_{x} is very close to x and s_{y} is very close to y. If so, can have that

$$
d(x, S)=d\left(x, s_{x}\right)=d\left(y, s_{y}\right)=d(y, S)
$$

- Example:

Attempt \#1

- Want S to contain exactly one point p which is very close to x or y.
- Let $d=d(x, y)$. Pick S so that S has precisely one point p which is within distance $\frac{d}{3}$ of either x or y.
- Can be accomplished with constant probability by taking a random S of the appropriate size.

Attempt \#1

- Attempt \#1: Pick S so that S has precisely one point p which is within distance $\frac{d}{3}$ of either x or y.
- Danger: S also contains point(s) of distance slightly more than $\frac{d}{3}$ from the other point.

Attempt \#1

- Possible fix: Require that S contains exactly one point within distance $\frac{d}{3}$ of x or y and no other points within distance $\frac{d}{2}$ of x or y
- This implies $d_{S}(x, y) \geq \frac{d}{6}$
- However, may be too much to ask for...

Actual Analysis

- Def: Given r, p, define $B_{r}(p)=\{x: d(x, p) \leq r\}$
- For each $i \in\left[1,\left\lceil\log _{2} n\right\rceil\right]$, define d_{i} to be

$$
d_{i}=\min \left\{\min \left\{r:\left|B_{r}(x) \cup B_{r}(y)\right| \geq 2^{i}\right\}, \frac{d}{3}\right\}
$$

- Lemma: If S consists of $\left\lceil\frac{n}{2^{i}}\right\rceil$ points chosen at random then $\mathrm{P}\left[f_{S}(x, y) \geq d_{i+1}-d_{i}\right]$ is $\Omega(1)$
- Proof: With probability $\Omega(1)$,

1. $\exists p \in S: p \in B_{d_{i}}(x) \cup B_{d_{i}}(y)$
2. $\nexists p^{\prime}: p^{\prime} \in S, p^{\prime} \neq p, \min \left\{d\left(x, p^{\prime}\right), d\left(y, p^{\prime}\right)\right\}<d_{i+1}$

Actual Analysis Picture

- If S consists of $\left[\frac{n}{2^{i}}\right]$ points chosen at random then with probability $\Omega(1)$:

Actual Analysis Continued

- Lemma: If S consists of $\left[\frac{n}{2^{i}}\right\rceil$ points chosen at random then with constant probability, $f_{S}(x, y) \geq d_{i+1}-d_{i}$
- Corollary: Averaging over all $i \in[1,[\log n\rceil]$, the expected value of $f_{S}(x, y)$ is at least $\Omega\left(\frac{d}{\log n}\right)$
- For each $i \in[0,[\log n\rceil]$, take $O(\log n) S$ of size 2^{i} at random. This ensures that everything is close to its expectation with high probability.

Actual Analysis Continued

- Full embedding procedure: For each $i \in$ $[0,\lceil\log n\rceil-1]$, take $m=O(\log n) S$ of size 2^{i} at random. For each such S, create a coordinate where each point x has value $\frac{1}{m} d(x, S)$.
- Averaging over many subsets of each size ensures that everything is close to its expectation with high probability.

Part IV: Tight Example: Expanders

Expander Graphs

- A vertex/edge expander is a graph G where every subset of G has a lot of neighbors/outgoing edges
- Definition: The vertex expansion of a graph G is

$$
\begin{aligned}
& \min _{S: 0<|S| \leq \frac{n}{2}} \frac{|N(S)|}{|S|} \text { where } \\
& \quad N(S)=\{v: \exists u \in S:(u, v) \in E(G)\}
\end{aligned}
$$

- Definition: The edge expansion of a graph G is

$$
\begin{aligned}
& \min _{S: 0<|S| \leq \frac{n}{2}} \frac{|\delta(S)|}{|S|} \text { where } \\
& \delta(S)=\{(u, v): u \in S, v \notin S,(u, v) \in E(G)\}
\end{aligned}
$$

Observations on Expander Graphs

- Expander graphs are extremely useful in complexity theory.
- Derandomization: random walks mix well
- Here: Edge expanders have no sparse cuts.
- Proposition: If G has edge expansion c then for all cuts $\mathrm{C}=(S, \bar{S}), \phi(C)=\frac{\# \text { of edges cut }}{|S| \cdot|\bar{S}|} \geq \frac{c}{n}$
- Proof: By definition, \# of edges cut $\geq c|S|$ and $|\bar{S}| \leq n$

Constructing Expanders

- With high probability, random graphs are excellent expanders.
- Constructing expanders explicitly is more challenging and is an entire field of research on its own.

$\Omega(\log n)$ gap with expanders

- Use the distance metric $d_{i j}=$ smallest length of a path from i to j.
- For a d-regular expander with edge expansion $\frac{d}{4}$:

1. $\quad \sum_{i, j: i<j,(i, j) \in E(G)} d_{i j}=|E(G)|$ which is $O(n d)$
2. $\sum_{i, j: i<j} d_{i j}$ is $\Omega\left(n^{2} \log (n)\right)$ as most pairs of vertices are logarithmic distance apart

- Linear programming relaxation value: $O\left(\frac{d}{n \log n}\right)$
- Actual value is $\Omega\left(\frac{d}{n}\right)$

References

- [Bou85] J. Bourgain. On Lipschitz embedding of finite metric spaces in Hilbert space. Israel J. Math., 52(1-2), p. 46-52. 1985.
- [LR99] T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. Journal of the ACM (JACM) 46(6), p. 787-832. 1999
- [LLR95] N. Linial, E. London, Y. Rabinovich. The geometry of graphs and some of its algorithmic applications. Combinatorica 15(2),p. 215-245. 1995

