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Abstract. Asymptotic extremal combinatorics deals with questions that in the lan-

guage of model theory can be re-stated as follows. For finite models M, N of an universal

theory without constants and function symbols (like graphs, digraphs or hypergraphs),

let p(M, N) be the probability that a randomly chosen sub-model of N with |M | el-

ements is isomorphic to M . Which asymptotic relations exist between the quantities

p(M1, N), . . . , p(Mh, N), where M1, . . . , Mh are fixed “template” models and |N | grows

to infinity?

In this paper we develop a formal calculus that captures many standard arguments in

the area, both previously known and apparently new. We give the first application of

this formalism by presenting a new simple proof of a result by Fisher about the minimal

possible density of triangles in a graph with given edge density.

§1. Introduction. A substantial part of modern extremal combinatorics (which
will be called here asymptotic extremal combinatorics) studies densities with
which some “template” combinatorial structures may or may not appear in un-
known (large) structures of the same type1. As a typical example, let Gn be a
(simple, non-oriented) graph on n vertices with m edges and t triangles. Then

the edge density of Gn is ρ(Gn)
def
= m

(n
2)

, its triangle density is µ(Gn)
def
= t

(n
3)

, and

one can ask which pairs (ρ, µ) ∈ [0, 1]2 can be “asymptotically realized” (we will
make this precise later) as (ρ(Gn), µ(Gn)).

In the language of finite model theory, problems of this type can be formulated
as follows. Let T be a universal theory in a first-order language without constants
or function symbols. Then every set of elements of a model of T again induces a
model of T . For two finite models M and N of T with |M | < |N |, let p(M, N)
be the density with which M appears as a sub-model of N . Fix finite models
M1, . . . , Mh, and let the size of N grow to infinity. Which relations between the
densities p(M1, N), . . . , p(Mh, N) will then necessarily hold “in the limit”? The
list of theories of interest includes theories of graphs, digraphs, tournaments,
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dation for Basic Research.

1One example of a famous open problem that does not fall into this category, and that does
not seem to be amenable to our techniques, is the problem of estimating the maximal number
of edges in C4-free graphs. The reason is that this density is known to be asymptotically 0, so
the question is actually about low-order terms.
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hypergraphs etc. In each case we can also append additional axioms forbidding
certain structures, thus obtaining e.g. the theory of K`-free graphs (correspond-
ing to the classical Turán theorem [Tur]), the theory of oriented graphs of girth
≥ g (featured in the Caccetta-Häggkvist conjecture [CaH]) or the theory of 3-
hypergraphs in which every four vertices span at least one hyperedge (pertaining
to the Turán hypergraph problem that is the most famous open problem in the
whole area).

Asymptotic extremal combinatorics is full of ingenious and hard results. Sur-
prisingly, however, there seem to exist only a handful of essentially different
techniques in this area, and the difficulty (as well as beauty) lies in finding the
“right” relations using instruments from this relatively small toolbox and com-
bining them in the “right” way. And after trying this for a while, it very soon
becomes clear that there is a rich algebraic structure underlying many of these
techniques, and especially those that, besides induction, involve a non-negligible
amount of counting. It is also more or less transparent that they can be arranged
in the form of a formal calculus based on simply defined algebraic objects (that
we will call flag algebras) associated with the theory in question.

We have found it extremely instructive to distill this “assumed” calculus in its
pure form, and this is exactly what we attempt to do in this paper. Our argu-
ments in favour of such a formalization (as opposed to “naive” exact calculations)
are at least three-fold.

• In asymptotic extremal combinatorics lower-order terms that supposedly
do not influence the final result are particularly annoying and in many
cases bury the essence of the argument under technicalities. In fact, many
authors give up and declare that they will ignore such terms from the out-
set (see e.g. one of the most interesting recent developments [CaF]). The
danger with this radical approach, however, lurks in the proofs containing
various inductive arguments. The more elaborate these arguments are, the
more likely it becomes that low-order error terms will eventually accumu-
late interfering with the final asymptotic result. In our framework low-order
terms do not exist in principle, and in this sense it is somewhat reminiscent
of non-standard analysis (but, unlike the latter, we use only pretty stan-
dard mathematical concepts like commutative algebras, homomorphisms
and some very basic notions of the measure theory). The statements that
are responsible for taming error terms are proved as general facts once and
for all. After this (admittedly, no less tedious than its naive counterparts)
work is done, we simply use the results at yet further axioms or inference
rules appended to our calculus. The best manifestation of this idea given
in our paper is the differential structure explored in Section 4.3.

• The algebraic, topological and probabilistic structure introduced for our
pragmatic purposes looks very much like the structure existing elsewhere
in mathematics. This in particular allows us to draw upon “foundational”
results from its different areas, sometimes quite deep (like Prohorov’s theo-
rem on the weak convergence of probability measures). It is also conceivable
that on this way we will be able to draw upon concrete calculations per-
formed in other areas for different purposes. We also feel that revealing
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underlying structures of this kind should be especially beneficial for an
area that, alas, is still sometimes viewed by some as somewhat isolated
from “mainstream” mathematics.

• We put different techniques in extremal combinatorics to a common de-
nominator by viewing them as linear operators (and often – algebra homo-
morphisms) acting between the same objects, flag algebras. This becomes
extremely useful when trying to combine these techniques together. Also,
this representation is very structured and thus very convenient to program,
so that the search for “right” relations can be to a large degree computer-
ized. Indeed, for the concrete proof included in this paper (Section 5) as
well as for all other applications (to be given elsewhere) we have extensively
used Maple and the CSDP package for semi-definite programming [Bor] to
test various hypothesis and avoid hopeless directions.

There were, of course, previous attempts to achieve the goals we are pursuing
here. Some underlying ideas can be traced back to [GGW], and in the context
of the Caccetta-Häggkvist conjecture we would like to mention the paper [Bon].
However, the only systematic attempt we are aware of is the research on graph
homomorphisms conducted by Lovász et. al. (see [LoSz] for the paper most
closely related to our purposes, and [BCL*] for a general survey). Graph homo-
morphisms is a very promising direction that connects many different areas of
mathematics, physics and theoretical computer science and draws upon them for
motivation, research goals, ideas etc. It has already led to an extremely interest-
ing body of results and connections, ranging from statistical physics to property
testing. However, precisely due to its universality, when it comes to concrete
implementations in extremal combinatorics, this approach suffers from certain
deficiencies that, hopefully, are taken care of in our more focused treatment.

• Currently, the research on graph homomorphisms does not seem to incor-
porate arguments involving any kind of induction. Illustrations of its use-
fulness in extremal combinatorics consist so far of re-proving a few simple
classical results, and, moreover, only those whose proofs are based entirely
on the Cauchy-Schwarz inequality.

• The notion of a graph homomorphism appears to be more alien to extremal
combinatorics than that of an induced substructure. First, it immediately
restricts applicability of the theory to those structures for which this notion
makes sense. But even for graphs, the asymmetry inherently contained
in the notion of a homomorphism makes many standard arguments look
rather unnatural. For example, suppose that we want to count the number
of independent subgraphs on three vertices by averaging over all non-edges
of a graph. Theoretically it is doable with graph homomorphisms, but the
result would not look the way we would like it to.

• The primary semantic model in the theory of graph homomorphisms is
made by (measurable weighted) graphs on an infinite measure space. This
semantics is absolutely perfect for every conceivable purpose (in particular,
all information contained in semantic models considered in our paper can be
naturally retrieved from such graphs). But the problem with this semantics
is that the proof of the corresponding “completeness theorem” is based on
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Szemerédi’s Regularity Lemma and fells apart already for 3-hypergraphs.
This is certainly not the feature we want in our theory, and we replace
measurable graphs with “ensembles” of probability measures on homomor-
phisms from flag algebras to the reals. On the one hand, the latter objects
still carry (apparently) all the information needed for the purposes of ex-
tremal combinatorics. On the other hand, now the “completeness theorem”
is based on Prohorov’s theorem (about weak convergence of probability
measures) and can be applied to arbitrary combinatorial structures.

The paper is organized as follows. In Section 2 we develop the “syntactic” part
of our calculus; we define flag algebras, and introduce linear operators (averaging,
homomorphisms onto sub-algebras of constants, more general interpretation-
based operations) that will serve as basic “inference rules”. In Section 3 we
consider various semantics for our calculus (homomorphisms into the reals, con-
vergent sequences of finite models, ensembles of random homomorphisms), prove
their equivalence, observe soundness of the inference rules introduced in the pre-
vious section, and prove a few further results of distinct “bootstrapping” nature.
In Section 4 we study “extremal” homomorphisms and in particular introduce
“differential operators” that, under certain conditions, allow us to come up with
new and very useful axioms valid for such homomorphisms. In Sections 2-4 we
will be trying to convey as much intuition as possible as to what and why we are
doing, as well as provide examples illustrating our abstract notions with concrete
calculations.

In Section 5 we give the first application of our machinery (further applications
will appear elsewhere, and every one of them will use only a small fragment
of the whole theory). Mantel’s theorem [Man](generalized in Turán’s classical
paper [Tur] to cliques of arbitrary fixed size) asymptotically states that if the edge
density ρ of a graph is > 1/2 then the density of triangles in this graph is > 0. The
quantitative version of this question (that is, what exactly is the minimal possible
density of triangles given ρ) has received much attention in the combinatorial
literature, but so far only partial results are known [Goo, Bol, LoSi, Fish]. In
particular, Fisher [Fish] solved this question for ρ ∈ [1/2, 2/3]. We give a totally
new proof of Fisher’s result which in our calculus amounts to a computation of
several lines.

Lastly, in Section 6 we formulate a few open questions; all of them can be
vaguely interpreted as attempts at asking if there is any sort of “compactness
theorem” for our calculus. Or, in other words, can any true statement in extremal
combinatorics be proved by “finite” methods appealing only to flags of bounded
size?

§2. Syntax. Let T be a universal first-order theory with equality in a lan-
guage L containing only predicate symbols; we assume that T has infinite mod-
els. Our assumptions imply that every set of elements of a model of T induces
a model of T , and that T has at least one finite model of every given size. T
will be almost always considered fixed (and dropped from notation); one notable
exception will be Section 2.3 and a few other places related to it. As a reminder
that we are eventually interested in combinatorial applications, the ground set
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of a model M will be denoted by V (M), and its elements will be called vertices.

For V ⊆ V (M), M |V is the sub-model induced by V , and M − V
def
= M |V (M)\V

is the result of removing vertices in V from the model M . M − {v} will be
abbreviated to M − v. A model embedding α : M −→ N is an injective map-
ping α : V (M) −→ V (N) that induces an isomorphism between M and N |im(α).
M ≈ N means that M and N are isomorphic, and we let Mn denote the set of
all finite models of T on n vertices up to an isomorphism.

We review some combinatorial notation. [k]
def
= {1, 2, . . . , k}. A collection

V1, . . . , Vt of finite sets is a sunflower with center C if Vi ∩ Vj = C for every two
distinct i, j ∈ [t]. V1, . . . , Vt are called the petals of the sunflower. Following the
standard practice in discrete mathematics, we often visualize probability mea-
sures as random objects “picked”, “drawn” or “chosen” according to them. And,
trying to revive an extremely handy but unfortunately almost entirely forgotten
convention from the classical book [ErSp], we always use math bold face for
denoting random objects.

2.1. Flag algebras: definition. For M ∈ M` and N ∈ ML with ` ≤ L,
let p(M, N) be the probability of the event M ≈ N |V , where V is a randomly
chosen subset of V (N) with ` vertices. As we explained in the Introduction, we
are typically interested in the behaviour of p(M, N) where M belongs to a fixed
finite collection of “template” models, and L −→ ∞. It immediately turns out,
however, that in order to prove anything intelligent about these quantities, one
almost always needs a relativized version in which several distinguished vertices
from M must attain prescribed values in N . So, we at once treat this more
general case.

A type σ is a model M of the theory T with V (M) = [k] for some non-negative
integer k called the size of σ and denoted by |σ|. To every type σ of size k we can
associate the universal theory T σ in the extended language L(c1, . . . , ck) (ci are
new constants) by appending to T the open diagram of σ. T σ is an extension of
T in the language L(c1, . . . , ck), complete with respect to open closed formulas,
and it uniquely determines σ. This logical representation will be extremely useful
in Section 2.3, and for the time being it at least somewhat justifies our usurpation
of the term “type” from model theory.

A σ-flag is a pair F = (M, θ), where M is a finite model and θ : σ −→ M is
a model embedding (note that in the logical representation σ-flags are precisely
finite models of T σ). For small values of k = |σ| we will sometimes write down the
flag (M, θ) by explicitly listing all labeled vertices in the form (M, θ(1), . . . , θ(k)).
If F = (M, θ) is a σ-flag and V ⊆ V (M) contains im(θ), then the sub-flag
(M |V , θ) will be often denoted by F |V . Likewise, if V ∩ im(θ) = ∅, we use the
notation F −V for (M −V, θ). A flag embedding α : F −→ F ′, where F = (M, θ)
and F ′ = (M ′, θ′) are σ-flags, is a model embedding α : M −→ M ′ such that
θ′ = αθ (“label-preserving”). F and F ′ are isomorphic (again denoted F ≈ F ′)
if there is a one-to-one flag embedding α : F −→ F ′. Let Fσ be the set of all σ-

flags (up to an isomorphism), and Fσ
`

def
= {(M, θ) ∈ Fσ | M ∈ M` } be the set of

all σ-flags on ` vertices. In particular, M` can (and often will) be identified with
F0

` , where 0 is the only type of size 0. Fσ
|σ| consists of the single element (σ, id),

where id : σ −→ σ is the identity embedding. We will denote this special σ-flag
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by 1σ or even simply by 1 when σ is clear from the context. When M ∈ M`,
a type σ with |σ| ≤ ` is embeddable in M and has the property that all σ-flags
resulting from such embeddings are isomorphic, we will denote this uniquely
defined σ-flag by Mσ.

Example 1 (see illustration on page 7). In the course of this paper, we will
illustrate our abstract notions using two specific theories: the theory of undi-
rected graphs TGraph and the theory of directed graphs TDigraph. In both cases
we consider only simple graphs, that is we forbid loops and multiple edges (and
in the oriented case we also forbid edges connecting any two vertices in opposite
directions). In both cases E(G) is the set of edges, G−E is the result of remov-
ing the edges in E from G (without changing the vertex set), and for e ∈ E(G),

G − e
def
= G − {e}.

Undirected case. For an undirected graph G we denote by Ḡ its complement
(on the same vertex set). K`, P` ∈ M` are an `-vertex clique and an `-vertex
path (of length ` − 1), respectively. K1,l ∈ M`+1 is the star with ` rays (thus,
P3 ≈ K1,2).

We denote by 1 the (only) type of size 1, and by E, Ē types of size 2 corre-
sponding to an edge [non-edge, respectively]. Then, according to our convention
we have uniquely defined flags K1

` ∈ F1
` , KE

` ∈ FE
` and P̄ E

3 ∈ FE
3 . The edge

considered as a 0-flag K2 ∈ F0
2 will be denoted by ρ, and the same edge consid-

ered as a 1-flag K1
2 will be denoted by e.

In contrast, flags like P 1
3 or P E

3 are not uniquely defined. Call the vertex
vc of degree 2 in P3 the center vertex, and two other vertices (of degree 1)
border vertices; let vb be one of them. Then we have two different versions of

P 1
3 : P 1,c

3
def
= (P3, vc) and P 1,b

3
def
= (P3, vb). Likewise, let P E,c

3
def
= (P3, vc, vb) and

P E,b
3

def
= (P3, vb, vc). This can be further generalized to K1,c

1,` , K
1,b
1,` , K

E,c
1,` , KE,b

1,`

for any star K1,`.

Directed case. Let ~Cn, ~Tn ∈ Mn be an oriented cycle and a transitive

tournament on n vertices, respectively. ~K1,`, ~K`,1 ∈ M`+1 are two orientations
of the star K1,` in which all rays are oriented from the center [to the center,
respectively]. 1 is again the only type of size 1, and A is the type of size 2 with
E(A) = {< 1, 2 >}. A is our first example of a non-symmetric type, i.e. a type
which is not preserved under the full group of permutations Sk. ρ ∈ F0

2 still has
the same meaning as in the undirected case. No single element of F 1

2 , however,
corresponds to e, and ρ gives rise to two different 1-flags α, β ∈ F 1

2 , where θ labels

the tail vertex in α, and in β it labels the head vertex. ~C1
n, ~CA

n , ~KA
1,`,

~KA
`,1 are

uniquely defined, whereas there are many possibilities for turning ~Tn into a 1-flag

or an A-flag, and all of them lead to pairwise different flags. ~K1,c
1,` ,

~K1,b
1,` ,

~K1,c
`,1 , ~K1,b

`,1

are defined exactly as in the undirected case.
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Definition 1. Fix a type σ of size k, assume that integers `, `1, . . . , `t ≥ k
are such that

`1 + · · · + `t − k(t − 1) ≤ `,(1)

and F = (M, θ) ∈ Fσ
` , F1 ∈ Fσ

`1
, . . . , Ft ∈ Fσ

`t
are σ-flags. We define the

(key) quantity p(F1, . . . , Ft; F ) ∈ [0, 1] as follows. Choose in V (M) uniformly at
random a sunflower (V1, . . . ,Vt) with center im(θ) and petals of sizes `1, . . . , `t,
respectively (the inequality (1) ensures that such sunflowers do exist). We let
p(F1, . . . , Ft; F ) denote the probability of the event “∀i ∈ [t](F |V i

≈ Fi)”. When
t = 1, we use the notation p(F1, F ) instead of p(F1; F ).

Example 2 (undirected graphs). p(ρ, G) is the edge density of G, and p(K3, G)
is the density of triangles in G. p(ρ, . . . , ρ︸ ︷︷ ︸

t times

; G) is the density of matchings with

t edges (not necessarily induced). G is a complete t-partite graph for some t

iff p(P̄3, G) = 0. In type 1, p(e, (G, v)) =
degG(v)
|V (G)|−1 is the relative degree of the

labelled vertex v. p(e, e; P 1,b
3 ) = 0 whereas p(e, e; P 1,c

3 ) = 1. p(e, e; K1
` ) = 1

for every ` ≥ 3. In type E, p(P E,b
3 , P E,b

3 ; KE,b
1,3 ) = p(P E,c

3 , P E,c
3 ; KE,c

1,3 ) = 1 but

p(P E,b
3 , P E,c

3 ; KE,b
1,3 ) = p(P E,b

3 , P E,c
3 ; KE,c

1,3 ) = 0.

Lemma 2.1.

a) p(1σ, F1, . . . , Ft; F ) = p(F1, . . . , Ft; F ) and p(1σ , F ) = 1.
b) For F, F ′ ∈ Fσ

` , p(F, F ′) = 1 if F = F ′ and p(F, F ′) = 0 otherwise.
c) p(F1, . . . , Ft; F ) = p(Fγ(1), . . . , Fγ(t); F ) for any permutation γ ∈ St.

Proof. Obvious. a
Lemma 2.2 (chain rule). Let |σ| = k, Fi ∈ Fσ

`i
(1 ≤ i ≤ t), 1 ≤ s ≤ t, F ∈ Fσ

`

and ˜̀≤ ` be such that
{

˜̀+ `s+1 + · · · + `t − k(t − s) ≤ `

`1 + · · · + `s − k(s − 1) ≤ ˜̀.
(2)

Then

p(F1, . . . , Ft; F ) =
∑
�
F∈Fσ

˜̀

p(F1, . . . , Fs; F̃ )p(F̃ , Fs+1, . . . , Ft; F ).

In particular (s = t), for every ˜̀≤ ` satisfying the inequality

`1 + · · · + `t − k(t − 1) ≤ ˜̀,

we have

p(F1, . . . , Ft; F ) =
∑
�
F∈Fσ

˜̀

p(F1, . . . , Ft; F̃ )p(F̃ , F ).(3)

Proof. Let F = (M, θ). We present another, two-step way of generating a
random sunflower (V1, . . . ,Vt) with the same distribution as the one appearing
in Definition 1 (that is, uniform on the set of all possibilities). Namely, we first

generate (uniformly at random) a sunflower (Ṽ ,Vs+1, . . . ,Vt) with center im(θ)

and petals of sizes ˜̀, `s+1, . . . , `t. Then we pick in Ṽ (also uniformly at random)
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a sunflower (V1, . . . ,Vs) with center im(θ) and petals of sizes `1, . . . , `s. By
symmetry, and due to the inequalities (2), this procedure also leads to the uni-
form distribution on the set of all sunflowers (V1, . . . , Vt) with center im(θ) and
petals of sizes `1, . . . , `t. Now, the identity we are proving becomes simply the
formula of total probability, the right-hand side corresponding to the partition
of the probability space according to the isomorphism type of F | �

V
∈ Fσ

˜̀ . a
The following lemma states that when F is large, p(F1, . . . , Ft; F ) becomes

almost multiplicative in the first t arguments. It will not be needed until Section
3, but we present it here (for the purpose of orientation).

Lemma 2.3. Let Fi ∈ Fσ
`i

(1 ≤ i ≤ t) and F ∈ Fσ
` . Then

∣∣∣∣∣p(F1, . . . , Ft; F ) −
t∏

i=1

p(Fi, F )

∣∣∣∣∣ ≤
(`1 + · · · + `t)

O(1)

`
.

Proof. Let F = (M, θ). Choose Vi ⊆ V (M) of size `i with im(θ) ⊆ Vi

uniformly at random but independently of one another. Then
∏t

i=1 p(Fi, F ) =
P[A] and p(F1, . . . , Ft; F ) = P[A |B ] where A is the event “∀i ∈ [t](F |Vi

≈ Fi)”,
and B is the event “(V1, . . . ,Vt) is a sunflower with center im(θ)”. We now have

|P[A]−P[A |B ] | ≤ 1−P[B] ≤ ∑
i6=j P[(Vi ∩ Vj) ⊃ im(θ)] ≤ (`1+···+`t)

O(1)

` . a
Let RFσ be the linear space with the basis Fσ , i.e. the space of all formal

finite linear combinations of σ-flags with real coefficients. Let Kσ be its linear
subspace generated by all elements of the form

F̃ −
∑

F∈Fσ
`

p(F̃ , F )F,(4)

where F̃ ∈ Fσ
˜̀ and |σ| ≤ ˜̀≤ `. Let

Aσ def
= (RFσ)/Kσ .

Introduce the bilinear mapping (RFσ)⊗ (RFσ) −→ Aσ , f ⊗g 7→ f ·g as follows.
For two σ-flags F1 ∈ Fσ

`1
, F2 ∈ Fσ

`2
choose arbitrarily ` ≥ `1 + `2 − |σ| and let

F1 · F2
def
=

∑

F∈Fσ
`

p(F1, F2; F )F.(5)

Extend this mapping onto the whole (RFσ) ⊗ (RFσ) by linearity.

Definition 2. A type σ is non-degenerate if Fσ
` 6= ∅ for all ` ≥ |σ| (or,

equivalently, if the theory T σ has an infinite model).

In “reasonable” theories all types are non-degenerate (see Theorem 2.7 below
for a much stronger property). For an example of a degenerate type, append
to TGraph the extra axiom “every four vertices span a triangle-free subgraph”.
Then the triangle on {1, 2, 3} is a degenerate type.

Lemma 2.4.

a) The right-hand side of (5) does not depend on the choice of ` (modulo
Kσ).

b) (5) induces a bilinear mapping Aσ ⊗Aσ −→ Aσ.
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c) Let ` ≥ `1 + · · · + `t − k(t − 1). Then for Fi ∈ Fσ
`i

(1 ≤ i ≤ t) we have
the identity

((F1 · F2) · F3 . . . ) · Ft =
∑

F∈Fσ
`

p(F1, . . . , Ft; F )F (mod Kσ).

d) If σ is non-degenerate then the induced mapping Aσ⊗Aσ −→ Aσ endows
Aσ with the structure of a commutative associative algebra with the identity
element 1σ.

Proof. a). Let ` ≥ ˜̀≥ `1 + `2 − |σ|. Then by Lemma 2.2 we have
∑

F∈Fσ
`

p(F1, F2; F )F =
∑

F∈Fσ
`

∑
�
F∈Fσ

˜̀

p(F1, F2; F̃ )p(F̃ , F )F

=
∑
�
F∈Fσ

˜̀

p(F1, F2; F̃ )
∑

F∈Fσ
`

p(F̃ , F )F =
∑
�
F∈Fσ

˜̀

p(F1, F2; F̃ )F̃ (mod Kσ).

b). By Lemma 2.1 c), the operation · is symmetric, so we only have to show
that f1 ∈ Kσ , f2 ∈ RFσ implies f1 · f2 ∈ Kσ . By linearity, we may additionally
assume that f1 has the form (4) and f2 = F ′ is a σ-flag. That is, we want to
prove

F̃ · F ′ =
∑

F∈Fσ
`

p(F̃ , F )(F · F ′) (mod Kσ).

By the already proven part a), we may expand here F̃ · F ′ and F · F ′ as sum-

mations over F̂ ∈ Fσ
L with the same L ≥ `. Looking at the coefficients in

front of every particular F̂ ∈ Fσ
L , we see p(F̃ , F ′; F̂ ) in the left-hand side, and∑

F∈Fσ
`

p(F̃ , F )p(F, F ′; F̂ ) in the right-hand side. They coincide by Lemma 2.2.

c). By another straightforward application of Lemma 2.2, repeated (t − 1)
times.

d). Commutativity and associativity follow from part c) and Lemma 2.1 c).
The fact that 1σ is the identity element follows from Lemma 2.1 a). Finally, we
have to check that 0 6= 1 in this algebra, that is 1σ 6∈ Kσ . Consider any finite set
R of relations of the form (4), and let L be a common upper bound on the number
of vertices in flags appearing in those relations. Since σ is non-degenerate, Fσ

L is

non-empty; choose F̂ ∈ Fσ
L arbitrarily. Then the linear functional on the direct

sum
⊕

|σ|≤`≤L Fσ
` that maps every flag F to p(F, F̂ ) nullifies all relations in R

and does not nullify 1σ . Therefore, 1σ does not belong to the linear subspace
spanned by R. a

The algebras Aσ that we will call flag algebras make the backbone of our whole
approach. We will denote by Aσ

` the linear subspace generated in Aσ by Fσ
` .

Also, when simultaneously working with several different theories (like in Section
2.3), we will be using the notation like Fσ

` [T ] or Aσ [T ] to indicate which theory
these objects are related to.

Example 3 (see illsustration on page 11).

Undirected case.
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4
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3
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2

1
2

1
2

P 1,b
3

P 1,c
3

(K4 − P3)
E(P E,b

3 )2 KE,b
1,3

P̄ 1,b
3

~T 1,0
3

~K1,c
1,2

P E,b
3 P E,c

3

Figure 2. Multiplication

ρ = 1
3 P̄3 + 2

3P3 + K3. ρ2 = 1
3

∑
G∈M4

m2(G)G, where m2(G) is the number

of 2-matchings in G (not necessarily induced). e2 = P 1,c
3 + K1

3 . e(1 − e) =
1
2 (P̄ 1,b

3 +P 1,b
3 ). (P E,b

3 )2 = KE,b
1,3 +(K4 −P3)

E , whereas P E,b
3 P E,c

3 = 1
2 (P E

4 +CE
4 )

(here K4 − P3 and P4 are turned into E-flags in an appropriate way).

Directed case.
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We can now define the element K3 ∈ A0
3 as K3

def
= ~C3 + ~T3, and define e ∈ A1

2

as e
def
= α + β (cf. Section 2.3 below). α2 = ~K1,c

1,2 + ~T 1,0
3 , where ~T 1,0

3 is the 1-flag

obtained from ~T3 by labelling the vertex of in-degree 0.

Remark 1. Flag algebras are related to graph algebras (introduced in the
context of graph homomorphisms in [FLS]) roughly as follows. While defining
multiplication in that context, an inherent ambiguity arises for k ≥ 2. Depend-
ing on the current goals, researchers in the area interchangeably work with the
version in which multiple edges are allowed, and the version in which they are
forbidden. The algebra structure seems to have been considered so far only for
the version with multiple edges, which are strictly forbidden in our framework.
However, there do not seem to be any principal obstacles to defining the graph
algebras also in the context of simple graphs, and apparently the resulting alge-
bra will be isomorphic to the product

∏
|σ|=k Aσ . However, since graph algebras

for simple graphs have apparently not been considered in the literature before,
we prefer to be on the safe side and avoid definite statements in this remark.

We will be interested in the relations f ≥ g (f, g ∈ Aσ) that are “asymptot-
ically true” (this will be made precise and further developed in Section 3). In
the rest of this section we will define certain operators that will correspond to
“inference rules” of our calculus; their soundness will again be shown in Section
3.

2.2. Averaging: downward operator. Almost all proofs in extremal com-
binatorics use, in one or another form, the following simple (and yet very power-
ful) idea. Suppose, say, that in the theory TGraph we have proved some inequality
f(v1, v2) ≥ 0 for every pair of vertices v1, v2 ∈ V (G) not connected by an edge.
Then, averaging over all non-edges, we will get another inequality depending only
on the graph under consideration. In our formalism this operation is described
as a linear operator (not an algebra homomorphism) Aσ −→ Aσ′

between dif-
ferent flag algebras (and since |σ′| will be always less than |σ|, we called this a
downward operator in the title of the section).

Given a type σ of size k, k′ ≤ k and an injective mapping η : [k′] −→ [k],
let σ|η be the naturally induced type of size k′ (that is, for any predicate
symbol P (x1, . . . , xr) in L and any i1, . . . , ir ∈ [k′], σ|η |= P (i1, . . . , ir) iff
σ |= P (η(i1), . . . , η(ir))). For a σ-flag F = (M, θ), the σ|η-flag F |η is defined as

F |η def
= (M, θη). In particular, we have the σ|η-flag (1σ)|η = (σ, η), where in the

right-hand side σ is considered as an unlabelled model of T .
Next, we define the normalizing factor qσ,η(F ) ∈ [0, 1] as follows. For F =

(M, θ) we generate an injective mapping θ : [k] −→ V (M), uniformly at random
subject to the additional restriction that it must be consistent with θ on im(η)
(that is, θη = θη). We let qσ,η(F ) be the probability that θ defines a model
embedding σ −→ M and the resulting σ-flag (M,θ) is isomorphic to F .

Finally, we let

�
F � σ,η

def
= qσ,η(F ) · F |η
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and extend this mapping to a linear mapping RFσ −→ RFσ|η . The most inter-
esting case is when k′ = 0 (thus, also σ|η = 0), and we will abbreviate

� · � σ,0 to� · � σ .
Example 4.

Undirected graphs.
�
e � 1 = ρ and, more generally,

�
K1

` � 1 =
�
KE

` � E = K`.�
P 1,c

3 � 1 = 1
3P3 and

�
P 1,b

3 � 1 = 2
3P3. Thus,

�
e2 � 1 = K3 + 1

3P3.
�
P E,b

3 � E =�
P E,c

3 � E = 1
3P3.

�
P E,b

3 � E,1 = 1
2P 1,b

3 , but
�
P E,b

3 � E,2 = P 1,c
3 (here for i = 1, 2 we

denoted by i the function η : {1} −→ {1, 2} with η(1) = i).

Directed graphs.
�
α � 1 =

�
β � 1 = ρ/2, so we still have

�
e � 1 = ρ.

�
~CA

n � A =
1

n−1
~Cn and

�
~T A

n � A = 1
n(n−1)

~Tn for every A-flag ~T A
n resulting from ~Tn.

Theorem 2.5. a)
� · � σ,η takes Kσ to Kσ|η and thus defines a linear map-

ping Aσ → Aσ|η .
b)

�
1σ � σ,η = qσ,η(1σ) · (σ, η).

c) (chain rule) Assume that we are additionally given an injective mapping
η′ : [k′′] −→ [k′] for some k′′ ≤ k′. Then

�
f � σ,ηη′ =

���
f � σ,η � σ|η ,η′ .

Proof. a). Apply
� · � σ,η to the relation (4) and expand F̃ |η in the result as

a linear combination of F ′ ∈ Fσ|η
` using the respective relation in the algebra

Aσ|η . Comparing coefficients in front of every particular F ′ ∈ Fσ|η
` , we only

have to prove that for every fixed F̃ ∈ Fσ
˜̀ and F ′ ∈ Fσ|η

` , we have

p(F̃ |η, F ′) · qσ,η(F̃ ) =
∑

F∈Fσ
`

F |η=F ′

qσ,η(F )p(F̃ , F ).(6)

For doing that, we (as in the proof of Lemma 2.2) calculate the probability of
the same event in two different ways. Namely, let F ′ = (M, θ′). Pick a pair

(Ṽ ,θ), where θ : [k] −→ V (M) is an injective function and Ṽ ⊆ V (M), |Ṽ | = `
uniformly at random, but subject to two additional restrictions θη = θ′ and

Ṽ ⊇ im(θ). Then both sides of (6) calculate the probability of the event “θ is

a model embedding σ −→ M and the σ-flag (M | �
V

,θ) is isomorphic to F̃” (the
right-hand side splits this event according to the isomorphism type of (M,θ)).

b) and c) are straightforward. a
Remark 2. The normalizing factor qσ,η(1σ) in part b) of this theorem results

from the dual treatment of σ as totally labelled and partially labelled model.
Algebraically, it can be computed as follows. Let S be the subgroup in Sk

stabilizing (pointwise) all points in im(η) and A be the automorphism group of
σ. Then

qσ,η(1σ) =
|S ∩ A|
|S| =

|S ∩ A|
(k − k′)!

= (S : S ∩ A)−1.

2.3. Interpretations, upward operators and induction. Let us begin
with three simple examples representing typical techniques in extremal combi-
natorics.
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Example 5. In the theory TGraph, consider the element K1
3+P̄ 1,c

3 +P 1,b
3 ∈ A1

3.
This element represents the fact that the two unlabelled vertices are connected
by an edge, and thus we expect this element to be equal to ρ ∈ A0 regardless
of the choice of the labelled vertex. Thus, we have found in A1 an element
“effectively equal” to an element of A0, and we can use it for further reasoning
within the algebra A1.

Example 6. Suppose we are trying to prove some inequality f ≥ 0 for all
undirected graphs. Given a graph G, for every v ∈ V (G) we may consider its

neighbourhood N(v)
def
= {w ∈ V (G) | (v, w) ∈ E(G)} and assume (by induction)

that the inequality f ≥ 0 holds for G|N(v). Then we can average the results
over v ∈ V (G), thus getting some new relation, and then we can use it as an
“additional axiom” for proving f ≥ 0 for the graph G itself.

Example 7 (cf. [CaF]). Suppose now that we are working with 3-
hypergraphs G. Then for every v ∈ V (G) we may form its link as
{(v′, v′′) | (v, v′, v′′) ∈ E(G)}. This is already an ordinary graph, and via this
operation (followed again by averaging over v) we can use to our advantage
every relation previously proved for ordinary graphs.

In our framework all three themes are treated simultaneously as special cases
of an extremely general construction based on the logical notion of interpretation,
and we begin with this construction in its full generality. The result (Theorem
2.6) is a bit technical, and in the three following subsections we indicate simpler
partial cases roughly corresponding to the three examples above.

All interpretations considered in this paper will be open (that is, given by
open formulas). To fix notation, and for the benefit of non-logic readership, we
review the definition below.

Definition 3. Let T1 and T2 be two universal first-order theories with equal-
ity in (possibly different) languages L1 and L2. We assume that L1 and L2 do
not contain function symbols, but, along with predicate symbols, we also allow
constants. Let U(x) be an open formula in the language L2 such that T2 ` U(c)
for every constant c ∈ L2, and I be a translation that takes every predicate
symbol P (x1, . . . , xr) ∈ L1 to an open formula I(P )(x1, . . . , xr) in the language
L2, and takes every constant c ∈ L1 to a constant I(c) ∈ L2. I is extended
to open formulas of the language L1 by declaring that it commutes with logi-
cal connectives. The pair (U, I) is an open interpretation of T1 in T2, denoted
(U, I) : T1 ; T2 if for every axiom ∀x1, . . . , xnA(x1, . . . , xn) of T1 we have

T2 ` ∀x1, . . . , xn((U(x1) ∧ . . . ∧ U(xn)) =⇒ I(A)(x1, . . . , xn)).(7)

A model M of the theory T2 will be called an U -model if M |= ∀xU(x). Under
the interpretation (U, I) : T1 ; T2, every U -model M of T2 gives rise, in a
natural way, to a model I(M) of T1 that has the same ground set and does not
depend on U (since the interpretation is open).

Now we are interested in the following, more specific set-up.

Definition 4. Let T1, T2 be two universal theories in languages with equality,
this time containing only predicate symbols (and no constants). Let σ1, σ2 be
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non-degenerate types in theories T1, T2 that have sizes k1, k2, respectively. The
theories T σ1

1 , T σ2
2 were introduced at the beginning of Section 2.1; recall that

Fσi [Ti] is precisely the set of finite models of T σi

i . Assume that we are given an
open interpretation (U, I) : T σ1

1 ; T σ2
2 . Then the condition (7) applied to the

formulas ci 6= cj (1 ≤ i < j ≤ k1) implies in particular that I acts injectively
on the constants c1, . . . , ck1 . Define the corresponding injective mapping η :
[k1] −→ [k2] by the property I(ci) = cη(i) (i ∈ [k1]). Denote [k2] \ η([k1]) by D,
and its cardinality k2 − k1 by d.

Let Fσ2,U [T2] be the set of all σ2-flags that correspond to U -models of the

theory T σ2
2 , and let Fσ2,U

` [T2]
def
= Fσ2,U [T2] ∩ Fσ2

` [T2]. For F ∈ Fσ2,U
` [T2] we

thus have a naturally defined σ1-flag I(F ) ∈ Fσ1

`1
[T1], and if F = (M, θ) then

I(F ) has the form (N, θη), where N is a model of T1 with V (N) = V (M). We
also let

I ′(F )
def
= I(F ) − θ(D)

be the result of removing those labelled vertices that are “not in the image” of
the interpretation I .

We now introduce the special element u that is the sum of all σ2-flags on k2+1
vertices whose only non-labelled vertex satisfies U :

u
def
=

∑ {
F

∣∣∣ F ∈ Fσ2,U
k2+1[T2]

}
,(8)

and assume that

u is not a zero divisor in Aσ2 [T2].(9)

Then we may consider the localization Aσ2
u [T2] of the algebra Aσ2 [T2] with respect

to the multiplicative system
{

u` | ` ∈ N
}

(every element of Aσ2
u [T2] has the form

u−`f with f ∈ Aσ2 [T2] and ` ≥ 0). Finally, for any flag F1 ∈ Fσ1

`1
[T1] we define

the element π(U,I)(F1) ∈ Aσ2
u [T2] as follows:

π(U,I)(F1)
def
=

1

u`1−k1
·
∑ {

F2 ∈ Fσ2,U
`1+d [T2] | I ′(F2) ≈ F1

}
.

We extend π(U,I) to a linear mapping RFσ1 [T1] −→ Aσ2
u [T2].

The following is the main result of this section. Just as the definitions above,
its proof is a little bit technical, so the reader may want to try it out on three
simpler partial cases in the following subsections.

Theorem 2.6. π(U,I)(Kσ1 [T1]) = 0, and the induced mapping

π(U,I) : Aσ1 [T1] −→ Aσ2
u [T2]

is an algebra homomorphism.

Proof. We first prove π(U,I)(Kσ1 [T1]) = 0. Assume that k1 ≤ ˜̀≤ `, and let

F̃1 ∈ Fσ1

˜̀ [T1]. Applying π(U,I) to the relation F̃1 − ∑
F1∈F

σ1
`

p(F̃1, F1)F1 (see

(4)), we need to prove in the algebra Aσ2
u [T2] that

1

u˜̀−k1

·
∑ {

F̃2 ∈ Fσ2,U
˜̀+d

[T2]
∣∣∣ I ′(F̃2) ≈ F̃1

}

=
1

u`−k1
·

∑

F1∈F
σ1
`

[T1]

p(F̃1, F1)
∑ {

F2 ∈ Fσ2,U
`+d [T2] | I ′(F2) ≈ F1

}
.
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Multiplying by u`−k1 and re-arranging the right-hand side, this amounts to prov-
ing

u`−˜̀ ·
∑ {

F̃2 ∈ Fσ2,U
˜̀+d

[T2]
∣∣∣ I ′(F̃2) ≈ F̃1

}
=

∑

F2∈F
σ2,U

`+d
[T2]

p(F̃1, I
′(F2))F2.

Now, using Lemma 2.4 c), expand the left-hand side as a linear combination of
flags F2 ∈ Fσ2

`+d[T2]. Note that (since U is open), a σ2-flag belongs to Fσ2,U [T2]

if and only if all its induced subflags on k2 +1 vertices belong to Fσ2,U
k2+1[T2]. With

this remark, it is clear that the coefficient in front of any particular F2 ∈ Fσ2

`+d[T2]
is equal to 




0, if F2 6∈ Fσ2,U
`+d [T2]∑

�
F2∈F

σ2,U

˜̀+d
[T2]

I′(
�

F2)≈
�

F1

p(F̃2, F2), if F2 ∈ Fσ2,U
`+d [T2].

By comparing coefficients, it only remains to prove the identity
∑

�
F2∈F

σ2,U

˜̀+d
[T2]

I′(
�

F2)≈
�
F1

p(F̃2, F2) = p(F̃1, I
′(F2))

for every fixed F2 ∈ Fσ2,U
`+d [T2]. And this once more follows from the fact that

both sides represent the probability of the same event described as follows. Let
F2 = (M, θ); pick uniformly at random an ˜̀-element subset V ⊆ V (M) subject
to the only condition V ∩ im(θ) = im(θ) \ θ(D). Then the promised event is

simply “I ′(F2|V ) ≈ F̃1” (and the summation variable F̃2 corresponds to the
isomorphism type of F2|im(θ)∪V ).

We now prove that π(U,I) respects multiplication. Let

F
(1)
1 ∈ Fσ1

`1
[T1], F

(2)
1 ∈ Fσ1

`2
[T1]

and ` ≥ `1 + `2 − k. We have to show (in the algebra Aσ2
u [T2]) that

π(U,I)(F
(1)
1 )π(U,I)(F

(2)
1 ) =

∑

F1∈F
σ1
`

[T1]

p(F
(1)
1 , F

(2)
1 ; F1)π

(U,I)(F1).

By Lemma 2.2 and already proven fact π(U,I)(Kσ1 [T1]) = 0, we may assume
` = `1 + `2 − k. In this case the normalizing terms 1

u`−k , 1
u`1−k , 1

u`2−k cancel out,

and we again expand both parts as linear combinations of flags F2 ∈ Fσ2,U
`+d [T2]

and compare the coefficients in front of any particular F2. This leaves us with
proving the identity

∑

F
(1)
2

∈F
σ2,U

`1+d
[T2]

I′(F
(1)
2

)≈F
(1)
1

∑

F
(2)
2

∈F
σ2,U

`2+d
[T2]

I′(F
(2)
2

)≈F
(2)
1

p(F
(1)
2 , F

(2)
2 ; F2) = p(F

(1)
1 , F

(2)
1 ; I ′(F2)).

This is true for (by now) standard reason: if F2 = (M, θ), then both sides

calculate the probability of the event “I ′(F2|V (1)) ≈ F
(1)
1 and I ′(F2|V (2)) ≈ F

(2)
1 ,

where (V (1),V (2)) is a random sunflower in V (M) with center im(θ) and petals
of sizes `1 + d, `2 + d, respectively.”
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π(U,I)(1σ1) = 1σ2 is obvious.

The proof of Theorem 2.6 is complete. a
Before continuing with concrete examples, let us note one simple sufficient

condition for (9). Given a type σ and two σ-flags F1, F2, represent them in
the form F1 = (M1, θ), F2 = (M2, θ), where V (M1) ∩ V (M2) = im(θ), and

define their amalgam F1 tσ F2 as the structure (M, θ) with V (M)
def
= V (M1) ∪

V (M2) and M |= P (v1, . . . , vr) if and only if {v1, . . . , vr} ⊆ V (Mi) and Mi |=
P (v1, . . . , vr) for some i = 1, 2. The theory T has the amalgamation property if
the amalgam of every two σ-flags is also a σ-flag.

Theorem 2.7. Assume T has the amalgamation property. Then every type σ
is non-degenerate, and Aσ is free (isomorphic to the algebra of polynomials in
countably many variables).

Proof. Considering a given σ 6= 0 as an (unlabelled) model of T , and repeat-
edly taking its amalgam with itself σt0 σt0 . . .t0 σ in type 0, we find arbitrarily
large models of T that contain an induced copy of σ. This proves that σ is a
non-degenerate.

For the second part, we associate to any σ-flag F = (M, θ) the (undirected)

graph GF with V (GF )
def
= V (M) \ im(θ) and

E(GF )
def
= {(v, w) | ∃P (x1, . . . , xr) ∈ L ∃v1, . . . , vr ∈ V (M)

(M |= P (v1, . . . , vr) ∧ {v, w} ⊆ {v1, . . . , vr})}.

Call F connected if GF is so. Choose arbitrarily F0 ∈ F |σ|
σ+1, and let F̃σ be the

set of all connected flags except for 1σ and F0. We are going to prove that Aσ

is freely generated by F̃σ .
Note first that every σ-flag F allows a unique (up to isomorphism and permu-

tations of components) decomposition F = F1 tσ . . . tσ Ft into an amalgam of
connected non-trivial flags. It is important for the following that if we have a
flag embedding F1tσ . . .tσ Ft −→ F ′

1tσ . . .tσ F ′
t′ , and F1, . . . , Ft are connected

then every Fi is completely mapped into a single F ′
j (different Fi can be mapped

into the same F ′
j).

We order all connected flags F arbitrarily, but in such a way that if F1 has fewer
vertices than F2 then F1 < F2 and such that F0 is the second least (after 1σ) flag
in this ordering. Extend this ordering to arbitrary σ-flags anti-lexicographically.
More precisely, let F = F1tσ . . .tσFt and F ′ = F ′

1tσ . . .tσF ′
t′ be decompositions

of F and F ′ into amalgams of connected flags. We find the largest connected flag

F̃ appearing in these decompositions with different multiplicities and let F < F ′

if the multiplicity of F̃ in the decomposition of F is smaller than its multiplicity
in the decomposition of F ′.

Our claim almost immediately follows from the following easily checkable prop-
erties of the ordering ≤:

1. ≤ is consistent with amalgamation, that is F1 ≤ F ′
1 and F2 ≤ F ′

2 imply
F1 tσ F2 ≤ F ′

1 tσ F ′
2.
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2. Let Fi ∈ F̃σ
`i

(
def
= F̃σ ∩Fσ

`i
) for 1 ≤ i ≤ t and ` = `1 + · · ·+ `t−|σ|(t−1)+d,

where d ≥ 0. Then

p(F1, . . . , Ft; F1 tσ . . . tσ Ft tσ F0 tσ . . . tσ F0︸ ︷︷ ︸
d times

) > 0.

Moreover:
(a) F1 tσ . . .tσ Ft tσ F0 tσ . . . tσ F0︸ ︷︷ ︸

d times

is the minimal flag F ∈ Fσ
` for which

p(F1, . . . , Ft; F ) > 0;

(b) for any other system F ′
i ∈ F̃σ

`′i
(1 ≤ i ≤ t′) with ` = `′1 + · · · + `′t −

|σ|(t′ − 1) + d′, d′ ≥ 0 such that

p(F ′
1, . . . , F ′

t ; F1 tσ . . . tσ Ft tσ F0 tσ . . . tσ F0︸ ︷︷ ︸
d times

) > 0,

we have

F ′
1 tσ . . . tσ F ′

t tσ F0 tσ . . . tσ F0︸ ︷︷ ︸
d′ times

< F1 tσ . . . tσ Ft tσ F0 tσ . . . tσ F0︸ ︷︷ ︸
d times

.

To see this, let S be the sub-algebra generated by F̃σ. Then, since F̃σ
|σ|+1 =

Fσ
|σ|+1 \ {F0}, and due to the relation

∑
F∈Fσ

|σ|+1
F = 1 (which is a special case

of (4)), we also have F0 ∈ S. For ` > |σ| + 1 and F ∈ Fσ
` , we prove F ∈ S by

induction on `. For a fixed ` we apply the reverse induction on F , and Property
2a takes care of the inductive step.

In the opposite direction, let p(zF |F ∈ F̃σ) be any non-zero polynomial and
let ` be a sufficiently large integer. Then for any monomial zF1 . . . zFt

occurring
in p with a non-zero coefficient, we form the corresponding flag F1tσ . . .tσ Fttσ

F0 tσ . . . tσ F0︸ ︷︷ ︸
d times

∈ Fσ
` , and choose the minimal Fmin of all these flags. Property

2b then implies that the expansion of p( ~F ) as a linear combination of F ∈ Fσ
`

has non-zero coefficient in front of Fmin. Therefore, p(~F ) 6= 0 in Aσ . a
This theorem can be applied e.g. to the theories of (directed and undirected)

graphs and hypergraphs, undirected graphs with ω(G) ≤ k for a fixed k, directed

graphs without ~C3 or 3-hypergraphs without a complete subgraph on 4 vertices.
Theorem 2.3 implies that if two theories T1 and T2 are isomorphic with respect
to open interpretations such that U(x) ≡ > then the corresponding algebras
Aσ are also isomorphic. This observation allows us to extend Theorem 2.7 to
more theories such as the theory of graphs with independence number ≤ k or
3-hypergraphs in which every 4 vertices contain at least one edge.

2.3.1. Algebras of constants: upward operator. In the general set-up of Defi-
nition 4 assume that T1 = T2 = T , and that I acts trivially on predicate symbols
from L. Then, denoting σ2 simply by σ, we see that σ1 = σ|η , where η was also
defined in Definition 4.

Assume now additionally that U is trivial (that is, U(x) ≡ >). Then u = 1,
the localization Aσ

u coincided with Aσ , and we get an algebra homomorphism
Aσ|η −→ Aσ that we will denote by πσ,η. In view of its extremal importance in
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Figure 3. Algebras of constants

our framework, we give its independent description and prove two extra prop-
erties (the first of them also explains why we consider the elements in the sub-
algebra im(πσ,η) as “σ|η-constants”).

As in Section 2.2, let σ be a non-degenerate type of size k, η : [k′] −→ [k]
be an injective mapping, and σ|η be the induced type of size k′. As above, let

D
def
= [k] \ im(η) and d

def
= k − k′ = |D|. For a σ-flag F = (M, θ), we let

F↓η
def
= F |η − θ(D)

(thus, the only difference between F↓η and F |η is that we not only unlabel
vertices in θ(D) but actually remove them from the flag). If F ∈ Fσ

` then

F↓η ∈ Fσ|η
`−d.

In this notation, the homomorphism πσ,η : Aσ|η −→ Aσ can be calculated as

πσ,η(F )
def
=

∑ {
F̂ ∈ Fσ

`+d

∣∣∣∣ F̂
y

η
= F

}
(F ∈ Fσ|η

` ).(10)

We will also abbreviate πσ,0 to πσ ; thus, πσ is a homomorphism from A0 to Aσ .
Example 8 (undirected graphs, see Figure 3).

π1(ρ) = P 1,b
3 +P̄ 1,c

3 +K1
3 . πE,1(e) = KE

3 +P E,c
3 , whereas πE,2(e) = KE

3 +P E,b
3 .

Theorem 2.8. a) For every f ∈ Aσ|η and g ∈ Aσ,
�
πσ,η(f)g � σ,η = f · � g � σ,η .
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In particular (g = 1),
�
πσ,η(f) � σ,η = f

�
1σ � σ,η = qσ,η(1σ) · (σ, η) · f.

b) (chain rule) If additionally η′ : [k′′] −→ [k′] is another injective map-

ping for some k′′ ≤ k′ then πσ,ηη′

(f) = πσ,η(πσ|η ,η′

(f)).

Proof. a). By linearity, we may assume that f = F1 ∈ Fσ|η
`1

and g = F2 ∈
Fσ

`2
are flags. As in similar previous proofs, we expand both parts as linear

combinations of F ∈ Aσ|η
` for sufficiently large ` and compare coefficients in

front of any particular F . This leads us to the identity
∑

�
F1∈Fσ

`1+d�
F1↓η

≈F1

∑
�
F∈Fσ

`�
F |η≈F

p(F̂1, F2; F̂ )qσ,η(F̂ ) = p(F1, F2|η ; F )qσ,η(F2)

to be proven.
The event whose probability is calculated by both sides is constructed as fol-

lows. Let F = (M, θ′) (θ′ : [k′] −→ M). Pick in V (M), uniformly at random,
a sunflower (V1,V2) with center im(θ′) and petals of sizes `1, `2, respectively.
Then pick at random an injective mapping θ : [k] −→ V2 subject to the condi-
tion θη = θ′. The desired event is “θ is a model embedding σ −→ M , F |V 1 ≈ F1

and (M |V 2
,θ) ≈ F2” (in the left-hand side, the summation variable F̂1 corre-

sponds to the isomorphism type of (M |V1∪im(θ),θ), and F̂ corresponds to the
isomorphism type of (M,θ)).

b) is obvious. a
2.3.2. Inductive arguments. As in Section 2.3.1, let T1 = T2 = T and as-

sume that I acts identically on the predicates from L. But now we consider
the opposite extreme case and assume that U represents the diagram of a single
flag F0 ∈ Fσ

|σ|+1 (and, therefore, u = F0). We will denote the resulting ho-

momorphism Aσ|η −→ Aσ
F0

by πF0,η and, again, when η = 0, abbreviate it to

πF0 : A0 −→ Aσ
F0

.
Theorem 2.8 a) indicates that the operators πσ,η do not produce any non-

trivial relations (they will be used mostly for structural purposes). This is no
longer true for their relativized versions πF0,η , and, in fact, in combination with
extremality conditions, we get a powerful tool for representing various inductive
arguments in our framework. This will be further explored in Sections 3 and 4.

Example 9 (undirected graphs). πe(K`) = K1
`+1/e`; πe(ρ̄) = P 1,c

3 /e2 etc.

2.3.3. “Genuine” interpretations. And, finally, we consider the case when
the theories T1, T2 are different (and typically in different languages), and we
also assume that U(x) ≡ >. Then we get a tool for transferring results about
combinatorial objects of one kind to objects of another kind. There are two
variants of this technique, both extensively used in the literature.

Global interpretations. By this we mean that I : T σ1
1 ; T σ2

2 is actually ob-
tained from an interpretation of T1 in T2 (in other words, the formulas I(P ) (P ∈
L1) contain only predicate symbols from L2 and no constants). Then for any non-
degenerate type σ of the theory T2 we have a uniquely defined non-degenerate
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type I(σ) of the theory T1 and a homomorphism AI(σ)[T1] −→ Aσ [T2]. For
example, the orientation-erasing interpretation I : TGraph ; TDigraph given by

I(E)(v1, v2)
def
= E(v1, v2)∨E(v2, v1) gives rise to homomorphismsAσ1 [TGraph] −→

Aσ2 [TDigraph] whenever σ2 is any orientation of σ1, and via this interpretation
we can use all theorems proved about undirected graphs in the directed case.
Another pivotal example is when T2 is an extension of T1 in the same language
and I is the identity (for example, let T1 = TGraph and let T2 be obtained by
forbidding certain induced subgraphs). In this case Aσ [T2] is a quotient algebra
of Aσ [T1], and π(U,I) is the natural homomorphism onto it.

Local interpretations. Open formulas I(P ) may actually contain new con-
stants added in the theory T σ2

2 . An excellent example of this sort is the link
construction ingeniously employed in [CaF].

Example 10. Let T1 = TGraph, and T2 = T3−Hypergraph be the theory of
3-regular hypergraphs. Let σ1 = 0, σ2 = 1, and define the interpretation I :
TGraph ; T 1

3−Hypergraph by I(E)(v1, v2) ≡ E(c1, v1, v2). Then we get the link

homomorphism A0[TGraph] −→ A1[T3−Hypergraph].

§3. Semantics. The semantic model that we consider as the “base” one
(and that will be considerably enhanced in Section 3.2) is suggested by the
fact (Lemma 2.3) that when the size of the target flag F grows to infinity, the
mappings p(·, F ) look more and more like homomorphisms from Aσ to R.

Definition 5. Let σ be a non-degenerate type. Hom(Aσ , R) is the set of
all algebra homomorphisms from Aσ to R (in particular, φ(1σ) = 1 for every
φ ∈ Hom(Aσ , R)), and Hom+(Aσ , R) consists of all those φ ∈ Hom(Aσ , R) for
which ∀F ∈ Fσ(φ(F ) ≥ 0). Note that in Aσ we have

∑

F∈Fσ
`

F = 1σ (` ≥ |σ|)(11)

(which is a special case of (4)), therefore for every φ ∈ Hom+(Aσ , R) and every
F ∈ Fσ we actually have φ(F ) ∈ [0, 1]. The semantic cone Csem(Fσ) ⊆ Aσ

consists of all those f ∈ Aσ for which ∀φ ∈ Hom+(Aσ , R) (φ(f) ≥ 0).

Csem(Fσ) represents “true statements” in our framework, and we will indeed
see in Section 3.1 that this is exactly the set of all “polynomial” relations in
extremal combinatorics that hold asymptotically (Corollary 3.4).

Remark 3. The semantic cone can be of course defined in a more general
situation, when A is an arbitrary commutative algebra and F ⊂ A is an arbitrary
subset. This is one of the main objects of study in real algebraic geometry [BCR].
When A is finitely generated, a constructive description of Csem(Fσ) is given by
the Positivstellensatz Theorem [BCR, Section 4.4]. Unfortunately, flag algebras
are not finitely generated, and this seems to be a very serious obstacle when
trying to apply the corresponding techniques to our case.

Also, as we have seen in Theorem 2.7, for many interesting theories flag al-
gebras are free and, therefore, Hom(Aσ , R) is totally trivial. It is the addi-
tional structure defined by the conditions φ(F ) ≥ 0 that makes the objects
Hom+(Aσ , R) enormously complex.
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The ordinary cone C(Fσ) consists of all linear combinations with non-negative
coefficients of elements of the form

f2F1F2 . . . Fh (f ∈ Aσ ; F1, . . . , Fh ∈ Fσ),

and w.l.o.g. we may assume here h = 1. Clearly, C(Fσ) ⊆ Csem(Fσ) so these ele-
ments represent the first non-trivial “axioms” in our calculus. And the operators
introduced in Section 2 serve as the basic “inference rules”:

Theorem 3.1. a) Let σ be a non-degenerate type of size k, and η : [k′] −→
[k] be an injective mapping. Then

� Csem(Fσ) � σ,η ⊆ Csem(Fσ|η ).

b) In the set-up of Definition 4, let f ∈ Csem(Fσ1 [T1]). Then for every
integer ` such that

u` · π(U,I)(f) ∈ RFσ2,U [T2],(12)

we have u` · π(U,I)(f) ∈ Csem(Fσ2 [T2]).
In particular, in the notation of Section 2.3.1,

πσ,η(Csem(Fσ|η )) ⊆ Csem(Fσ),(13)

and in the notation of Section 2.3.2,

∀f ∈ Csem(Fσ|η )∀` ∈ Z

(F `
0 · πF0,η(f) ∈ RFσ,F0 =⇒ F `

0 · πF0,η(f) ∈ Csem(Fσ)).

Although it is very easy to give an ad hoc proof of part a) of this theorem,
we prefer to defer it until Section 3.2 (at which point it will become completely
obvious).

Part b) is obvious already. Let φ ∈ Hom+(Aσ2 [T2], R).
Case 1. φ(u) = 0.

φ(F ) = 0 for every flag F ∈ Fσ2,U [T2] (as F ≤σ2 Cu for some C > 0). Therefore,
φ(u` · π(U,I)(f)) = 0 due to assumption (12).

Case 2. φ(u) > 0.
φ can be extended to a homomorphism φ : Aσ2

u [T2] −→ R, and φ(u` ·π(U,I)(f)) =
φ(u)`(φπ(U,I))(f) ≥ 0 since φπ(U,I) ∈ Hom+(Aσ1 [T1], R) and f ∈ Csem(Fσ1 [T1]).

Definition 6. For f, g ∈ Aσ , let f ≤σ g mean (g − f) ∈ Csem(Fσ). This
is a partial preorder on Aσ that will be sometimes denoted simply by f ≤ g
whenever σ is clear from the context.

Felix [Fel] and Podolski [Pod] independently proved that ≤σ is a partial order
at least in the theory TGraph (or, in other words, if ∀φ ∈ Hom+(Aσ , R)(φ(f) = 0)
then f = 0). Their result indicates that the set of relations (4) is complete.

3.1. Convergent sequences. The material in this subsection is borrowed,
with minimal adaptations, from [LoSz].

Hom+(Aσ , R) has been chosen as our “base” semantics mainly due to its sim-
plicity and convenience (that was already witnessed by the proof of Theorem 3.1
b)). In this section we define the “intended” semantics and prove their equiva-
lence.

Convention. For F ∈ Fσ
` and F ′ ∈ Fσ

`′ with ` > `′, we let p(F, F ′)
def
= 0.
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Definition 7. Let σ be a non-degenerate type. An infinite sequence

F1, F2, . . . , Fn, . . .

with Fn ∈ Fσ
`n

is increasing if `1 < `2 < . . . < `n < . . . . An increasing sequence
{Fn} of σ-flags is convergent if limn→∞ p(F, Fn) exists for every F ∈ Fσ .

Every flag F0 ∈ Fσ defines the point pF0 in the (infinite-dimensional) space

[0, 1]F
σ

given by pF0(F )
def
= p(F, F0), that will be also sometimes viewed as a

linear functional on RFσ. We endow [0, 1]F
σ

with product topology (aka pointwise
convergence topology).

An increasing sequence of σ-flags {Fn} is convergent if and only if the sequence
pFn is convergent in [0, 1]F

σ

.

Theorem 3.2. Every increasing sequence of σ-flags contains a convergent
subsequence.

Proof. [0, 1]F
σ

is compact. a
From now on we will often be considering Hom+(Aσ , R) as a subset in [0, 1]F

σ

.
This subset is defined by countably many polynomial equations (4), (5) in the
coordinate functions x 7→ x(F ) (F ∈ Fσ, x ∈ [0, 1]F

σ

). Therefore, it is a closed
subset, and, as such, is also compact.

Theorem 3.3 ([LoSz]). a) For every convergent sequence {Fn} of σ-flags,
limn→∞ pFn ∈ Hom+(Aσ , R).

b) Conversely, every element Hom+(Aσ , R) can be represented in the form
limn→∞ pFn for a convergent sequence {Fn} of σ-flags.

Proof. a). Every pFn satisfies the relation (4) as long as `n ≥ `. By Lemma
2.3 (and Lemma 2.2), pFn also satisfies (5) within the additive term O(1/`n).
Taking the limit, we see that limn→∞ pFn satisfies (5) exactly.

b). Let φ ∈ Hom+(Aσ , R). (11) implies that for every ` the quantities
φ(F ) (F ∈ Fσ

` ) define a probability measure on Fσ
` . Consider the product mea-

sure on
∏∞

`=|σ| Fσ
` , and choose an increasing sequence {Fn}, where Fn ∈ Fσ

n2 , at

random according to this measure (thus, Fn are independent for different n). It
is sufficient to show that P

[
limn→∞ pFn = φ

]
= 1. And, since Fσ is countable,

it is enough to prove that for every fixed F ∈ Fσ
` and every fixed ε > 0,

P[∃n0∀n ≥ n0|p(F,Fn) − φ(F )| ≤ ε] = 1.(14)

For n2 ≥ ` we have

E[p(F,Fn)] =
∑

Fn∈Fσ

n2

p(F, Fn)φ(Fn) = φ(F )

(since φ satisfies (4)). Also,

V ar[p(F,Fn)] = E
[
p(F,Fn)2

]
− φ(F 2)

=
∑

Fn∈Fσ

n2

p(F, Fn)2φ(Fn) −
∑

Fn∈Fσ

n2

p(F, F ; Fn)φ(Fn)
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(by (5)) and |p(F, Fn)2 − p(F, F ; Fn)| ≤ O(1/n2) (uniformly over all choices of
Fn) by Lemma 2.3. Thus, V ar[p(F,Fn)] ≤ O(1/n2), and (14) follows by a
standard application of Chebyshev’s inequality and Borel-Cantelli lemma. a

The following immediate corollary of Theorem 3.3 is a rigorous formalization
of why a large fragment of asymptotic extremal combinatorics can be identified
with the study of homomorphisms from Hom+(Aσ , R).

Corollary 3.4. Let F1, . . . , Fh ∈ Fσ be fixed σ-flags, D ⊆ R
h and f : D −→

R be a continuous function.
If D is closed then

∀φ ∈ Hom+(Aσ , R)((φ(F1), . . . , φ(Fh)) ∈ D

=⇒ f(φ(F1), . . . , φ(Fh)) ≥ 0)





(15)

implies

lim inf
`→∞

min{f(p(F1, F ), . . . , p(Fh, F )) | F ∈ Fσ
`

∧(p(F1, F ), . . . , p(Fh, F )) ∈ D} ≥ 0,





(16)

and if D is open then (16) implies (15). In particular, if D = R
h and f is a

polynomial, then f(F1, . . . , Fh) ∈ Csem(Fσ) if and only if

lim inf
`→∞

min
F∈Fσ

`

f(p(F1, F ), . . . , p(Fh, F )) ≥ 0.

3.2. Ensembles of random homomorphisms. Throughout this section,
σ0 will be a fixed non-degenerate type, and k0 will denote its size.

We will show that for every pair (σ, η) with σ|η = σ0 every homomorphism

φ0 ∈ Hom+(Aσ0 , R) with φ0(σ, η) > 0 gives rise, in a canonical way, to a random
homomorphism φσ,η chosen according to some (uniquely defined!) probability
measure on Borel subsets of Hom+(Aσ , R). We will also establish some natural
properties of the resulting ensemble {φσ,η} of random homomorphisms suggested
by obvious analogies with the discrete case. This becomes an indispensable tool
in our framework when it comes to “discontinuous”, “case-analysis” arguments
like “consider the set of all vertices of degree at most cn”. It is also worth
noting that, due to uniqueness, these ensembles do not provide an independent
semantics. Rather, they serve as convenient tools for extracting more useful
information from our base objects φ0 ∈ Hom+(Aσ0 , R). And it should be also
remarked that this convenience does not have straightforward analogies in the
discrete case. Say, if we know exactly the densities of all subgraphs with at most
10 vertices in a given large graph, we still do not have enough information to
determine its minimal degree. We will further elaborate on this in the concluding
Section 6.

Definition 8. Every pair (σ, η), where σ is a non-degenerate type of size
k ≥ k0 and η : [k0] −→ [k] is an injective mapping such that σ|η = σ0, will be



FLAG ALGEBRAS 25

called an extension of σ0. Assume that φ0 ∈ Hom+(Aσ0 , R) has the property2

φ0((σ, η)) > 0. Let Bσ consist of all Borel subsets of Hom+(Aσ , R). A probability
measure Pσ,η on Bσ extends φ0 if for any f ∈ Aσ ,

∫

Hom+(Aσ ,R)

φ(f)Pσ,η(dφ) =
φ0(

�
f � σ,η)

φ0(〈σ, η〉) ,(17)

where (to improve readability) we have introduced the notation

〈σ, η〉 def
=

�
1σ � σ,η = qσ,η(1σ) · (σ, η) ∈ Aσ|η

(cf. Theorem 2.5 b) and Remark 2).

Theorem 3.5. For σ0, σ, η, φ0 as in Definition 8 there exists a unique exten-
sion Pσ,η of φ0.

Before proving this theorem, we need some background from analysis, topology
and (higher) probability theory (this material will also be used elsewhere in this
section). Recall that [0, 1]F

σ

endowed with product topology is compact. This
topology is metrizable (e.g. by the metric

d(x, y)
def
=

∞∑

n=0

2−n|x(Fn) − y(Fn)| (x, y ∈ [0, 1]F
σ

),

where {F1, . . . , Fn, . . . } is an arbitrary fixed enumeration of σ-flags). Therefore,
its closed subspace Hom+(Aσ , R) is also compact and metrizable. For a topo-
logical space X , C(X) is the set of all R-valued continuous functions on X . If
X is compact then every f ∈ C(X) is automatically bounded.

Proposition 3.6 (Tietze Extension Theorem). If X is a metrizable space
and Y its closed subspace, then every function in C(Y ) can be extended to a
function in C(X).

Every element f ∈ Aσ can be alternatively viewed as an element of C(Hom+(Aσ , R))

(given by f(φ)
def
= φ(f)).

Proposition 3.7. Aσ is dense in C(Hom+(Aσ , R)) with respect to `∞ (!)
norm.

Proof. Since Hom+(Aσ , R) is compact and metrizable, this is a special case
of the Stone-Weierstrass theorem. a

Proposition 3.8. Let X be a metrizable topological space, B be the σ-algebra
of its Borel subsets, and P,Q be two probabilistic measures on B such that for
any f ∈ C(X), ∫

X

f(x)P(dx) =

∫

X

f(x)Q(dx).

Then P and Q coincide.

2Recall from Section 2.2 that by ignoring labels in σ, (σ, η) can be considered simply as a
σ0-flag.
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A sequence {Pn} of probability measures on Borel subsets of a topological
space X weakly converges to another probability measure P on the same space
if for every f ∈ C(X),

lim
n→∞

∫

X

f(x)Pn(dx) =

∫

X

f(x)P(dx).

Proposition 3.9. Let X be a metrizable space, and {Pn},P be probability
measures on the σ-algebra B of its Borel sets. Then the following are equivalent:

a) {Pn} weakly converges to P.
b) For every A ∈ B with P(∂A) = 0 (∂A is the boundary of A),

lim
n→∞

Pn(A) = P(A).

c) For every open A,

lim inf
n→∞

Pn(A) ≥ P(A).

Now we recall a theorem due to Prohorov, but in a slightly less general form
(the full version uses some relaxed notion of compactness).

Proposition 3.10 (Prohorov’s theorem). Every sequence of probability mea-
sures on the σ-algebra of Borel subsets of a metrizable separable compact space
contains a weakly convergent subsequence.

We note that both spaces [0, 1]F
σ

and Hom+(Aσ , R) satisfy all the properties
required in this proposition.

We now proceed to the proof of Theorem 3.5. Fix an extension (σ, η) of σ0,
and let k = |σ|.

Definition 9. For a σ0-flag F = (M, θ′) ∈ Fσ0

` with pF ((σ, η)) > 0 define

a (discrete) probability measure Pσ,η
F on Borel subsets of [0, 1]F

σ

as follows.
Choose, uniformly at random, a model embedding θ : σ −→ M consistent with
θ′ (that is, θη = θ′). Then, for Borel A ⊆ [0, 1]F

σ

, we let

Pσ,η
F (A)

def
= P

[
p(M,θ) ∈ A

]
.

Lemma 3.11. Let {Fn} be a convergent sequence of σ0-flags, and φ0
def
= limn→∞ pFn .

Assume that φ0((σ, η)) > 0. Then for any flag F ∈ Fσ
` ,

lim
n→∞

∫

[0,1]Fσ
x(F )Pσ,η

Fn
(dx) =

φ0(
�
F � σ,η)

φ0(〈σ, η〉) .

Proof. φ0((σ, η)) > 0 implies pFn((σ, η)) > 0 for sufficiently large n. By
Definition 9, as long as `n ≥ ` we have

∫

[0,1]Fσ
x(F )Pσ,η

Fn
(dx) = E[p(F, (M,θ))] ,(18)

where F = (M, θ) and θ is constructed as in Definition 9. On the other hand,
pFn(

�
F � σ,η) is the probability that a random injective mapping [k] −→ M con-

sistent with θ on im(η) defines a model embedding and the resulting σ-flag is
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isomorphic to F . Thus,
∫

[0,1]Fσ
x(F )Pσ,η

Fn
(dx) =

pFn(
�
F � σ,η)

pFn(〈σ, η〉) .(19)

Taking the limit proves Lemma 3.11. a
Proof of Theorem 3.5, existence.
By Theorem 3.3, there exists a convergent sequence {Fn} of σ0-flags with limn→∞ pFn =
φ0. By Proposition 3.10, we can find in it a subsequence such that the corre-
sponding measures Pσ,η

Fn
weakly converge3 to some probability measure Pσ,η on

[0, 1]F
σ

. For this limit measure, (17) readily follows from Lemma 3.11, and we
only have to check that Pσ,η is concentrated on homomorphisms; or, in other
words, that Pσ,η[Hom+(Aσ , R)] = 1.

Indeed, Hom+(Aσ , R) is an algebraic subset of [0, 1]F
σ

defined by a countable
system of equations {fi(x) = 0} resulting from (4), (5). Let, as usual, `n be the
number of vertices in Fn. Then the measure Pσ,η

Fn
is concentrated on points of the

form p �F , where F̂ ∈ Fσ
`n

. As we already remarked in the proof of Theorem 3.3,

for every fixed relation fi from the list we have the bound |fi(p �F )| ≤ O(1/`n),

uniformly over all choices of F̂ ∈ Fσ
`n

. This implies
∫

x∈[0,1]Fσ fi(x)2Pσ,η
Fn

(dx) ≤
O(1/`n)2 and thus, due to weak convergence,

∫
x∈[0,1]Fσ fi(x)2Pσ,η(dx) = 0. By

a standard argument, we consecutively get from here Pσ,η({x | |fi(x)| ≤ ε}) = 1
for every fixed ε > 0, Pσ,η({x | fi(x) = 0}) = 1 and Pσ,η(Hom+(Aσ , R)) = 1.

Uniqueness.
Assume that Qσ,η is another probability measure for which (8) holds. Then∫

Hom+(Aσ ,R)

φ(f)Pσ,η(dφ) =

∫

Hom+(Aσ ,R)

φ(f)Qσ,η(dφ) (f ∈ Aσ).(20)

By Proposition 3.7, (20) implies∫

Hom+(Aσ ,R)

f(φ)Pσ,η(dφ) =

∫

Hom+(Aσ,R)

f(φ)Qσ,η(dφ)

for any f ∈ C(Hom+(Aσ , R)) (as it can be approximated by functions from
Aσ within any fixed ε > 0 in the `∞-norm). Since Hom+(Aσ , R) is metrizable,
Pσ,η = Qσ,η follows by Proposition 3.8.

The proof of Theorem 3.5 is complete.

Remark 4. Lior Silberman (personal communication) observed that Theorem
3.5 possesses another proof using only basic facts from the functional analysis,
and without any references to Prohorov’s theorem. His argument goes along the
following lines. First, we give an ad hoc proof of Theorem 3.1 a). Like the one
based on extensions (and presented below), this proof will still use the random
variable θ from Definition 9. But now its only property needed will be the
equality of the right-hand sides in (18), (19), which is a purely combinatorial fact.
Next, Theorem 3.1 a) implies that the right-hand side of (17) defines a linear
positive bounded functional µ on the subset Aσ ⊆ C(Hom+(Aσ , R)). Endow

3In fact, we will see in Theorem 3.12 that already the original sequence {Fn} will do, but
we do not need this fact for now.
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C(Hom+(Aσ , R)) with the `∞ metric; then µ is uniformly continuous w.r.t. this
metric, and Aσ is dense in C(Hom+(Aσ , R)) by Proposition 3.7. Therefore, µ has
a unique (uniformly) continuous extension to the whole space C(Hom+(Aσ , R))
that is easily seen to be again a linear positive bounded functional. Now Theorem
3.5 becomes a particular instance of Riesz Representation Theorem.

We, however, slightly prefer our proof as it includes a little bit more explicit
way of generating the measures Pσ,η quite naturally extending the crucial The-
orem 3.3. Let us formulate the corresponding result.

Theorem 3.12. Let σ0 be a non-degenerate type, (σ, η) its extension, and
let φ0 ∈ Hom+(Aσ , R) be such that φ0(σ, η) > 0. Fix an arbitrary convergent
sequence {Fn} of σ0-flags such that limn→∞ pFn = φ0. Then {Pσ,η

Fn
} weakly

converges to the extension Pσ,η of φ0.

Proof. We have to show that for any f ∈ C([0, 1]F
σ

),

lim
n→∞

∫

[0,1]Fσ
f(x)Pσ,η

Fn
(dx) =

∫

Hom+(Aσ ,R)

f(φ)Pσ,η(dφ).

For f ∈ Aσ this follows from Definition 8 and Lemma 3.11. The generalization
to arbitrary f ∈ C([0, 1]F

σ

) is immediate by Proposition 3.7. a
From now on we again resort to combinatorial parlance, and instead of the

measures Pσ,η will be talking about “random homomorphisms” φσ,η chosen
according to these measures. Events and functions in which they will appear as
arguments will always be obviously Borel.

Definition 10. Let σ0 be a non-degenerate type of size k0 and φ ∈
Hom+(Aσ0 , R). An ensemble of random homomorphisms rooted at φ is a col-
lection of random homomorphisms {φσ,η}, where (σ, η) runs over all extensions
of σ0 with φ((σ, η)) > 0, and φσ,η itself is chosen according to some probability
measure on Bσ such that:

E[φσ,η(f)] =
φ(

�
f � σ,η)

φ(〈σ, η〉) (f ∈ Aσ).(21)

As always, in the most important case σ0 = 0, η will be everywhere dropped
from the notation.

Thus, Theorem 3.5 simply states that for every φ0 there exists a unique en-
semble of random homomorphisms rooted at φ0.

As we promised above, Theorem 3.1 a) now becomes obvious. Indeed, let
f ∈ Csem(Fσ), and φ ∈ Hom+(Aσ|η , R). If φ((σ, η)) = 0 then φ(F |η) = 0 for
every F ∈ Fσ and thus φ0(

�
f � σ,η) = 0. Otherwise, consider the extension φσ,η

of φ. Then E[φσ,η(f)] ≥ 0 (since f ∈ Csem(Fσ)), therefore φ0(
�
f � σ,η) ≥ 0 by

(21).
The ensembles become particularly useful, however, in the situations where we

encounter “discontinuous” arguments, often involving random homomorphisms
φσ,η for different extensions (σ, η). At the first sight this looks a little bit
paradoxical since Definition 10 has exactly the opposite spirit on both counts
(every member of the ensemble is connected only to the root homomorphism φ,
and only via expectations). In the next subsection we will give a few examples
(suggested by obvious analogies with the discrete case) illustrating why this is
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not really an obstacle. But before that let us indicate one simple but very useful
fact.

Theorem 3.13. Let σ0 be a non-degenerate type, {φn} a convergent sequence

in Hom+(Aσ , R), φ
def
= limn→∞ φn and {φσ,η

n }, {φσ,η} be the ensembles rooted
at {φn}, φ, respectively. Then for every extension (σ, η) with φ((σ, η)) > 0,
{φσ,η

n } weakly converges to {φσ,η}.
Proof. (cf. the proof of Theorem 3.12) We have to prove that

lim
n→∞

E
[
f(φσ,η

n )
]

= E[f(φσ,η)]

for any f ∈ C(Hom+(Aσ , R)). For f ∈ Aσ this immediately follows from (21)
and limn→∞ φn = φ. Proposition 3.7 once again reduces the case of general
f ∈ C(Hom+(Aσ , R)) to this one. a

3.3. Bootstrapping. In this subsection we present several heterogeneous
facts of “bootstrapping” nature elucidating some of the purposes for which we
introduced ensembles of random homomorphisms, as well as how to work with
them.

Let us begin with a hassle-free (and very natural) proof of the following most
basic result.

Theorem 3.14 (Cauchy-Schwarz inequality).
�
f2 � σ,η · � g2 � σ,η ≥σ|η

�
fg � 2σ,η.

In particular (g = 1σ),
�
f2 � σ,η · 〈σ, η〉 ≥σ|η

�
f � 2σ,η,(22)

which in turn implies �
f2 � σ,η ≥σ|η 0.(23)

Proof. By definition, we need to prove φ(
�
f 2 � σ,η) · φ(

�
g2 � σ,η) ≥ φ(

�
fg � σ,η)2

for every φ ∈ Hom+(Aσ|η , R). If φ((σ, η)) = 0, then both sides of this inequality
evaluate to 0. Otherwise, let φσ,η be the extension of φ. Then the inequality to
be proven becomes

E
[
φσ,η(f)2

]
· E

[
φσ,η(g)2

]
≥ E[φσ,η(f)φσ,η(g)]

2
,

and this is just an ordinary instance of Cauchy-Schwarz.
In order to get (23) from (22), we only have to recall that −C · 〈σ, η〉 ≤σ|η�

f2 � σ,η ≤σ|η C · 〈σ, η〉 for some absolute constant C > 0, which implies that in

the inequality
�
f2 � σ,η · 〈σ, η〉 ≥σ|η 0 the term 〈σ, η〉 can be removed. a

Example 11 (Goodman’s bound [Goo]). In the theory TGraph, K3+ρ = 1
3 P̄3+

2
�
e2 � 1 ≥ 2ρ2, therefore K3 ≥ ρ(2ρ − 1).

Next, let us see how to use random homomorphisms for defining things like
the minimal (or maximal) degree of a graph.

Given an arbitrary theory T , a non-degenerate type σ, φ ∈ Hom+(A0, R) such
that φ(σ) > 0 and F ∈ Fσ we let

δF (φ)
def
= max {a |P[φσ(F ) < a] = 0} = inf {a |P[φσ(F ) < a] > 0} .(24)
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Theorem 3.15. δF is an upper semi-continuous function on the open set{
φ ∈ Hom+(A0, R) | φ(σ) > 0

}
.

Proof. Let {φn} be a convergent sequence in Hom+(A0, R), and φ
def
= limn→∞ φn.

Let {φσ
n}, {φσ} be the ensembles rooted at {φn}, φ, respectively. By Theorem

3.13, {φσ
n} weakly converges to φσ. There could be at most countably many

values a such that P[φσ(F ) = a] > 0. For all other a, Proposition 3.9 implies

lim
n→∞

P
[
φσ

n(F ) < a
]

= P[φσ(F ) < a] ,

and, in particular, if P
[
φσ

n(F ) < a
]

= 0 for infinitely many n, then

P[φσ(F ) < a] = 0.

δF (φ) ≥ lim sup δF (φn) follows. a
We would like to stress that the meaning of the limit quantity δF (φ) is slightly

different from its finite analogue. Say, in the theory TGraph the inequality δe(φ) <
a should be thought of not as “there exists a vertex of degree < an” but rather as
“the density of such vertices is non-negligible”. As a consequence, we can prove
the analogue of Corollary 3.4 only in one direction (but, fortunately, it is that
one which is important). With the following restriction, however, this difference
becomes irrelevant and we can show the other direction as well.

Definition 11. A theory T is vertex uniform if it has only one model of
size one (and, therefore, also only one type of size one that will be denoted by
1). Equivalently, T is vertex uniform if for every predicate symbol P either
T ` ∀xP (x, . . . , x) or T ` ∀x(¬P (x, . . . , x)).

All theories we have mentioned so far are vertex uniform. If in Theorem
3.15 T is vertex uniform and σ = 1 then φ(σ) > 0 holds automatically and δF

is upper semi-continuous everywhere on Hom+(A0, R). In particular, it has a
global maximum.

Theorem 3.16. Let T be a vertex uniform theory and F ∈ F 1. Then

max
φ∈Hom+(A0,R)

δF (φ) = lim sup
`→∞

max
M∈F0

`

δF (M),

where the minimal density δF (M) of F in M is naturally defined as

δF (M)
def
= min

v∈V (M)
p(F, (M, v)).

Proof. We begin with proving

max
φ∈Hom+(A0,R)

δF (φ) ≥ lim sup
`→∞

max
M∈F0

`

δF (M)

(this part holds for arbitrary types σ, and we do not need vertex uniformity). Let
a < lim sup`→∞ maxM∈F0

`
δF (M); it is sufficient to show that maxφ∈Hom+(A0,R) δF (φ) >

a. Fix an increasing sequence of models such that δF (M) > a for all its mem-
bers, and find in it a convergent subsequence {Mn}. Then limn→∞ pMn = φ
for some φ ∈ Hom+(A0, R), and by Theorem 3.12 the sequence of probabil-
ity measures P1

Mn
in Definition 9 weakly converges to the extension P1 of
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φ. Since P1
Mn

[{
x ∈ [0, 1]F

1 | x(F ) < a
}]

= 0, from Proposition 3.9 we get

P1
[{

x ∈ [0, 1]F
1 | x(F ) < a

}]
= 0 which is exactly δF (φ) ≥ a.

Next we prove

max
φ∈Hom+(A0,R)

δF (φ) ≤ lim sup
`→∞

max
M∈F0

`

δF (M).

Let φ ∈ Hom+(A0, R), a0 < a1 < δF (φ), and {Mn} be an increasing sequence
of models such that {pMn} converges to φ and P1

Mn
weakly converges to P1,

where, again, P1 is the extension of φ. Then

lim
n→∞

P[p(F, (Mn,vn)) ≤ a1] = 0,

where vn is picked uniformly at random from V (Mn). In order to finish the
argument, however, we need to show more, namely that there does not exist a
single vertex v ∈ V (Mn) for which p(F, (Mn, v)) is small. Whereas we do not
know how to achieve this for larger types, when σ = 1 and T is vertex uniform,
we can apply the following trick (that will also be used in Section 4.3). Namely,

let Vn be the set of all “bad” vertices: Vn
def
= {v ∈ V (Mn) | p(F, (Mn, v)) ≤ a1 },

and let M̃n
def
= Mn − Vn. Since the density of Vn tends to 0, |p(F, (Mn, v)) −

p(F, (M̃n, v))| also tends to 0 as n −→ ∞, uniformly over all choices of v ∈
V (Mn) \ Vn. Therefore, for sufficiently large n no vertex v ∈ V (Mn) with

p(F, (Mn, v)) > a1 may satisfy p(F, (M̃n, v)) ≤ a0, and thus δF (M̃n) ≥ a0. Since

|V (M̃n)| −→ ∞, lim sup`→∞ maxM∈F0
`

δF (M) ≥ a0 follows. Since a0 < a1 <

δF (φ) were chosen arbitrarily, we are done. a

In the examples given so far we have used ensembles of random homomor-
phisms for defining/arguing about objects that are “external” w.r.t their nature.
The rest of this subsection is devoted to internal properties of ensembles.

Let the kth level of the ensemble {φσ,η} consist of all those φσ,η for which
|σ| = k. First we note that every level completely determines all extensions
belonging to lower levels.

Theorem 3.17. Let σ0 be a non-degenerate type, φ ∈ Hom+(Aσ0 , R), and
{φσ,η} be the ensemble rooted at φ. Let (σ1, η1) be an extension of σ0 such that

φ((σ1, η1)) > 0, k1
def
= |σ1|, k2 ≥ k1 and η : [k1] −→ [k2] be an arbitrary injective

mapping. Denote by Ext(σ1, η) the set of all types σ2 with |σ2| = k2 such that
σ2|η ≈ σ1. Introduce non-negative weights on this set by

w(σ2)
def
= φ(〈σ2, ηη1〉),

and choose a random type σ2 ∈ Ext(σ1, η) according to this system of weights:

P[σ2 = σ2]
def
=

w(σ2)∑
σ∈Ext(σ1,η) w(σ)

=
φ(〈σ2, ηη1〉)
φ(〈σ1, η1〉)

.

Then the random homomorphism φσ2,ηη1πσ2,η ∈ Hom+(Aσ1 , R) is equivalent
(that is, corresponds to the same probability measure) to φσ1,η1 .
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Proof. Due to uniqueness of ensembles, it suffices to show that φσ2,ηη1πσ2,η

satisfies (21), that is

E[φσ2,ηη1πσ2,η(f)] =
φ(

�
f � σ1 ,η1)

φ(〈σ1, η1〉)
(f ∈ Aσ1).

Applying the formula of total expectation to the left-hand side, we expand it as

E[φσ2,ηη1πσ2,η(f)] =
1

φ(〈σ1, η1〉)
·

∑

σ2∈Ext(σ1,η)

φ(
�
πσ2 ,η(f) � σ2,ηη1)

=
1

φ(〈σ1, η1〉)
·

∑

σ2∈Ext(σ1,η)

φ(
� 〈σ2, η〉f � σ1 ,η1).

And now we only have to note that
∑

σ2∈Ext(σ1,η)

〈σ2, η〉 = 1σ1 .

a
Finally, we show that the “inference rules” given by Theorem 3.1 are in fact

“admissible” (and for (13) we will actually prove a much stronger statement).
We will further elaborate on this topic in the concluding Section 6.

Theorem 3.18. Let σ0 be a non-degenerate type, φ ∈ Hom+(Aσ0 , R), and
{φσ,η} be the ensemble rooted at φ. Let (σ1, η1), (σ2, η2) be two extensions of σ0

of sizes k1, k2, respectively, such that φ((σi, ηi)) > 0 (i = 1, 2), and η : [k1] −→
[k2] be an injective mapping such that σ2|η = σ1 and η2 = ηη1.

a) For any f ∈ Aσ2 we have the following implication:

P[φσ2,η2(f) ≥ 0] = 1 =⇒ P[φσ1,η1(
�
f � σ2,η) ≥ 0] = 1.

b) For any Borel set A ⊆ Hom+(Aσ1 , R),

P[φσ1,η1 ∈ A] = 0 =⇒ P[(φσ2,η2πσ2,η) ∈ A] = 0.

c) For any f ∈ Aσ1 we have

P[φσ1,η1(f) ≥ 0] = 1 =⇒ P[φσ2,η2(πσ2,η(f)) ≥ 0] = 1.

Proof. a). Assume the contrary. Then for some ε, δ > 0 we have

P[φσ1,η1(
�
f � σ2 ,η) ≤ −ε] ≥ δ.

Also, there exists C > 0 such that φ(
�
f � σ2 ,η) ≤ C for every φ ∈ Hom+(Aσ1 , R).

By Proposition 3.6, there exists g̃ ∈ C(Hom+(Aσ1 , R)) such that

φ(
�
f � σ2 ,η) ≤ −ε =⇒ g̃(φ) = 2,

φ(
�
f � σ2 ,η) ≥ 0 =⇒ g̃(φ) = 0,

and by Proposition 3.7 we can approximate g̃ by some g ∈ Aσ1 with the property

φ(
�
f � σ2 ,η) ≤ −ε =⇒ φ(g) ≥ 1,

φ(
�
f � σ2 ,η) ≥ 0 =⇒ |φ(g)| ≤ (εδ/(2C))1/2.



FLAG ALGEBRAS 33

Then, denoting the normalizing coefficient φ0(〈σi, ηi〉) > 0 by αi, we get

φ(
�
g2 � f � σ2,η � σ1 ,η1) = α1 · E

[
φσ1,η1(g)2φσ1,η1(

�
f � σ2 ,η)

]

≤ α1

(
−(εδ) · E

[
φσ1,η1(g)2 |φσ1,η1(

�
f � σ2 ,η) ≤ −ε

]

+C · E
[
φσ1,η1(g)2 |φσ1,η1(

�
f � σ2 ,η) ≥ 0

])
≤ −α1εδ

2
< 0.

On the other hand,

g2 � f � σ2 ,η =
�
πσ2 ,η(g)2f � σ2,η

by Theorem 2.8 a) and, therefore,

�
g2 � f � σ2 ,η � σ1,η1 =

�
πσ2 ,η(g)2f � σ2,η2(25)

by Theorem 2.5 c). Since P[φσ2,η2(f) ≥ 0] = 1, this implies

φ(
�
g2 � f � σ2,η � σ1 ,η1) = α2 ·E

[
φσ2,η2(πσ2,η(g))2φσ2,η2(f)

]
≥ 0.

This contradiction proves part a) of the theorem.

b). By Theorem 3.17, φσ2,η2πσ2,η is equivalent to φσ1,η1 conditioned by the

event σ2 = σ2 of non-zero probability φ(〈σ2,η2〉)
φ(〈σ1,η1〉)

.

c) follows from the already proven part b) applied to A := {φ | φ(f) < 0} (it
is also possible to give a more direct proof similar to the proof of part a)). a

Remark 5. Applying Theorem 3.18 to both f and −f , we also have its sym-
metric versions:

P[φσ2,η2(f) = 0] = 1 =⇒ P[φσ1,η1(
�
f � σ2 ,η) = 0] = 1

P[φσ1,η1(f) = 0] = 1 =⇒ P[φσ2,η2(πσ2η(f)) = 0] = 1(26)

((26) can be also obtained directly from part b) of that theorem).

Corollary 3.19. Let σ0 be a non-degenerate type, φ ∈ Hom+(Aσ0 , R) and
φσ,η be the ensemble rooted at φ. Then for every f ∈ Aσ0 ,

P[φσ,η(πσ,η(f)) = φ(f)] = 1.

Proof. By applying (26) to f − φ(f). a
Hopefully, results given in this subsection illustrate that (after a little bit of

technical work) we do not lose in our framework any customary finite arguments.
Let us exploit now what we clearly gain by the transfer to the limit case.

§4. Extremal homomorphisms. In extremal combinatorics (and in many
other places) inductive arguments are often represented in the contrapositive
form by casting the spell “consider a minimal counterexample”. This is exactly
how we represent them in our framework, with the difference that now there
is no such thing as “minimal” (as there is no such concept as “the number of
vertices”). It is replaced by “the worst (or extremal) counterexample”.
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4.1. Set-up and existence of extremal homomorphisms. Our basic set-
up is quite easy (cf. Corollary 3.4), and for additional clarity we formulate it only
for the case σ = 0. Let M1, . . . , Mh ∈ F0 be fixed models, C ⊆ R

h be a closed
subset and f : C −→ R be a continuous function. We can view f as a continu-
ous function on the compact set

{
φ ∈ Hom+(A0, R) | (φ(M1), . . . , φ(Mh)) ∈ C

}

given by

f(φ)
def
= f(φ(M1), . . . , φ(Mh)),

and we want to prove that f(φ) ≥ 0 on this set. Due to compactness, f attains
its minimal value at some φ0, and we will call any such φ0 an extremal homomor-
phism. We fix this φ0 and try to use to our advantage its extremality property.
If, using this fact, we succeed in showing that φ0(f) ≥ 0, then we are done.
This simple scheme will be made more concrete in the following subsections (in
Section 4.2 φ0 must be a global minimum, and in Section 4.3 we will be content
with local ones). Here we only remark that the general machinery developed
in Section 3.2 allows us to treat in the same way more general problems. For
example, by Theorem 3.16 the Caccetta-Häggkvist conjecture is equivalent to
the inequality

∀φ ∈ Hom+(A0, R)

(
δα(φ) ≤ 1

g − 1

)

in the theory of oriented graphs with girth ≥ g. By Theorem 3.15 we know4

that δα attains its global maximum somewhere on Hom+(A0, R), and we again
can concentrate on this extremal homomorphism only.

4.2. Inductive arguments. In this section we consider only those inductive
arguments that are applied to a substantially smaller sub-model, usually defined
by a selection criterion. “Continuous” induction, in which at every single step we
change our model only “a little bit”, will correspond to the differential structure
explored in the next Section 4.3.

In the basic set-up (when C is a closed subspace in Hom+(A0, R) and f is
a continuous function on C) little can be added to what we already said in
Section 2.3.2. If φ0 is extremal and f(φ0) = a, then f(φ) ≥ a for any other
φ ∈ Hom+(A0, R), and we can translate this statement to a statement about
elements from Hom+(Aσ , R) by using the homomorphism πF0 : A0 −→ Aσ

F0
.

For more sophisticated settings (like the one with the minimal density δF )
the induction in this style also becomes straightforward as long as we know
that homomorphisms π(U,I) : Aσ1 [T1] −→ Aσ2

u [T2] interact “nicely” with the
construction of ensembles of random homomorphisms. In the rest of this section
we develop the necessary formalism.

We continue working in the set-up of Definition 4, and we will be using all its
notation.

Definition 12 (set-up continued). Fix φ2 ∈ Hom+(Aσ2 [T2], R) such that φ2(u) >
0. Then φ2 can be extended to a homomorphism from the quotient algebra

Aσ2
u [T2] to R; let φ1

def
= φ2π

(U,I) ∈ Hom+(Aσ1 [T1], R). Fix an extension (σ∗
1 , η1)

of σ1 such that φ1((σ
∗
1 , η1)) > 0, and let φ

σ∗

1 ,η1

1 be the corresponding extension

4Since σ = 1, the condition φ(σ) > 0 holds automatically.
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of φ1. Our goal is to describe φ
σ∗

1 ,η1

1 in terms of the ensemble {φσ2,η2

2 } rooted
at φ2.

Let k∗
1 be the size of σ∗

1 and k∗
2

def
= k∗

1 + (k2 − k1). Fix an injective η∗ :

[k∗
1 ] −→ [k∗

2 ] such that im(η∗) = im(η)
.∪ {k2 +1, . . . , k∗

2} and η2η = η∗η1, where

η2 : [k2] −→ [k∗
2 ] is the identical mapping: η2(i)

def
= i (i ∈ [k2]).

We now define the translation I∗ of non-logical symbols in the language
L1(c1, . . . , ck∗

1
) to the language L2(c1, . . . , ck∗

2
) as follows. On predicate sym-

bols I∗ acts in the same way as I (note that since η2 is identical, old con-
stants c1, . . . , ck2 that may appear in I(P ) retain their meaning). On constants

c1, . . . , ck∗
1
, I∗ acts accordingly to η∗η1: I∗(ci)

def
= cη∗η1(i).

Now consider the set Ext(σ∗
1 , η1) consisting of those types σ∗

2 of size k∗
2 for

which σ∗
2 |η2 ≈ σ2, (σ∗

2 , η2) ∈ Fσ2,U [T2] and η∗ : σ∗
1 −→ σ∗

2 is a model embed-
ding (the last two conditions together are equivalent to the fact that (U, I∗) :

T
σ∗
1

1 ; T
σ∗
2

2 is an open interpretation). Note that the element u∗ ∈ Aσ∗
2 [T2] cor-

responding to this interpretation is computed as u∗ = πσ∗
2 ,η2(u); in particular,

by Corollary 3.19 we have φ
σ∗

2 ,η2

2 (u∗) = φ2(u) > 0 with probability 1.

The following is analogous to Theorem 3.17 (and in fact they could be com-
bined into one statement by allowing k∗

2 in Definition 12 to be any integer
≥ k∗

1 + (k2 − k1)).

Theorem 4.1. φ
σ∗

1 ,η1

1 is equivalent to the random homomorphism constructed
by the following process. Introduce first non-negative weights on the set

Ext(σ∗
1 , η1) by letting w(σ∗

2)
def
= φ2(〈σ∗

2 , η2〉). Next, choose σ∗

2 ∈ Ext(σ∗
1 , η1)

at random according to this system of weights:

P
[
σ∗

2 = σ∗
2

] def
=

w(σ∗
2)∑

σ∗
2∈Ext(σ∗

1 ,η1) w(σ∗
2 )

=
φ2(〈σ∗

2 , η2〉)
φ1(〈σ∗

1 , η1〉)
.

Finally, output φ
σ∗

2 ,η2

2 πU,I∗

.

Proof. Let ψσ∗

1 ,η1 be the random homomorphism constructed by the process
described in the statement. Due to uniqueness of ensembles, we only have to
show that for every F ∈ Fσ∗

1 [T1] we have

E
[
ψσ∗

1 ,η1(F )
]

=
φ1(

�
F � σ∗

1 ,η1)

φ1(〈σ∗
1 , η1〉)

.

And after expanding definitions this amounts to yet another standard calcula-
tion. a

4.3. Differential methods. If the goal function f is smooth enough, then
the self-suggesting way to utilize the extremality condition is by using differential
(or variational) techniques. This is perhaps the most rewarding outcome of all
the technical work we have to do.

Let σ be a non-degenerate type and ` ≥ |σ|. We introduce the auxiliary linear
mapping µσ

` : RF0
` −→ RFσ

` by its action on models with ` vertices as follows:

µσ
` (M)

def
=

∑
{F ∈ Fσ

` | F |0 ≈ M } .
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Note that although µσ
` differs from πσ only in that it uses F |η instead of F↓η ,

µσ
` does not possess any of its nice properties (in fact, it does not even satisfy

µσ(K0) ⊆ Kσ). This is why we must explicitly indicate the subscript ` here.
Our first operator corresponds to vertex deletion in the finite world. We

assume for simplicity that T is vertex uniform (that is, has only one singleton
model), and define a linear mapping ∂1 : RF0 −→ RF1 by its action on models
as

∂1M
def
= `(π1(M) − µ1(M)) (M ∈ M`).

Example 12. In the theory TGraph, ∂1K` = `(π1(K`) − K1
` ).

Lemma 4.2. a) Let M ∈ M`, L ≥ ` + 1, N ∈ ML and v ∈ V (N). Then

p(M, N − v) = p(M, N) +
1

L
p(N,v)(∂1M).

b) ∂1(K0) ⊆ K1 and, therefore, ∂1 defines a linear mapping from A0 to A1.
c)

�
∂1f � 1 = 0 for every f ∈ A0.

Proof. a). Pick uniformly at random an `-subset V of V (N). By the formula
of total probability,

p(M, N) =
`

L
P[N |V ≈ M |v ∈ V ] +

(
1 − `

L

)
P[N |V ≈ M | v 6∈ V ] .

Now we only have to observe that P[NV ≈ M | v ∈ V ] = p(N,v)(µ1
` (M)), whereas

P[N |V ≈ M | v 6∈ V ] = p(N,v)(π1(M)) = p(M, N − v).

b). If f = 0 is a relation of the form (4) and L is sufficiently large, then by
the already proven part a), p(N,v)(∂1f) = L · (pN−v(f) − pN(f)) = 0. Since
(N, v) ∈ F1

L is arbitrary, this implies ∂1f = 0.

c). For a model M ∈ M`,
�
µ1(M) � 1 =

�
π1(M) � 1 = M ; thus,

�
∂1M � 1 = 0.

This is extended to arbitrary f ∈ A0 by linearity. a
Assume now that ~M = (M1, . . . , Mh) ∈ M are fixed models, a ∈ R

h and
f ∈ C1(U), where U ⊆ R

h is an open neighbourhood of a (and C1(U) is the
class of continuously differentiable functions on U). We let

Grad ~M,a(f)
def
=

h∑

i=1

∂f

∂xi

∣∣∣∣
x=a

· Mi ∈ A0

(thus, Grad ~M,a(f) is the inner product of the ordinary gradient ∇f(a) with the

vector 〈M1, . . . , Mh〉).
Theorem 4.3. Let ~M = (M1, . . . , Mh) ∈ M be fixed models of the theory T ,

φ0 ∈ Hom+(A0, R), and f ∈ C1(U), where U is an open neighbourhood of the

point a
def
= (φ0(M1), . . . , φ0(Mh)) ∈ R

h. Assume that for any φ ∈ Hom+(A0, R)
such that (φ(M1), . . . , φ(Mh)) ∈ U we have

f(φ(M1), . . . , φ(Mh)) ≥ f(a).

Then for the extension φ1
0 of φ0,

P
[
φ1

0(∂1Grad ~M,a(f)) = 0
]

= 1(27)

holds.
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Proof. Lemma 4.2 c) implies that

E
[
φ1

0(∂1Grad ~M,a(f))
]

= φ0(
�
∂1Grad ~M,a(f) � 1) = 0.

Therefore, it suffices to prove (27) only in one direction, and we elect to prove
that

P
[
φ1

0(∂1Grad ~M,a(f)) ≥ 0
]

= 1.(28)

Fix an increasing sequence {Nn} of models such that limn→∞ pNn = φ0. Then
by Theorem 3.12 the corresponding sequence of probability measures P1

Nn
weakly

converges to the extension P1 of φ0 (recall that P1
Nn

corresponds to the ran-

dom element p(Nn,vn) ∈ [0, 1]F
1

, where vn is chosen uniformly at random from
V (Nn)).

Assume now that (28) fails, that is P
[
φ1

0(∂1Grad ~M,a(f)) < 0
]

> 0. Then for

some ε > 0 we have

P
[
φ1

0(∂1Grad ~M,a(f)) < −ε
]

> 0,

and since the set
{

φ ∈ Hom+(A1, R)
∣∣∣ φ(∂1Grad ~M,a) < −ε

}
is open, we can

apply Theorem 3.9 and conclude that

P
[
p(Nn,vn)(∂1Grad ~M,a(f)) < −ε

]
≥ ε′

for some absolute constants ε, ε′ > 0, and for all sufficiently large n.
Fix now a sufficiently small positive constant δ < ε′ (to be specified later in

the course of the proof). Let `n
def
= |V (Nn)|, mn

def
= bδ`nc, and choose arbitrarily

an mn-subset Vn ⊆ V (Nn) such that

∀v ∈ Vn

(
p(Nn,v)(∂1Grad ~M,a(f)) < −ε

)
.(29)

Let Ñn
def
= Nn − Vn. We convert Nn to Ñn by removing vertices in Vn one by

one. That is, let Vn = {v1, . . . , vmn
} be an arbitrary enumeration and Nn,i

def
=

Nn − {v1, . . . , vi} (0 ≤ i ≤ mn). Let M be any fixed model and `
def
= |V (M)|.

We use Lemma 4.2 a) to calculate the difference p
�
Nn(M) − pNn(M) as follows:

p
�
Nn(M) − pNn(M) =

mn∑

i=1

p(M, Nn,i) − p(M, Nn,i−1)

=

mn∑

i=1

1

`n − i + 1
p(Nn,i−1,vi)(∂1M).





(30)

Next, for every fixed i we want to approximate 1
`n−i+1p(Nn,i−1,vi)(∂1M) by

1
`n

p(Nn,vi)(∂1M). For a random `-subset V ⊆ V (Nn) picked uniformly under
the condition vi ∈ V the probability that V will also contain at least one of
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the vertices v1, . . . , vi−1 is O(δ) (remember that the model M is fixed, so the
multiplicative constant assumed here may also depend on `). Therefore,∣∣∣p(Nn,i−1,vi)(∂1M) − p(Nn,vi)(∂1M)

∣∣∣ ≤ O(δ).(31)

Since also 1
`n−i+1 ≤ O(1/`n) and

∣∣∣ 1
`n−i+1 − 1

`n

∣∣∣ ≤ O(δ/`n), we get
∣∣∣∣

1

`n − i + 1
p(Nn,i−1,vi)(∂1M) − 1

`n
p(Nn,vi)(∂1M)

∣∣∣∣ ≤ O(δ/`n),

which, along with (30), implies the bound

p
�
Nn(M) − pNn(M) =

1

`n

mn∑

i=1

p(Nn,vi)(∂1M) ± O(δ2).(32)

Applying this to M = M1, . . . , Mh, taking the inner product with ∇f(a) and
recalling (29), we finally get

p
�
Nn(Grad ~M,a(f)) − pNn(Grad ~M,a(f)) = −εδ ± O(δ2) ≤ − εδ

2
(33)

provided δ is small enough.

By compactness, we can choose an increasing convergent subsequence in {Ñn},
and w.l.o.g. let us assume that {Ñn} itself converges. Let φ

def
= limn→∞ p

�
Nn .

Taking limit in (32), we also see that |φ(M)−φ0(M)| ≤ O(δ) for every fixed M .
In particular, if δ is small enough then (φ(M1), . . . , φ(Mh)) ∈ U . Taking limit
in (33),

φ(Grad ~M,a(f)) − φ0(Grad ~M,a(f)) ≤ − εδ

2
.

But since f is a C1-function, we have

f(φ(M1), . . . , φ(Mh)) ≤ f(a) +

h∑

i=1

∂f

∂xi

∣∣∣∣
x=a

(φ(Mi) − φ0(Mi)) + o(δ)

= f(a) + (φ(Grad ~M,a(f)) − φ0(Grad ~M,a(f))) + o(δ) < f(a)

provided the constant δ is small enough. This contradiction proves the theorem.
a

Our second “variation principle” corresponds to edge-deletion, and certainly
not all interesting theories admit this (or similar) operation. Although it should
be straightforward to formulate general conditions on the theory T under which
this principle works, we prefer to avoid here excessive generality and formulate
it for undirected graphs only. Accordingly, we will be denoting models by more
customary letters G, H rather than M, N ; recall also that there are exactly two
types of size 2: E (corresponding to an edge) and Ē (non-edge).

Denote by Fill : AĒ −→ AE the natural isomorphism defined by adding an
edge between the two distinguished vertices, and for a graph G ∈ M`, let

∂EG
def
=

`(` − 1)

2
(Fill(µĒ

` (G)) − µE
` (G)).

∂E is extended to a linear mapping from RF0 to RFE by linearity.

Example 13. ∂EK` = − `(`−1)
2 KE

` .



FLAG ALGEBRAS 39

Lemma 4.4. a) Let H ∈ M`, L ≥ `, G ∈ F0
L and (v1, v2) ∈ E(G). Then

p(H, G − (v1, v2)) = p(H, G) +
2

L(L− 1)
p(G,v1,v2)(∂EH).

b) ∂E(K0) ⊆ KE , and, therefore, ∂E defines a linear mapping from A0 to
AE.

Proof. a). Again, pick uniformly at random an `-subset V of V (G). Then

p(H, G) =
`(` − 1)

L(L − 1)
· P[G|V ≈ H | {v1, v2} ⊆ V ]

+

(
1 − `(` − 1)

L(L− 1)

)
P[G|V ≈ H | {v1, v2} 6⊆ V ] ,

p(H, G − (v1, v2)) =
`(` − 1)

L(L − 1)
· P[ (G|V − (v1, v2)) ≈ H | {v1, v2} ⊆ V ]

+

(
1 − `(` − 1)

L(L− 1)

)
P[G|V ≈ H | {v1, v2} 6⊆ V ]

(note that {v1, v2} 6⊆ V implies that GV and G|V − (v1, v2) are the same),

p(G,v1,v2)(∂EH) =
`(` − 1)

2
· (P[G|V − (v1, v2) ≈ H | {v1, v2} ⊆ V ]

−P[G|V ≈ H | {v1, v2} ⊆ V ]).

b) is proved exactly as part b) in Lemma 4.2. a
Theorem 4.5. Let G1, . . . , Gh be fixed undirected graphs, φ0 ∈ Hom+(A0, R)

be such that φ0(ρ) > 0, and f ∈ C1(U), where U is an open neighbourhood of the

point a
def
= (φ0(G1), . . . , φ0(Gh)) ∈ R

h. Assume that for any φ ∈ Hom+(A0, R)
such that (φ(G1), . . . , φ(Gh)) ∈ U we have

f(φ(G1), . . . , φ(Gh)) ≥ f(a).

Then for the extension φE
0 of φ0,

P
[
φE

0 (∂EGrad ~G,a(f)) ≥ 0
]

= 1(34)

holds.

Proof. We again fix an increasing sequence of graphs Hn, |V (Hn)| = `n

converging to φ0. By the same argument as in the proof of Theorem 4.3, we only
have to show that

P
[
p(Hn,en)(∂EGrad ~G,a(f)) ≤ −ε

]
≥ ε′

leads to contradiction. Here ε, ε′ are absolute constants, n is sufficiently large,
and en is a random edge of Hn (note that since ∂EGrad ~G,a(f) ∈ AE is invariant

under the automorphism of AE permuting the two distinguished vertices, the
quantity p(Hn,en)(∂EGrad ~G,a(f)) does not depend on the orientation of the edge

en in the E-flag (Hn, en)). Let

Bad
def
=

{
en ∈ E(Hn)

∣∣∣ p(Hn,en)(∂EGrad ~G,a(f)) ≤ −ε
}

.
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Now comes a slightly tricky point. As in the proof of Theorem 4.3, we want
to choose in Bad a subset of appropriate density and delete these edges from Gn

one by one. But now we have to be more careful and make sure that we do not
choose too many edges adjacent to any particular vertex (since otherwise the
analogue of (31) may fail). For this we need the following simple trick.

Pick, uniformly at random, a subset V of vertices of size bδ1/2`n + 1c, where,
again, δ > 0 is a sufficiently small constant to be specified later. Let Bad|V be
the set of all edges in Bad with both endpoints in V ; then |Bad|V | ≤ δ`2

n (with
probability 1). On the other hand, by an averaging argument, E[|Bad|V |] ≥
ε′ · δ`2n

2 . Fix an arbitrary bδ1/2`n + 1c-subset Vn ⊆ V (Hn) for which

ε′ · δ`2
n

2
≤ |Bad|Vn

| ≤ δ`2
n,

and let mn
def
= |Bad|Vn

|.
Now we begin eliminating the edges from Bad|Vn

= {e1, . . . , emn
} one by one

in the same way as in the proof of Theorem 4.3; let

Hn,0 = Hn, Hn,1, . . . , Hn,mn
= H̃n

be the corresponding sequence of graphs. Similarly to (30), from Theorem 4.4
a) we get

p
�
Hn(G) − pHn(G) =

2

`n(`n − 1)
·

mn∑

i=1

p(Gn,i−1,ei)(∂EG)

(G ∈ M` any fixed graph). A random `-subset V ⊆ V (Hn) picked uniformly at
random under the condition that it contains both endpoints of ei may contain
any of the edges e1, . . . , ei−1 only if it contains at least one more vertex from Vn.
This observation gives us the analogue of (31), except that O(δ) in the right-hand
side gets replaced by O(δ1/2). Then the upper bound mn ≤ δ`2

n implies

p
�
Hn(G) − pHn(G) =

2

`n(`n − 1)
·

mn∑

i=1

p(Gn,ei)(∂EG) ± O(δ3/2).

The rest of the proof is the same as in Theorem 4.3. a
Finally, we give a “light” version of these variational principles that does not

refer to random homomorphisms at all.

Corollary 4.6. Let T be a vertex uniform theory, ~M = (M1, . . . , Mh) ∈
M be its fixed models, φ0 ∈ Hom+(A0, R), and f ∈ C1(U), where U is an

open neighbourhood of the point a
def
= (φ0(M1), . . . , φ0(Mh)) ∈ R

h. Assume that
for any other φ ∈ Hom+(A0, R) such that (φ(M1), . . . , φ(Mh)) ∈ U we have
f(φ(M1), . . . , φ(Mh)) ≥ f(a).

a) For every g ∈ A1,

φ0(
�
(∂1Grad ~M,a)g � 1) = 0.

b) Assume further that T = TGraph. Then for any g ∈ Csem(AE) (and, in
particular, for any E-flag) we have

φ0(
�
(∂EGrad ~M,a)g � E) ≥ 0.
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Proof. Immediate from Theorems 4.3, 4.5 and Definition 8. a

§5. Triangle density. In this section we are exclusively working in the the-
ory TGraph.

For a fixed ρ ∈ [0, 1], what is (asymptotically) the minimal possible density
g3(ρ) of triangles in a graph with edge density ρ? More precisely, we want to
compute the function g3(x) given by

g3(x)
def
= lim inf

n→∞
min {p(K3, Gn) | Gn ∈ Mn ∧ p(ρ, Gn) ≥ x} .

g3(x) is clearly monotone in x, and (by a simple edge-adding argument), it is
also continuous. Then by Corollary 3.4 it can be alternatively represented as

g3(x) = min
{
φ(K3)

∣∣ φ ∈ Hom+(A0, R) ∧ φ(ρ) ≥ x
}

.

Next, g3(x) = 0 if x ≤ 1/2 and the asymptotic version of Mantel’s theorem,
combined with a general result from [ErSi], implies that g3(x) > 0 as long as
x > 1/2.

It is easy to see that for x ∈
[
1 − 1

t , 1 − 1
t+1

]
(t ≥ 2 an integer) we have

g3(x) ≤
(t − 1)

(
t − 2

√
t(t − x(t + 1))

) (
t +

√
t(t − x(t + 1))

)2

t2(t + 1)2
.(35)

The homomorphism witnessing this inequality is the limit of the convergent
sequence of (t+1)-partite graphs in which t parts are (roughly) equal and larger
than the remaining part (and the edge density is roughly x). The question of
whether this bound is tight turned out to be notoriously difficult. Goodman
[Goo] proved that g3(ρ) ≥ ρ(2ρ− 1) (see Example 11). This in particular shows
that (35) is tight at the critical values x = 1 − 1

t , t = 2, 3, . . . Further partial
results were given in [Bol, LoSi, Fish]. In particular, Fisher [Fish] proved that
the bound (35) is tight for t = 2:

g3(x) =
(1 −

√
4 − 6x)(2 +

√
4 − 6x)2

18
, 1/2 ≤ x ≤ 2/3.(36)

In this section we give another proof of (36). It was found independently of
[Fish], and, as far as we can see, it is totally different from the one given there.

Denote the right-hand side of (36) by g(x). In the setting of Section 4, let h :=
2, G1 := ρ, G2 := K3, C :=

{
(x1, x2) ∈ R

2 | 1/2 ≤ x1 ≤ 2/3
}

and f(x1, x2) :=
x2−g(x1) so that f(φ) = φ(K3)−g(φ(ρ)). f attains its minimum on the compact
space

{
φ ∈ Hom+(A0, R) | 1/2 ≤ φ(ρ) ≤ 2/3

}
, and we fix any such minimum φ0.

It suffices to prove that φ0(K3) ≥ g(φ0(ρ)). If φ0(ρ) = 1/2 or φ0(ρ) = 2/3, we are
done by Goodman’s bound. If 1/2 < φ0(ρ) < 2/3, we apply Corollary 4.6 (with
U :=

{
(x1, x2) ∈ R

2 | 1/2 < x1 < 2/3
}
), where we choose g := e for part a) and

g := P̄ E
3 for part b). Denoting φ0(ρ) by a and φ0(K3) by b, we consecutively
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compute:

Gradρ,K3 ,a,b(f) = K3 − g′(a)ρ

∂1Gradρ,K3,a,b(f) = (3π1(K3) − 2g′(a)π1(ρ)) − (3K1
3 − 2g′(a)e)

∂EGradρ,K3 ,a,b(f) = g′(a) · 1E − 3KE
3

φ0(3
�
eK1

3 � 1 − 2g′(a)
�
e2 � 1) = a(3b− 2ag′(a))(37)

φ0(
�
P̄ E

3 KE
3 � E) ≤ 1

9
g′(a)φ0(P̄3).(38)

We relate the constraints (37) and (38) with the help of the following easy
lemma (that does not use extremality).

Lemma 5.1. 3
�
eK1

3 � 1 + 3
�
P̄ E

3 KE
3 � E ≥ 2K3.

Proof of Lemma 5.1. Both sides of this inequality can be evaluated as lin-
ear combinations of those graphs in M4 that contain at least one triangle. There
are only four such graphs, and the lemma is easily verified by computing coeffi-
cients in front of all of them. a

Applying φ0 to the inequality of Lemma 5.1, comparing the result with (37),
(38) and re-grouping terms, we get

g′(a)φ0(
1

3
P̄3 + 2

�
e2 � 1) + b(3a − 2) ≥ 2g′(a)a2.

Next, 1
3 P̄3 + 2

�
e2 � 1 = K3 + ρ. This finally gives us

b(g′(a) + 3a − 2) ≥ a(2a − 1)g′(a).

But g′(x) ≥ 1 on [1/2, 2/3], which implies g′(a) + 3a− 2 > 0, and also g(x) is
a solution to the differential equation

g(x)(g′(x) + 3x − 2) = x(2x − 1)g′(x).

Altogether this implies b ≥ g(a) and completes our proof.

§6. Conclusion. As we stated in Introduction, at the moment the formalism
developed in this paper is considered by us mostly as a practical tool. Accord-
ingly, the most interesting question is to which extent this calculus will turn out
to be useful for solving concrete open problems in asymptotic extremal combi-
natorics.

However, this paper certainly raises at least one extremely interesting general
issue. Typical proofs in extremal combinatorics use only finitely many flags of
finitely many types. Do there exist results (or conjectures) in this area that
are in principle independent of such finite methods? Although (for the reasons
discussed below) we can not make this question completely precise, our formalism
allows us to come rather close to this.

Recall that Aσ
` is the linear subspace in Aσ spanned by Fσ

` . Given a type
σ and ` ≥ |σ|, we can straightforwardly define the notion of a partial (σ, `)-
homomorphism as a linear functional φ on Aσ

` such that φ(F ) ≥ 0 for every
flag F ∈ Fσ

` and also φ(f1f2) = φ(f1)φ(f2) whenever f1 ∈ Aσ
`1

, f2 ∈ Aσ
`2

with

`1 + `2 − |σ| ≤ `. Then, given a partial (0, `)-homomorphism φ : A0
` −→ R,
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for every type σ with |σ| ≤ ` and φ(σ) > 0 we can define its partial (σ, `)-
extension as a probability measure on the set of all partial (σ, `)-homomorphisms
φσ : Aσ

` −→ R such that (17) holds for all f ∈ Aσ
` . Now we can also define

ensembles of random partial `-homomorphisms etc. Note, however, that the
proof of Theorem 3.5 (as well as many other keystone results in Section 3.2)
completely breaks down for partial homomorphisms and their extensions. In
fact, it is easy to see that for partial (0, `)-homomorphisms ensembles may not
exist, or they may exist but not be unique.

The first (well-defined) approximation to the question we are trying to capture
is this:

Question 1. Assume that f ∈ Aσ
` and f ≥σ 0. Does there exist L ≥ ` such

that φ(f) ≥ 0 for any partial (0, L)-homomorphism φ for which there exists (at
least one) ensemble of partial L-homomorphisms rooted at φ?

This question makes more sense (and may turn out more difficult) than it may
appear on the first glance. The reason is that this framework already captures
all arguments solely based on Cauchy-Schwarz. More precisely, if f ∈ Aσ

`1
and

F ∈ Fσ
`2

satisfy 2`1 + `2−2|σ| ≤ ` then every (0, `)-partial homomorphism φ can

be evaluated at
�
f2F � σ and, clearly,

φ(
�
f2F � σ) ≥ 0(39)

if φ admits at least one partial (σ, `)-extension. Thus, a weaker5 version of
Question 1 is this:

Question 0. Does there always exist L ≥ ` such that φ(f) ≥ 0 for every
partial (0, L)-homomorphism satisfying all conditions of the form (39)?

By analogy with research on algebraic proof systems (see e.g. [GHP]), it is also
very natural to consider the dynamic version of this question. Define the weak
Cauchy-Schwarz calculus that operates with statements of the form f ≥σ 0 (f ∈
Aσ), has axioms F ≥σ 0 (F ∈ Fσ), f2 ≥σ 0 (f ∈ Aσ) and inference rules

f ≥σ 0 g ≥σ 0

αf + βg ≥σ 0
(α, β ≥ 0),

f ≥σ 0 g ≥σ 0

fg ≥σ 0
,

f ≥σ 0�
f � σ,η ≥σ|η 0

,

f ≥σ|η 0

πσ,η(f) ≥σ 0
.

It is not clear whether this calculus is powerful enough to prove Theorem 3.14
(whence the adjective “weak”). Let the Cauchy-Schwarz calculus be obtained
from its weak version by explicitly appending all instances of Theorem 3.14 as
new axioms.

5While comparing questions in this section in their strength, we always assume a negative
answer to all of them.



44 ALEXANDER A. RAZBOROV

The following looks6 stronger than Question 0:

Question 2. Is (weak) Cauchy-Schwarz calculus complete?

From the perspective of partial homomorphisms, proofs of the theorems 3.17,
3.18 are also absolutely non-constructive and completely break down. If we want
to incorporate these arguments into our framework, we must do so explicitly.
Namely, let us call an ensemble of random partial `-homomorphisms regular if it
satisfies Theorem 3.177 and Theorem 3.18 a) (for f ∈ Aσ2

` ). Then the following
is stronger than both Question 1 and Question 2:

Question 3. Same as Question 1, with the difference that the ensemble is
additionally required to be regular.

We, however, do not know if the answer to Question 3 is affirmative even
for the result about triangle density from Section 5. We could keep defining
more and more restrictions on ensembles of random partial L-homomorphisms,
Theorems 4.3, 4.5 being the first candidates. But we feel that this would become
more and more arbitrary, so instead we would like to finish with the following
(which, unlike Questions 0-3 above is not well-defined).

Question 4. Is there any set of reasonable and efficient conditions on ensem-
bles of random partial `-homomorphisms such that:

Soundness: Every ensemble that is a projection of an ensemble of total ho-
momorphisms satisfies these conditions.

Completeness: If f ∈ A0
` and f ≥ 0 then there exists L ≥ ` such that

φ(f) ≥ 0 for every φ ∈ Hom+(A0, R) for which there exists at least one
ensemble of random partial homomorphisms rooted at φ and satisfying
these conditions.

Of course, it would be even better to answer the following:

Question 5. Completely describe, in reasonable and efficient terms, those
ensembles of random partial homomorphisms that are projections of ensembles
of total homomorphisms.

This, however, looks at the moment completely hopeless.

§7. Added in proof. In On the Minimal Density of Triangles in Graphs
(manuscript available at http://www.mi.ras.ru/~razborov/triangles.pdf)
we have proved that the bound (35) is tight for any t, thereby completely solving
the problem of determining the minimal possible density of triangles in a graph
with given edge density. The proof builds upon the easy case t = 2 from Section 5,
and the novelty basically consists in a much more refined analysis of the extremal
homomorphism φ0. This analysis essentially uses both the homomorphism πF0

from Section 2.3.2, as well as ensembles of random homomorphisms (Section
3.2).

6Formally they seem to be incomparable, since in Question 0 we can also take advantage of
the fact that φ itself is partial (0, L)-homomorphism.

7More precisely, in its notation we require the equivalence of restrictions of �
	 2 � �
� 1π 	 2,η

and ��	 1 � � 1 onto Aσ1
`+k1−k2

.



FLAG ALGEBRAS 45

Acknowledgement. I am immensely grateful to Peter Winkler and Lior Sil-
berman for carefully reading the paper and proposing many corrections greatly
improving both its English and general readability. I am also thankful to Avi
Wigderson and an anonymous referee for useful suggestions.

REFERENCES

[BCR] J. Bochnak, M. Coste, and M. Roy, Real algebraic geometry, Springer-Verlag,
1998.

[Bol] B. Bollobás, Relations between sets of complete subgraphs, Proc. Fifth British

Comb. Conference, 1975, pp. 79–84.
[Bon] J. A. Bondy, Counting subgraphs: A new approach to the Caccetta-Häggkvist con-
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