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ABSTRACT

Continuing success of research on social and computer rietwo
requires open access to realistic measurement dataseis. tkiése
datasets can be shared, generally in the form of social erret
graphs, doing so often risks exposing sensitive user daiee oub-
lic. Unfortunately, current techniques to improve privacygraphs
only target specific attacks, and have been proven to be nalilee
against powerful de-anonymization attacks.

Our work seeks a solution to share meaningful graph datasets

while preserving privacy. We observe a clear tension betw&ength
of privacy protection and maintaining structural simitario the
original graph. To navigate the tradeoff, we develafifeerentially-
private graph modelve call Pygmalion. Given a grap@&’ and

a desired level ot-differential privacy guarantee, Pygmalion ex-
tracts a graph’s detailed structure into degree correlaiatistics,
introduces noise into the resulting dataset, and geneea®s-
thetic graphGG’. G’ maintains as much structural similarity €
as possible, while introducing enough differences to plevhe
desired privacy guarantee. We show that simply applyinigdin-
tial privacy to graphs results in the addition of significaotse that
may disrupt graph structure, making it unsuitable for expen-
tal study. Instead, we introduce a partitioning approactt fno-
vides identical privacy guarantees using much less noiggliéd

to real graphs, this technique requires an order of magmitess
noise for the same privacy guarantees. Finally, we applygoaph
model to Internet, web, and Facebook social graphs, and gtaiw
it produces synthetic graphs that closely match the origiineboth
graph structure metrics and behavior in application-l¢ests.
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1. INTRODUCTION

Studying structure of real social and computer networkstth
graph analysis can produce insights on fundamental pressssh
as information dissemination, viral spread and epidenmiesyork
dynamics and resilience to attacks [4, 26, 27, 38]. The usealf
graphs generated from measurement data is invaluable aenidec
used to validate theoretical models or realistically peettie effec-
tiveness of applications and protocols [2,12,41,43].

Unfortunately, there is often a direct tension between #edn
to distribute real network graphs to the research commuaityg
the privacy concerns of users or entities described by tresda
For example, social graphs from real measurements are osed t
capture a variety of artifacts in online social networkslinling
strength of social ties, number and frequency of sociataut#ons,
and flow of information. Similarly, detailed topology grapbf
enterprise networks or major ISPs contain confidentialrmfdion
about the performance and robustness of these networksastag
such sensitive datasets for research has been challeriaspite
the best of intentions, researchers often inadvertenkyase more
data than they originally intended [35, 36, 47]. Past exggere has
taught us that traditional anonymization techniques gtelimited
protection, and often can be overcome by privacy attacks'tdea
anonymize” datasets using external or public dataset$[363.

Thus we are left asking the questidraw can researchers safely
share realistic graph datasets from measurements withomipco-
mising privacy? One option is to develop and apply stronger
anonymization techniques [24,30], many of which modifygheph
structure in subtle ways that improve privacy but retain imat
the original graph structure. However, these approachesrgky
only provide resistance against a specific type of attactt,cam-
not provide protection against newly developed deanorgtioiz
techniques. Techniques exist in the context of databastslata
mining which provide provable levels of protection [18, 18]t are
not easily applied to graphs. Still other techniques carteptri-
vacy on graphs, but must significantly change the graph tsireic
in the process [24, 39].



Our approach to provide graph privacy and preserve graph
structure.
starting with observation that any system for sharing gsaplast
deal with the tension between two goajsrotecting privacyand
achieving structural similarity to the original, unmodifiegraph

At one extreme, we can distribute graphs that are isomotiphiee
original, but vulnerable to basic deanonymization attacksthe
other extreme, we can distribute random graphs that shasgum
tural similarities to the original. These graphs will noeld any
meaningful information to privacy attacks, but they areatet
useful to researchers, because they share none of thertealists

of the original graph.

Ideally, we want a system that can produce graphs that sgan th
entire privacy versus similarity spectrum. In such a systesers
can specify a desired level of privacy guarantee, and gét &aet
of graphs that are similar to the real graph in structure,Hawe
enough differences to provide the requested level of pyivac

The main premise of our work is that we can build such a sys-
tem, by distilling an original grapldZ into a statistical represen-
tation of graph structure, adding controlled levels of 4$&i and
then generating a new graghi using the result statistics. This
requires two key components. First, we need a way to acdyrate
capture a graph’s structure as a set of structural stajstiong
with a generator that converts it back into a graph. For this,
use thedK-series a graph model that is capable of capturing suf-
ficient graph structure at multiple granularities to uniguéen-
tify a graph [13, 31]. We can achieve the desired level ofgmyw
by introducing a specific level of noise int@’'s degree correla-
tion statistics. Second, we need a way to determine the pppte
noise necessary to guarantee a desired level of privacyhBomwe
develop new techniques rooted in the concept-differential pri-
vacy, a technique previously used to quantify privacy in the ernt
of statistical databases.

In this paper, we develdpygmalion a differentially private graph
model for generating synthetic graphs. Pygmalion presease
much of the original graph structure as possible, whiledije
enough structural noise to guarantee a chosen level ofogragainst
privacy attacks. Initially, we formulate a basic differiafiyy pri-
vate graph model, which integrates controlled noise into dK
degree distributions of an original graph. We usedlfé-2 series,
which captures the frequency of adjacent node pairs witierdif
ent degree combinations as a sequence of frequency valoes. H
ever, when we derive the necessary conditions requiredhie\ae
e-differential privacy, they show that an asymptotical bodior the
required noise grows polynomially with the maximum degnee i
the graph. Given the impact df<” values on graph structure, these
large noise values result in synthetic graphs that bede titsem-
blance to the original graph.

nitude Isotonic regression further reduces the observed error in

We seek a solution to address the above question, by dK values on our graphs by 50%. Finally, we experimentally show

that for moderate privacy guarantees, synthetic graphsrgead by
Pygmalion closely match the original graph in both standgagh
metrics and application-level experiments.

Access to realistic graph datasets is critical to contiguie-
search in both social and computer networks. Our work shbeis t
differentially-private graph models are feasible, andRgtjon is a
first step towards graph sharing systems that provide spongcy
protection while preserving graph structures.

2. GRAPHS AND DIFFERENTIAL PRIVACY

In this section, we provide background on graph anonynapati
techniques, and motivate the basic design of our approagtajh
anonymization. First, we discuss prior work, the inherdmlc
lenges in performing graph anonymization, and our desirisdqy
goals. Second, we introduce the main concepts-Dffferential
Privacy, and lay out the preconditions and challenges ierbging
this technique to anonymize graphs. Finally, we motivagestdec-
tion of thed K-series as the appropriate graph model on which to
build our system.

2.1 Data Privacy: Background and Goals

A significant amount of prior work has been done on protect-
ing privacy of datasets. We summarize them here, and clauify
privacy goals in this project.

Private Datasets. Many research efforts have developed pri-
vacy mechanisms to secure large datasets. Most of these tech
niques, including cryptographic approaches [7] and stedilsper-
turbations [19, 37], are designed to protect structured dach as
relational databases, and are not applicable to graphedata&n
alternative, probabilistic approach to privacykinonymity [42].

It is designed to secure sensitive entries in a table by miogjf
the table such that each row has at lefast 1 other rows that
are identical [18]. Several public datasets have been ssfdly
anonymized withk-anonymity [1, 33] or through clustering-based
anonymization strategies [8].

Graph Anonymization. Several graph anonymization tech-
niques have been proposed to enable public release of graibihs
out compromising user privacy. Generally, these techrsicqurey
protect against specific, known attacks. The primary godhese
anonymization techniques is to prevent attackers fromtityamg

a user or a link between users based on the graph structuve.
eral anonymization techniques [24, 30, 39, 46, 48] levetagé:-

anonymity model to create eithéridentical neighborhoods, dr

identical-degree nodes in a target graph. These types tictat
specific” defenses have two significant limitations. Firsgent

Se

To solve this challenge, we seek a more accurate graph modelresults have repeatedly demonstrated that researchetsckeas

by significantly reducing the noise required to obteidifferential
privacy. We develop an algorithm to partition the statatiep-
resentation of the graph into clusters, and prove that biewiciy
e-differential privacy in each cluster, we achieve the sanoperty
over the entire dataset. Using a degree-based clustegogtaim,
we reduce the variance of degree values in each clusteekyner
dramatically reducing the noise necessaryfdifferential privacy.
Finally, we apply isotonic regression [6] as a final optintiza to
further reduce the effective error by more evenly distiitmyithe
added noise.

We apply our models to a number of Internet and Facebook
graphs ranging from 14K nodes to 1.7 million nodes. The tssul
show that for a given level of privacy, our degree-basedtetirsy
algorithm reduces the necessary noise levebbg order of mag-

can invent novel, unanticipated de-anonymization attalcls de-
stroy previously established privacy guarantees [5, 3556 Sec-
ond, many of these defenses require modifications to theqeat
graph that significantly alter its structure in detectabid enean-
ingful ways [24, 39].

Our Goals: Edge vs. Node Privacy. In the context of privacy
for graphs, we can choose to focus on protecting the privdcy o
either node or edges. As will become clear later in this paper
approach of using degree correlations.(the d K -series), captures
graph structure in terms of different subgraph sizes, rapfiom
2 nodes connected by a single edge (dK-2) to larger subgiafphs
size K.

Our general approach is to produce synthetic graphs by gddin
controlled perturbations to the graph structure of theinaigraph.



This approach can provide protection for both node privacy a
edge privacy. This choice directly impacts the sensitiafythe
graph privacy function, and as a result, how much structuvade
must be introduced to obtain a given level of privacy guaest

In this paper, we choose to focus on edge privacy as our goal,

and apply this assumption in our analysis of our differdria
vacy system in Section 3. We chose to target edge privacyubeca
our work was originally motivated by privacy concerns in rshg
social graphs, where providing edge privacy would addressa
ber of practical privacy attacks.

2.2 Differential Privacy

Our goal is to create a novel system for the generation ofyanaed
graphs that support two key properties:

1. Provides quantifiable privacy guarantees for graph dweth t
are “future-proof” against novel attacks.

2. Preserves as much original graph structure as posstge; t
sure that anonymized data is still useful to researchers.

Differential privacy[14] is a recently developed technique de-
signed to provide and quantify privacy guarantees in theéectof
statistical databases [15,25]. Others have demonstitatatsatil-
ity of this technique by applying differential privacy tostlibuted
systems [40], network trace anonymization [32], data ca@sgipn
techniques [44], and discrete optimization algorithmg.[22ther
work focused specifically on applying differential privaoysimple
graph structures such as degree distributions [23, 25] ohtrast,
our work has the potential to inject changes at differenhgtar-
ities of substructures in the graph, instead of focusing single
graph metric.

One piece of prior work tried to guarantee graph privacy by
adding differential privacy to Kronecker graphs [34]. Was this
approach tries to guarantee privacy by perturbing the Kalosre
model parameters, our strategy acts directly on graph tstes;
which provides tighter control over the perturbation pssceUn-
forrtlunately, the author asserts there are incorrect esuthe pa-
per.

Basic Differential Privacy. = The core privacy properties in dif-
ferential privacy are derived from the ability to produce wery
output@ from a databas®, which could also have been produced
from a slightly different databas®’, referred to asD'’s neigh-
bor [14].

DEFINITION 1. Given a databas®, its neighbor databas®’
differs fromD in only one element.

We obtain differential privacy guarantees by injecting a-co
trolled level of statistical noise int® [16]. The injected noise
is calibrated based on the sensitivity of the query that iisgbexe-
cuted, as well as the statistical properties of the Laplamehastic
process [17]. Theensitivityof a query is quantified as the max-

dK-2 <1,2>=1 (A-B)
Series <2,2>=1 (B-Q)
Q @ @ <2,3>=1 (C-D)
Q <1,3>=2 (E-D), (D-F)
(E) (F) SdK73’ <1,2,2>=1 (A-B-C)
eries . <2,2,3>=1 (B-C-D)
<2,3,1>=2 (C-D-E), (C-D-F)
<1,3,1>=1 (E-D-F)

Figure 1: An illustrative example of the dK-series. ThedK-

2 series captures the number of 2-node subgraphs with a spe-
cific combination of node-degrees, and theé K-3 captures the
number of 3-node subgraphs with distinct node-degree combi
nations.

2.3 Differential Privacy on Graphs

We face two key challenges in applying differential privaon-
cepts to privacy protection on graphs. First, we must detema
“query” function in our context which we can use to apply €eli#n-
tial privacy concepts. Second, the sensitivity of this gufanction
must be low enough, so that we can attain privacy guarantges b
introducing only low levels of noise, thus allowing us to ggeve
the accuracy of the results. In our context, this means tbavant
to generate graphs that retain the structure and saliepegies of
the original graph. We address the former question in thlit@e
by proposing the use of théK-series as our graph query opera-
tion. We address the accuracy question in Sections 3 andet, af
fully explaining the details of our system.

Recall that the problem we seek to address is to anonymipéigra
datasets so that they can be safely distributed amongst¢skeanch
community. We leverage rson-interactivequery model [14], such
that the original graph structure is queried only once ardeth-
tire budget to enforce privacy is used at this tim#s is used to
query the graph and the resultidgs -series is perturbed under the
differential privacy framework. Note that only the diffatelly
private d K -series is publicized. Unlike applications of differemtia
privacy in other contexts, we can now generate multiple lggays-
ing this differentially privatel K -series without disrupting the level
of privacy of the original graph. Therefore, we use a noefiattive
query model to safely distributed graph datasets withoutgoeon-
strained to a single dataset.

The dK-Graph Model. We observe that the requirements of
this query function can be met by a descriptive graph modsl th
can transform a graph into a set of structural statisticschvare
then used to generate a graph with structure similar to tigéenai.
Specifically, we propose to use thd-graph model [31] and its
statistical series as our query functiet captures the structure of
a graph at different levels of detail into statistics calidd-series.
dK can analyze an original graph to produce a correspondiig
series, then use a matching generator to output a synthetih g

imum amount of change to the query’s output when one databaseusing thed K -series values as input. Th¥<-series is the degree

element is modified, added, or removed. Together, querytsetys

distribution of connected components of some dizwithin a tar-

and thee value determine the amount of noise that must be injected get graph. For example, /(-1 captures the number of nodes with

into the query output in order to providedifferential privacy.
Differential privacy works best witlinsensitive queriessince
higher sensitivity means more noise must be introducedtained
given desired level of privacy. Thus insensitive queridsoiiuce
lower levels of errors, and provide more accurate quenftesu

!See the author’'s homepage.

each degree valué,e. the node degree distributioniK-2 cap-
tures the number of 2-node subgraphs with different contioings

of node degrees,e. the joint degree distributiond K-3 captures
the number of 3-node subgraphs with different node degree co
binations,i.e. an alternative representation of the clustering coef-
ficient distribution.d K-n (wheren is the number of nodes in the
graph) captures the complete graph structure. We show dedeta



example in Figure 1, where we ligtk-2 andd K -3 distributions
for a graph.

dK is ideal for us because thH<-series is a set of data tuples
that provides a natural fit for injecting statistical noisattain dif-
ferential privacy. In addition, together with their matehigener-
ators, higher levels ofl K-series,i.e. n > 3, could potentially
provide us with a bidirectional transformation from a graptits
statistical representation and back.

While larger values of<” will capture more structural informa-
tion and produce higher fidelity synthetic graphs, it cometha
expense of higher computation and storage overheads. Qur wo

count of instances in G. Formall$ is a collection of{d., d; k}
where each entry represents that the number of connectepgocom
nents of size 2 with degrell., dy) is k. Letm be the cardinality
of §. Because the maximum number of entried ii-2 is bounded
by the number of possible degree pa@f;”l‘” 1, whered .. be
the maximum node degree @, thusm = O(dZ,,,). Prior stud-
ies have demonstrated that in large network graphs. is upper
bounded byO(y/n) [29,43], and thus, in those cases,is upper

bounded byO(n).

Sensitivity Analysis.  In the context of differential privacy, the
sensitivity of a function is defined as the maximum differeic

focuses on thé K -2 series, because generator algorithms have not function output when one single element in the function dama

yet been discovered faiK-series where<>3. While this may
limit the accuracy of our current model, our methodology es1g
eral, and can be used with higher ordét -series when their gen-
erators are discovered.

e-Differential Privacy in Graphs. Given the above, we can
now outline how to integrate differential privacy in the ¢ext of
graphs. Ane-differentially private graph system would output a
graph that given a statistical description of an input graipé prob-
ability of seeing two similar graphs as the real input grapblose,
where closeness between the two probabilities is quantifjed
A larger value ofe means it is easier to identify the source of the
graph structure, which means a lower level of graph privacy.
Prior work has demonstrated that in many cases, accuracy 0
query results on differentially private databases can Ipeared by
decomposing complex queries into sequences of “simpletomun
queries” that happen to have extremely low sensitivity (9,15].
Unfortunately, this approach will not work in our contextce our
goal is to achieve privacy guarantees on whole graph dateeed
not just privacy for simple graph queries such as node detdjsee
tributions. In the next section, we start with a basic foration
of a differentially private graph model, and then provideogti-
mized version. We illustrate the final process, showRygmalion
in Figure 2.

3. FIRST STEPS

In this section, we perform the analytical steps necessanté-
gratee-differential privacy into thel KX’ graph model. Our goal is to
derive the amount of noise necessary to achieve a gimivacy
level. The amount of Laplacian noise necessary is a funafon
both ¢, the user-specified privacy parameter, afdthe sensitiv-
ity of the dK function. First, we formally define thé K-2 se-
ries, and derive its sensitivity,x_>. Next, we describe thé K-
perturbation algorithmdK -PA) for injecting noise into the original
dK-2 series, and prove that it provides the desirglifferential pri-
vacy. Our analysis shows that the asymptotic bound on naied u
in d K-PA grows polynomially with maximum node degree, which
means we need to inject relatively large levels of noise trgutee
e-privacy. Finally, as expected, our experiments on regiggsaon-
firm thatd K'-PA generates synthetic graphs with significant loss in
accuracy. This poor result motivates our search for imptdeeh-
niques in Section 4.

3.1 Sensitivity of dK-2

dK-function. We formally defined K-2 as a function over a
graphG = (V, E), whereV is the set of nodes an#l is the set of
edges connecting pair of nodeslin

dK(G):G" — S

whereG" is the set of graphs with = |V/| nodes and3 is the set
of unique degree tuples in the dK-2-series with the corredipy

is modified. The domain afK-2 is a graphG. Neighbor graphs
of G are all the graph&’ which differ from G by at most a single
edge. Changing a single edgeGtwill result in one or more entries
changing in the correspondinds-2-series. Thus, the sensitivity of
dK-2 is computed as the maximum number of changes inl #tie
2-series among all af’’s neighbor graphs.

LEMMA 1. The sensitivity oflK-2 on a graphG, Sqx 2, IS
upper bounded b¥ - da. + 1.

PROOF Let e be a new edge added to a gragh= (V. E)
between any two nodes,v € V. Once the edge is added to

¢G the degrees ofi and v increase fromd to (d + 1) and from

d' to (d' + 1) respectively. This graph transformation produces
the following changes in thé K -2 onG: the frequency of tuple

{d +1,d" + 1; k} gets incremented by because of the new edge
(u,v). For example, a new edge betwednand C' in Figure 1
produces an increment of the frequeneyof the tuple{2, 3; k}
fromk = 1to k = 2. Furthermore, a total off + d' already
present tuples need to be updated with the new degreeaativ,
and so the tuples with the old degrees get decremented bgl@fot

d + d’ and the tuples reflecting the new degree get incremented for
a total ofd + d’. To summarize, the overall number of changes in
thedK-2 -series i2(d 4+ d’) + 1. In the worst case, whemandv

are nodes of maximum degrée,..., the total number of changes
in the originald K-2-series by adding an edge betweeandv is
upper bounded by - dpor + 1. O

Lemma 1 derives only the upper bound of the sensitivity beeau
as in Definition 3 [14], itis the sufficient condition to degithe nec-
essary amount of noise to achieve a givaarivacy level. Lemma 1
shows that the sensitivity atK-2 is high, sinced,.... has been
shown to beO(y/n) in measured graphs [29, 43]. Note that prior
work on differential privacy [9, 10, 15, 23] generally inveld func-
tions with a much lower sensitivity,e. 1. In these cases, the low
sensitivity means that the amount of noise required to geeelif-
ferentially private results is very small. In contrast, gemsitivity
of our function indicates that the amount of noise neededito-g
anteec-differential privacy indK-2 will be high. Therefore, the
accuracy of synthetic graphs generated using this meththdevi
low. Note that if we use a higher ordéié<-series,i.e. K > 3,
we would have found an even higher sensitivity value, whigty m
further degrade the accuracy of the resulting synthetiplgga

3.2 Thedk-Perturbation Algorithm

We now introduce thé K -perturbation algorithmdK -PA) that
computes the noise to be injected int& -2 to obtaine-differential
privacy [14]. IndK-PA, each element of thé K-2-series is al-
tered based on a stochastic variable drawn from the Lapiaté d

bution, Lap(\). This distribution has density function proportional
to e*%, with mean0 and variance)2. The following theorem
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Figure 2: Overview of Pygmalion. e-differential privacy is added to

proves the conditions under whiekdifferential privacy is guaran-
teed [17].

THEOREM 1. LetDK be the privacy mechanism performed on
dK such thatDK (G) = dK(G) + Lap(%)m. For any G

and G’ differing by at most one edg@\f( providese-differential
privacy if:

(m PT[D@) = 3]

<
Pr[DK(G") = s]

PROOF Lets =< s1,s2,...,sm > be a possible output of

—

DK (G) andm the number of its entries, and I&t be the graph
with at most one different edge fro@. Using the conditional prob-
abilities, we have:

— —

Pr[DK(G) =s] T PriDK(G); = s;|s1,...5i1]
PrDK(G") =s] iz1 PrIDK(G")i = sils1,...si_1]

since each item of the product has the first 1 values ofdK-2
fixed. Eachs; is the result of applying Laplacian noise calibrated
by Six—2. Note that Lemma 1 has studied the sensitivityl &f-2,
Sax—2, under the condition that two graphs differ by at most one
edge. Thus, the conditional probability is Laplacian,allwg us to
derive the following inequalities:

——
m

m Pr[DK(G)L = 8”817 ...Si,ﬂ S He

\D;?(E)i*DI?(\CT/)H

—

i—1 Pr[DK(G’); = si|s1,...8i—1]  i=1

whereo is the scale parameter of the Laplace distribution that is
ddmaatl  Thuys,

m
I
1=1

where, by definitiorD K (G) = di (G)+Lap(2££=2), and|| DK (G) —
DK(GI)Hl < Suk_2 with Sgx 2 < 4dpmaz + 1 @s proved in
Lemma 1. Thus, we have:

|DK(G); —~DK(G),| [IDK(G)~ DK (Gl
o o

=e

|IDK(G)~DK (Gl
4 _

e

SdK—2)H 4dmaz+1
1 Admax +1 €
e € =e

1aK (&) + Lap(S4E=2) 4k (G")— Lap(

o

e

and so, by applying the logarithmic function, we have that

In —PT[D/K\(_C/;) = <] <e

Pr[DK(G') =s]'

which concludes the proof.[]

Pygmalion

—
—

— — | Injection
Clustering )

Differentially
CIuster'ed q Perturk?ed # Private
dK Series Noise dK Series dK
Graph
Generation

measured graphs after soting and clustering the d K-2-series.

Type Graph Nodes Edges
Internet WWWwW 325,729| 1,090,108
AS 16,573 40,927
Monterey Bay| 14,260 93,291
Russia 97,134 | 289,324
Facebook Mexico 598,140| 4,552,493
LA 603,834| 7,676,486

Table 1: Different measurement graphs used for experimenta
evaluation.

Theorem 1 shows that by adding noise to d#€-2-series using
independent Laplace random variables calibratedhy_- from
Lemma 1, we achieve the desiregrivacy.

Quantifying Accuracy. We apply theerror analysisproposed
by [25] ond K-PA to quantify the accuracy of the synthetic graphs
it produces, compared to the original graphs.

DEFINITION 2. For a perturbedd K-2-series that is generated
by the privacy mechanis@ K on a graphG, as defined in Theo-
rem 1, the estimated error dR K can be computed as the expected
randomization in generatin@f(.

We now quantify the expected randomization/ i :

m

Z E[(DT(\(_GT)Z - dK(G)i)2} = mE[Lap(%f]
i=1

Using Lemma 1 and that, = O(d2, ., )we have:

d?ﬂ(la’l) d?’L(L(L’
= o(“mee),

2m -

7] = mVar(Lap(*2%)) = 24

€

mE[Lap(

Sax—2
€

This asymptotical bound shows that the noise injectedyPA
into d K-2 scales with the fourth-degree polynomialdf,.. This
result implies that synthetic graphs generated!Bj+PA will have
relatively low accuracy because of the large error intredioy the
perturbation process. Furthermore, it implies that evenrdta-
tively weak privacy guaranteeg K -PA will introduce large errors
that may significantly change the structure of the resultimghetic
graphs from the original.

3.3 \Validation on Real Graphs

At this point, we have demonstrated analytically that thpawt
of adding noise to thd K'-2-series using K -PA will result in syn-
thetic graphs that deviate significantly from the originals this
section, we empirically evaluate the impact of adding ntisthe
dK-2-series by executingK -PA on real graphs.

Methodology. To illustrate that our system is applicable to
different types of graphs, we select a group of graphs tlwtide
social graphs from Facebook [41, 43], a WWW graph [3] and an
AS topology graph [38] crawled on Jan 1st, 2004, which have
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Figure 3: The noise required for different privacy levels guantified as the Euclidean distance between a graph’s originand per-

turbed dK-2 series.

been used in prior graph mining studies [28]. The social lgsap
were gathered using a snowball crawl of the Facebook rebgimta
works [43], and show graph metrics highly consistent witled=a
book graphs generated using unbiased sampling techni@ags [
Table 1 lists the graphs used in our evaluation, which rangm f
14K nodes to 650K nodes.

We extract thel K'-2-series for each graph, introduce noise using

the d K-PA strategy, then compute the Euclidean distance between

the perturbed K'-2-series and the original as a measure of the level
of graph structural error introduced. We computed resultsafl
graphs in Table 1, and they are consistent. For brevity, mé li
ourselves to report results only for the AS graph, the WW\Wlra

tigate the amount of error introduced with this approach, strow

that DRC requires significantly less noise thaii-PA to achieve

an equal level of privacy. Finally, we propose an optimized-v
sion of DRC, called LDRC, and empirically verify the impralve
accuracy of our algorithms using measured graphs.

4.1 Divide Randomize and Conquer Algorithm

Our goal is to develop an improved privacy mechanism that sig
nificantly reduces the amount of noise that must be addediea
a given level ofe-privacy. While we cannot change the fact that
the sensitivity ofd K-2 scales withd,...., our insight is to parti-
tion data in thel K-2-series into a set of small sub-series, then ap-

and the Russia Facebook graph. We choose Russia to represengly the perturbation independently to achieverivacy within each

our social graphs because its results are representatitie other
graphs, and its size does not result in extremely long rue fion
our experiments.

Results. Figure 3 shows that thé K-PA strategy produces a
large error for small values af{(i.e. strong privacy guarantees). We
compute the error as the Euclidean distance between thiaalrig
dK-2-series and the perturbeld(-2-series withd K'-PA strategy.
As we mentioned, the low level of accuracy is due to the lamisen
dK-PA injects intod K-2, resulting in a perturbedK-2 that is
significantly different from the original. The bright sidgethat the
dK-PA strategy is robust across different datasets, and tioe er
decreases exponentially agrows, which is shown by the linear
correlation in the log-log scale plot of Figure 3.

The high error is largely due to the high sensitivity of oundu
tion dK-2. To understand the potential lower-bound on the error,
we imagine a scenario where if we had a function with seriitiv
of 1, then we could achieve much lower error, plotted in Figure 3
as theldeal line. Note that this line is a hypothetical lower bound
that is only meant to demonstrate the impact of di function’s
sensitivity on the final result. Indeed, Figure 3 shows thatlbss
in accuracy of our model can largely be attributed to theiteitg
of thed K'-2 series.

4. PRIVACY VIA PARTITIONING

The results in the previous section demonstrate the losscofa
racy in the perturbed K -2-series after adding noise to guarantee
e-differential privacy. In this section we propose a novejoaithm

sub-series.

If we carefully perform the partitioning to group togethaples
with similar degree, we effectively reduce the valuedgf,.. for
each of the vast majority of sub-series. This means we caeach
e-privacy on each sub-series for a fraction of the noise requi
to achievee-privacy across the entire series. We will then prove
that e-differential privacy holds across the entid& -2-series if it
holds for each of the partitioned sub-series. Thus, we m®dun
alternative algorithm that achieves the same level of pyiasd K -

PA, while introducing significantly less noise.

We instantiate our ideas as the Divide Randomize and Conquer

algorithm (DRC). The core steps of DRC are:

1. Partition Divide) the dK-2-series into sub-series with spe-
cific properties;

2. Inject noise into each sub-serié&andomizg

3. Conquerthe perturbed sub-series into a sind&-2-series.

In the remainder of this section we discuss the partitiorstep
of DRC. We first define an ordering function aik’-2 to sort tu-
ples with similar sensitivity. The orderetf{-2 is then partitioned
into contiguous and mutually disjoint sub-series. We pithnad the
properties of these sub-series lead to the definition of &lrsmn-
sitivity function and consequently to a novel methodologyatd
noise. Noise injection, conquering, and the resultingrearnalysis
are discussed in Section 4.2.

0 ordering on dK-2. The dK-2-series is sorted by group-
ing dK -tuples with numerically close pairs of degrees. In partic-

called Divide Randomize and Conquer (DRC) that enables more ular, thed K-tuples are sorted in the nes’-2 series, nameg-

granular control over the noise injected into th&-2-series. This
qualifies DRC to suppow-differential privacy while also allowing
for more accurate results. First, we discuss the design & BRI

prove that it does guaranteeifferential privacy. Next, we inves-

series, by iteratively selecting from the original serilshe tuples
{dz,dy; k} with degreeqd, & dy) < 4,V i € [1,dmaz]. Thus,
the -series is simply the sorted list @fK-tuples that adhere to
the above inequality ordering. For example, the tule2; £} is



closer to{5, 5; k'} than to{1, 8; k”}. We can formally describe
this transformation with the following function:

DEFINITION 3. Letd be the sorting function odK -2 which is
formally expressed as:

(i) = 0 ,dmyléldK{max(dz, dy) > max(d,/,d, ) =00 —1) }
Note that{d, d,; k} # the firsti—1 tuples. Thus, thé function is
a transformation ofl K-2 such thav : & — 8 whereg identifies

the orderedd K-2.

Partitioning the 3-Series.  The 3-series is partitioned intd
sub-series, with thé’t namedg; for i € [1,m]. The partition of3

is based on two properties. First, theordering has to be obeyed
and thus each partition can only acquaentiguoustuples in the
(-series. Second, each tuple can appeami@ and only onsub-
series. Given thé& ordering and the above two rules we can guar-
anteemutually disjointand contiguoussub-series3;. These two
constraints are fundamental to satisfying the sensitpitperties
we prove in the following Lemma 2 and Lemma 3.

Sensitivity of 3; sub-series.  The sensitivity of eacl;-series
can be studied following the same logic used to find the Seitgit

that get deleted and that get added, which is 2 - d. Symmet-
rically, let b be the new degree af so the maximum number of
tuples that can change j#y is < 2 - b. Even ifd andb are equal to
the maximum degree valuk. within their sub-series, as demanded
in Lemma 2, the number of changes involved in each sub-sisries
2 -dy < 4 -di + 1 which means that the sensitivity of bath and

[, are not mutually effected, which contradicts the hypothedi]

4.2 Theoretical Analysis

This section is devoted to the theoretical analysis of thepy
and accuracy properties the DRC approach achieves. Fiest, w
prove thate-differential privacy can be applied to each sub-series
created during the partitioning phase of DRC. Next, we baiid
this result to prove that the individual differentially yate sub-
series’ can be reunified into a complet&’-2-series that is also
e-differentially private. Lastly, we perform error analysin DRC
and compare the results dd<-PA.

Analyzing e-Privacy in j;s. We now quantify the privacy of
eachg; and prove that they satistydifferential privacy.

THEOREM 2. For each clusters; withi = 1, .., m, Ietﬁi be a
novel privacy mechanism ah such that3; = £; -I-Lap(%)w”.

of dK-2, by quantifying the maximum number of changes that may Then, for all sub-serie$; and 3; derived from graphs and G’

occur in thes;-series due to an edge change in the graptbue

to thed ordering imposed in each sub-series, we can show that the

maximum degree in each; plays a fundamental role in bounding
its sensitivity.

LEMMA 2. The sensitivitySs, of a sub-serie@; with tuple de-
grees almost equal té, + 1 is upper bounded by - d;, + 1.

The proof of this lemma is sketched because it follows théclog
of Lemma 1. Due to the proposétordering, each sub-serigss
composed only of tuples where both degrees are less thaual eq
to a particular integed. The worst-case.g.the maximum number
of changes to the tuples in the sam occurs when the tuple with

degrees! — 1 are in the same sub-series. Therefore, the maximum

that differ by at most one edgé\,; satisfies-differential privacy if:

Pr[@ =3
n_ =2l

] In W
Prif; =

<

PROOFR Letm™ be the the cardinality of clustet;. Let G’ be
a graph with at most one edge different fra Let s; be thej”
item of the 3;-series, that is@-[j] = s;. Using the conditional
probability ons; we can write:

m*

- H P’”[B\i[ﬂ = sj[s1,...8j—1]

j=1 PriBili] = sjls1, ...s5-1]

Pr[ﬁ:i =3
Pr{f, =4

Each item of the product has the first— 1 tuples of thef;-

number of changes occur when a new edge is added between tWQseries fixed. Each; is the result of the Laplace noise that has

nodes(u,v) both with degreel — 1, after which both nodes
andv have degred. Adding a new edge betweenandwv causes
dy = d — 1 entries ing3; to become invalid. Each invalid entry is
replaced with new entry of degrele Thus, the upper bound on the
total number of changes i d;. deletions2 - d;. additions, and one
new edge, with the total beingy- dj, + 1.

Given the partitioning approach and the impo8exdering across
sub-series, we are able to exploit further properties onsise
series. In particular, the sensitivity of agy is independent from
the location where the change occurs in the graph. Conyethel
sensitivity of a particular partition is dependent on thgléuwith
the highest degree values, as proved in Lemma 2. Therefore:

LEmMMA 3. The sensitivity of any; is independent by the sen-
sitivity of any othei3; withi # j.

PrROOF The proof proceeds by contradiction from the follow-
ing assumption:the sensitivity of g3; is impacted by a change
occurring in a; withi # j. Without loss of generality, assume
i < j,andd(:) is a tuple ing; andd(j') is a tuple in3;, as from
Definition 3. Assume that an edge is formed between a nodith
corresponding tuplest 9(i'),d(i" + 1),.. > € 3; and a nodey
with corresponding tuples 9(j'), d(j' +1)... > € 3;. The maxi-
mum number of changes that can occur due to this event is ledund
by the degree values afandy. Letd be the new degree of The
maximum number of tuples that can chang@irared — 1 tuples

been calibrated foB; based on its sensitivity, as calculated using
in Lemma 2. The sensitivity of this function is derived undee
assumption that the two graphs have, at most, one edgeetiffer
Thus, the conditional probabilities are Laplacians, whittbws us

to derive the following inequalities:

*

3

133141 B8] 4]
< e 3
Bil5] = sjls1,.85-1] 5

™ Pr[Bils] = 81, -..85-1]
]1;[1 Pr|

By definition 3 = 3, + Lap(Z2:)1%:! and by Lemma 2|8; —
Billi < Ss, with S, < 4dy, + 1. Leto; be the scale parameter
of the Laplacian noise applied in each clusteghus:

. o
M 1Bl =B 1135 =BL111
[ =
j=1
_ Sg. = Sga. ddm; 1
[1Bi+Lap(—L)—B)—Lap(—L)l11 118; =851 Iy, 11
=e 4 =e o <e e

Finally, by applying the logarithmic function the theoretate-
ment is proved. ]

Theorem 2 shows that adding noise does achieve provable
differential privacy on each cluster. In particular, weyedhat by
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Figure 4: Euclidean distances of thel K'-2-series of differente-Differential Privacy strategies on three real graphs.

only leveragingm™ independent Laplace random variables, with

parameten = (Sff' ), itis possible to generate sufficient noise per
cluster to satisfy the privacy requirement.

Conquering e-privacy into UZ@ Our next task isAto leverage
the provede-differential privacy of each independeft to guar-

antee privacy on the entire perturbﬁdseries: Uﬁz In order to
achieve this goal a further step is required, shown in tHeviahg
corollary.

COROLLARY 1. The amount of information an attacker can learn
on 3; by observing any; withi # j is null.

This proof considers only two sub-series for simplicity. v&i

Lemma 3, this proof can be extended to any number of clusters.

PROOF Let A andB be two sub-series built out of our partition
strategy and letl and B be theire-differentially private projection
as proved in Theorem 2. Finally, letandb be events oM and
B, respectively. Through the Shannon Entropy Theory we dfyant
the information a sub-series could exploit on another sres. In
particular, the Mutual Information

a.b) 1o p(a,b)
=2 pleblos o

I(A;B) =
is the amount of information an attacker can infer@rby ob-

serving]§. By construction the sensitivity of the sub-seriéss
independent from the sensitivity of the sub-serigésas proved
in Lemma 3. This means that the sub-seriess perturbed by
a Laplace random process with parametarthat is independent
from the Laplace random process acting®nas consequence of
Lemma 2. Thus, this independence property directly imphes
the Mutual Informationl(@ §) = 0, that is, an attacker gains no

information onA by observingﬁ, which concludes the proof.[]

The properties derived on the differe®is are sufficient to begin
the conquer phaseof our DRC approach. The goal of the con-
quer phase is to unify thé;-s such that the union set inherits the
e-privacy guarantees from the individual sub-series.

THEOREM 3. Givenm different sub-serieé\z- withi = 1,...,m,
the result of the DRC conquer strategyg; satisfies the-differential
privacy property.

PROOF The DRC strategy produces e-differentially private
sub-serieg’;, as proved in Theorem 2. Ea¢h satisfies Lemma 2

and Lemma 3, and any combination @Js satisfies Corollary 1.
The privacy independence property, from Corollary 1, implihat

U, 3; satisfies the-Differential Privacy property. [

Thus, we have proven that our perturbéf -2, Uﬁz satisfies
thee-differential privacy requirement. DRC achieves a tigtteund
on noise tharlk-PA due to the properties from Lemmas 2 and 3.

Error Analysis. We now quantify the error introduced & -

2 via our DRC strategy. Error analysis on DRC is complicated
because our algorithm does not specify the number of clister
generate during partitioning. Instead, our clusteringrapgh is
general, and covers any possible set of cuts onstiseries such
that the resulting sub-series differ in cardinality andss@rity from
each other, so long as they respect Lemmas 2 and 3. Ther&fore,
order to provide an error analysis that covers any posslbkter-

ing of the 3-series we have to study both the lower and the upper
bound of the error injected into those series.

DEFINITION 4. The error estimation of the union of tlzﬁas un-
der thed ordering ondK-2 of a grath can be computed as the

expected randomization in generatlﬁg: Us ﬁz

The expected randomization ﬁwis quantified as

Sg;

)?]

1=

<.
Il

E(Z(@[a} Bilil) ) Zwmap(
1 J

The lower bound is found when eaéhy, have the same mini-
mum value, which id, and thus

m d2 T
> 1Bil B[Lap( BI) ] >d3,mvfn~<Lap< ) =Q(=5%)
i=1

Note that the considered minimume. 1, happens only when a
graph of nodes with zero degree is considered, and aftengdudfi
edgesS; is 1. The upper bound is found when eaSh, have the
maximum value that, as proved in Lemma 20i&1,,4. ), and thus

4
Z|@|E[Lap( ‘*%) ] < @2, Var(Lap(T722)) —0<d’;‘”>

i=1

The worst-case error level of DRC is equal to thatdéf-PA.
However, depending on graph structure, the error level earedise

down to Q( . As we demonstrate in the next section, real
graphs exhlblt error rates towards the lower bound. Thuprae-
tice, DRC performs much better thai-PA.

max )
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noise and Pygmalion synthetic graphs with different values.

4.3 Evaluating and Optimizing DRC

To quantify the improvement DRC achieves over thg-PA
strategy, we compare the results of applying each algorithrour
graphs. As before in Section 3.3, we quantify error usingBhe
clidean distances between each of thiif-2-series and thé K'-2-
series of the original graph. As seen in Figure 4, DRC redtloes
Euclidean distance by one order of magnitude for differeaphs
and a range of values. As is the case fdi-PA, error introduced
by DRC decreases exponentially as the valueiatreases, which
is clear from the linear correlation in the log-log scaletbFig-
ure 4.

Further Optimization with LDRC. Despite its improvement
over dK-PA, DRC is still quite far from the idealized function in
terms of error (see Figure 4). We apply a prior result from] [25
that proves how to use isotonic regression [&],evenly “smooth”
out the introduced noise across tuples, without breakifigrential
privacy properties. This technique enables a reductiohegtror
introduced in thelK-2-series by another constant factor.
Formally, given a vectop of lengthp*, the goal is to determine
a new vectop’ of the same length which minimizes tiig norm,
i.e. ||[p — p’||2. The minimization problem has the following con-
straints:p’[i] < p'[i+1] for 1 <4 < p*. Letpli, j] be a sub-vector
of lengthj — i+ 1, thatis: < pl[i], ..., p[j] >. Let defineM i, j] as
the mean of this sub-vectare. M([i, j] = 32 _, p[k]/(j —i+1).

THEOREM 4.A[§] The minimumL» vector,p’, is unique and is
equal top’ [k] = Mj,, with:

My = min e prymat;cp,;) Mt j]

We apply this technique on the set of all tuples produced by
DRC. We refer to it as th&, minimization Divide Randomize and
Conquer algorithm, or LDRC. We include LDRC in our compari-
son of algorithms in Figure 4, and see that LDRC provides bug
another 50% reduction in error over the DRC algorithm. Siibce
consistently outperforms our other algorithms, we use LR @he
algorithm inside the Pygmalion graph model.

Implications. Finally, we note that our DRC partition tech-
nique is general, and has potential implications in othertexs
where it is desirable to achieve differential privacy wibwer lev-
els of injected noise. More specifically, it can serve to oedthe
amount of perturbation necessary when the required peatiorbis
a function of a parameter that varies significantly acrossegin
the dataset.

5. END-TO-END GRAPH SIMILARITY

We have already quantified the level of similarity betweea re
and synthetic graphs by computing the Euclidean distanees b
tween their respectivé K -series datasets. These values represent
the distortion in the statistical representation of a gragh the
dK-series, but do not capture the ultimate impact of the added
noise on graph structure. In this section, we evaluate hols we
Pygmalion preserves a graph’s structural properties bypeoimg
Pygmalion’s differentially private synthetic graphs agsiithe orig-
inals in terms of both graph metrics and outcomes in apjdicat
level tests. Strong structural similarity in these resultaild es-
tablish the feasibility of using these differentially pate synthetic
graphs in real research analysis and experiments.
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5.1 Graph Metrics

Our evaluation includes two classes of graph metrics. Ooegr
includesdegree-based metricaich as: Average Node Degree, De-
gree Distribution, Joint Degree Distribution and Assavigt These
are basic topological metrics that characterize how degreedis-
tributed among nodes and how nodes with particular degree co
nect with each other. The second group includede separation
metricsthat quantify the interconnectivity and density of the ever
all graph. This group includes metrics such as Graph Diamete
Radius and Average Path Length.

In particular, we obtain this property only wherns equal to100.
Second, thelK-2 distribution is a very sensitive function and it
naturally requires a high level of noise to provide strongle of
privacy guarantees. Unfortunately, very small values ofquire
larger noise values, thus producing synthetic graphs tleaex-
tremely different in structure from the original. Finalfgr e < 1,

the required noise level is so high for larger graphs, thatdth’
graph generator fails to produce synthetic graphs thathrhtcre-
sultingd K distributions. This is clearly a limitation of the current
system, one that we hope will be removed with the discovery of

For our evaluation purposes, we a|Ways use our most advancedless sensitive models and Optimization techniques todurduce

algorithm, i.e. Pygmalion LDRC. We only focus on Pygmalion
LDRC, because there are practical problems in generatirgg la
graphs fromd K values after significant noise has been added. As
shown earlier, thel K-PA model introduces the highest noise. In
fact, errors introduced by K-PA are so large that the generator
fails when trying to generate large graphs with the resgltinisy

dK distributions.

We generate-private graphs foe € [5,100], and compare the
graph metrics of the resulting synthetic graphs againstetod the
original graph, and a synthetic graph generated bydtiemodel
with no additional noise added. We limit ourselvesctprivate
graphs withe € [5,100] because of two reasons. First, we aim
to find thee value that contributes to a smallest noise such that it
is statistically similar to the synthetic dK-2 graph with paovacy
enforced. This way, we can indirectly quantify the level df/acy
introduced by a pure synthetic graph with no additional stagen
to improve privacy. This by itself is a potentially interiesf result.

noise required foe-differential privacy.

As we mentioned, our results are highly consistent across ou
pool of graphs (Table 1), and we only report experimentalltes
on three graphs: the Russia Facebook graph, the AS grapthand t
WWW graph.

Degree-based Metrics.  These metrics are fundamental in un-
derstanding the statistical properties of node degreeb@mahodes
connect to each other to form specific topological strustu@ut
of the four metrics mentioned above, we report results farbe-
Distribution (which supersedes average node degree) asortas
tivity (which is related to joint degree distribution).

Degree Distributions.  Figure 5 compares the node degree CDFs.
For each of the Russia, WWW, and AS graphs, the degree distrib
tions of both the Pygmalion:£100) graph and thel K -synthetic
graph very closely match the degree distribution of theioalg
graphs. When we increase the strength of the privacy gueeant
i.e. smallere values of5 and 10, the accuracy of the synthetic de-



gree distribution progressively decreases. For examlt the
Russia and WWW graphs show a small deviation from the origina
distribution even for = 5. Across all models for these two graphs,
the worst-case degree distribution deviation is still with0% of

the original.

The AS graph, on the other hand, shows a slightly different be
havior. For smalle values,i.e. ¢ = 5 ande = 10, the largest
error is within35% from the original graph values. The AS graph
shows a different behavior because a small number of higredeg
nodes connect the majority of other nodes. Thus, when thagyri
perturbation hits those high-degree nodes, it can prodmgetsral
changes that send ripples through the rest of the graph.

Assortativity.  Figure 6 reports the results of the assortative met-
ric computed on both real and synthetic graphs for each dhtlee
graphs (Russia, WWW and AS). The assortativity metric dessr
the degree with which nodes with similar degree are condecte
each other. Positive assortativity value denotes a pesttinrela-
tion between the degrees of connected nodes, and negatixesva
indicate anti-correlation. Note that both the WWW and ASphisa
show negative assortativity (Figure 6(b) and Figure 6(c)).

As with the degree distribution results, for each of our gsap
(Russia, WWW, and AS), assortativity results from synthgtaphs
for e = 100 and those from the K-series closely match results
from the original graphs. As we increase the level of privaoy-
tection, the results get slightly further from the originalues. For
example, using = 5 on Russia produces an error less tiaib
on the assortativity value. The samealue for the WWW graph
produces negligible error on assortativity. Assortagivésults on
the AS graph are also consistent with degree distributisnltg
Under high privacy requirementse. ¢ = 5, error on assortativity
reache®).12.

Node Separation Metrics. For brevity, we report only the
Average Path Length as a representative of the node separati
metrics. Figure 7 shows the Average Path Length (APL) values
computed on Russia, WWW and AS compared to the APL values
on their synthetic graphs. On Russia and WWW, APL results de-
note a moderate level of error (higher when compared to tesul
for the earlier graph metrics). We can see that the error islyna
introduced by the impreciseness of #h&-model, since the syn-
thetic graph from thel K'-series with no noise shows the same er-
ror. In comparison, the error introduced by strengthenirigapy
(and hence decreasing is relatively small. This is encouraging,
because we can eliminate the bulk of the error by moving from
dK-2 to a more accurate model.g. dK-3.

As with previous experiments, the AS graph shows a slightly
different behavior. In this case, all of our synthetic gmplo a
good job of reproducing the average path length value of t8e A
graph.

Summary. Our experimental analysis shows that synthetic
graphs generated by Pygmalion exhibit structural featinatspro-
vide a good match to those of the original graphs. As expected
increasing the strength of privacy guarantees introduces moise
into the structure of the synthetic graphs, producing graptrics
with higher deviation from the original graphs. These otwstons
are consistent across social, web, and Internet topolcayyhgt
Overall, these results are very encouraging. They showtbat
are able to effectively navigate the tradeoff between amyuand
privacy by carefully calibrating the values. The fact that signifi-
cant changes iavalues do not dramatically change the graph struc-
ture means owners of datasets can guarantee reasonalitedeve
privacy protection and still distribute meaningful graphat match
the original graphs in structure.

5.2 Application Results

For a synthetic graph to be usable in research, ultimatehugt
produce the same results in application-level experimastthe
original graph it is replacing. To quantify the end-to-engpact
of trading graph similarity for privacy protection, we coamp the
results of running two real world applications on both difetially
private synthetic graphs and the original graphs. We imptgrtwo
applications that are highly dependent on graph structrediable
Email (RE) [20] and Influence Maximization [11].

Reliable Email.  RE [20] is an email spam filter that relies on a
user’s social network to filter and block spam. One way tousia!
the security of RE is to compute the number of users in a nétwor
who can be spammed by a fixed number of compromised friends
in the social network. This experiment depends on the straaif
the network, and is a useful way to evaluate whether Pygmalio
graphs can be true substitutes for measurement graphsciarcbs
experiments.

Figure 8 shows the portion of the nodes flooded with spam as we
increase the number of malicious spammers, using differaqths
as the underlying social network topology. We show resuitthe
usual three graphs, Russia, WWW and AS. On the Russia Faceboo
graph, all synthetic graphs closely follow the originalgia Even
in the case of the strongest privacy setting,e = 5, the difference
between the synthetic graph result and those of the origgnat
most10%. For both the WWW and AS graphs, all synthetic graphs
with and without noise produce results withii% of the original
graphs.

Influence Maximization.  The influence maximization problem
tries to locate users in the network who can most quickly agbre
information through the network. This problem is most comiyio
associated with advertisements and public relations campaEval-
uating a solution to this problem includes two steps. Fitst,so-
lution must identify the nodes who can maximize influencehia t
network. Second, it must model the spread of influence thirolg
network to quantify how many users the influence has ultilpate
reached.

For our purposes, we use a recently proposed heuristic for in
fluence maximization that minimizes computation. The tstiari
is called the Degree Discount method [11], and is able to fied t
most influential nodes, called “seeds,” on a given graphrtiSta
from those seed nodes, we run three different influence disse
tion models: Linear threshold (LT), Independent Casca@¢ ¢hd
Weighted Cascade (WC), to determine the total number okuser
the network influenced by the campaign. We use source code we
obtained from the authors. However, significant memory lovad
in the code meant that we had to limit our experiments to small
graphs. Therefore, we use the MontereyBay Facebook grapph an
the AS network topology graph in this experiment.

For both AS and MontereyBay graphs and each of the three influ-
ence dissemination models, Figure 9 shows the expectedenohb
influenced nodes when increasing the number of initial seeés
While the actual percentage of users influenced varies siclies
semination models, there are clear and visible trends. [Resm
the AS graph in Figures 9(a), 9(b), 9(c) all show that Pygomali
with ¢ = 100 and thed K-synthetic graph without noise are al-
most identical to the original AS graph under all three disisa-
tion models. Graphs with stronger protection, Pygmatica 10
ande = 5, progressively diverge from the results of the AS graph.
Results on the MontereyBay graph are shown in Figures 9(€), 9
9(f), and are quite similar to those on the AS graph. They confi
that Pygmaliore = 100 produces near perfect results, but higher
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Figure 9: Results of the Degree Discount Influence Maximizabn algorithm on the AS and MontereyBay graphs, compared talK
graphs without added noise, and Pygmalion synthetic graphwith different ¢ values.

privacy protection increases the deviations from resulitshe orig-
inal MontereyBay graph.

5.3 Summary

We have used both popular graph metrics and applicatici-lev
tests to evaluate the feasibility of using differentialljvpte syn-
thetic graphs in research. Our tests are not comprehereigk,
cannot capture all graph metrics or application-level expents.
However, they are instructive because they show the olislerira-
pact on graph structure and research results when we reglate
graphs with differentially private Pygmalion graphs.

Our results consistently show that Pygmalion introducegdid
impact as a result of adding noise to guarantee privacy. dh fa
many of the largest errors can be attributed to limitatioh¢he
dK-2 series. Given the significant demand for realistic graphs
the research community, we expect that generator algcsittam
more complexd K models will be discovered soon. Moving to
those modelse.g.dK-3, will eliminate a significant source of error
in these results.

6. CONCLUSION

We study the problem of developing a flexible graph privacy
mechanism that preserves graph structures while provideeg-
specified levels of privacy guarantees. We introdBggmalion
a differentially-private graph model that aims these gasalsg
the dK-series as a graph transformation function. First, we use
analysis to show that this function has a high sensitivigy, ap-
plied naively, it requires addition of high levels of noigedbtain
privacy guarantees. We confirm this on both social and letern
graphs. Second, we develop and prove a partitioned priveaty t
nique where differential privacy is achieved as a whole wihén

achieved in each data cluster. This effectively reducedetied of
noise necessary to attain a given level of privacy.

We evaluate our model on numerous graphs that range in size
from 14K nodes to 1.7 million nodes. Our partitioned privéagh-
nique reduces the required noise by an order of magnitude. Fo
moderate to weak levels of privacy guarantees, the regustym-
thetic graphs closely match the original graphs in both lgstpuc-
ture and behavior under application-level experiments.

We believe our results represent a promising first step asvar
enabling open access to realistic graphs with privacy guees.
The accuracy of our current model is fundamentally limitgd b
both the degree of descriptivenessdi -2 series, and the high
noise necessary to inject privacy properties. There arentays to
improve our results. One way is to use a more descriptivéydnig
order d K model, under the assumption that its sensitivity is rea-
sonable low. While generators for higher ordéf-models are still
unknown, our techniques are general, and can be appliedamob
more accurate models as higher-ordéf generators are discov-
ered. Another way to improve is to discover a function (or elpd
of graph structure with much lower sensitivity. If such adtion
exists, it can potentially lower the noise required for a&giprivacy
level by orders of magnitude.
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