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Propositional proof complexity is an area of study that has seen a rapid
development over the last decade. It plays as important a role in the theory
of feasible proofs as the role played by the complexity of Boolean circuits in
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the theory of efficient computations. Although the original motivations for
this study were in many cases different (and originated from proof-theoretical
questions about first-order theories), it turns out after all that the complexity
of propositional proofs revolves around the following basic question. What
can be proved (in the ordinary mathematical sense!) by a prover whose
computational abilities are limited to small circuits from some circuit class
C (see e.g. [BP98])? Thus, propositional proof complexity is in a sense
complementary to the (non-uniform) computational complexity; moreover,
there exist extremely rich and productive relations between the two areas
([Raz96, BP98]).

The propositional proof systems which recently received much attention
are so-called algebraic proof systems simulating the most basic algebraic
facts and constructions. The idea to use algebraic machinery in the proof
complexity originally appeared in [BIKPP94] who defined the Nullstellensatz
refutation system motivated by Hilbert’s Nullstellensatz. [CEI96] introduced
an even more natural algebraic proof system that directly simulates the pro-
cess of generating an ideal from a finite set of generators, called Polynomial
Calculus (PC for short). This system is a potential candidate for automatic
theorem provers [CEI96]; thus it seems interesting and important to prove
lower bounds for Polynomial Calculus.

Known approaches to the lower bounds on the degree of Polynomial Cal-
culus use the idea of locality (discussed in Section 2.3), with one notable
exception [Kra97]. First papers [Raz98, IPS99] devoted to Pigeonhole prin-
ciple involved also rather technical and specific calculations (pigeon dance).

Recently [Gri98] came up with a simple idea how to avoid completely such
calculations and prove 2(n) degree lower bounds by using Tseitin tautologies.
The original proof in [Gri98] embraced only Nullstellensatz proof system,
then it was generalized to PC in [BGIP99] and further developed in [BI99,
Gri99, ABSRWO00b]. One drawback of this idea is that it essentially uses
the representation with binomial ideals and can be applied only to binomial
functions as the base functions. But there are very few binomials; if we
insist on Boolean relations 22 — z = 0, we have only PARITY functions,
and in characteristic 2 there are no binomials at all (this restriction can be
sometimes circumvented by using low degree reductions [BGIP99] but not
always, see for example the case of random k-CNF in characteristic 2 in
Section 4.3 below).

This situation was in a sharp contrast with the situation for Resolution



where [ABSRWO00b] gave a hardness criterion (robustness) satisfied by a ran-
dom function and showed that the induced tautologies are hard provided the
underlying structure has sufficient expansion. The ideology there is similar
to that of Natural Proofs in [RR97]: every lower bound proof which works
for a single function must also work for a large class of functions specified by
a constructive combinatorial property.

In this paper we fill this gap by giving a hardness criterion (immunity)
and proving linear lower bounds for PC refutations of wide class of tautolo-
gies based on immune functions. It is worth noting that over fields of positive
characteristic p immunity coincides, up to negation, with the notion of weak
MO D,-degree introduced (for not necessarily prime p) in [Gre00] as an inte-
gral part of attempt to understand the computational power of multi-linear
polynomials.

As some applications of our results, we consider mod, Tseitin tautologies
from [BGIP99] in the Boolean framework (i.e., when our ideal contains the
axioms x? = z;) and prove their hardness over fields of characteristic different
from p. Next we introduce the analog of Tseitin tautologies in characteristic
0 (called Flow tautologies) and show that they are hard over any field. The
most important impact of our approach, however, is that we can work directly
with the field F; which is the most interesting case. In particular, we can do
random k-CNF over this field, thus we prove the conjecture from [BI99].

Also, we consider the Pigeonhole principle and prove a hardness result for
its version EPH P introduced in [BW99]. This result follows from [Raz98|
but our proof is conceptually simpler since it does not use the technique of
pigeon dance at all. At the end we show a weak relation between robust
functions from [ABSRWO00b] and immune polynomials in characteristic zero
which allows us to get some lower bounds for the polynomial calculus (also
in characteristic 0) based on the robustness of underlying functions.

The paper is organized as follows. Section 2 contains the necessary def-
initions and the intuition of the lower bound technic based on locality. We
prove our main hardness results in Section 3 and show the implied lower
bounds in Section 4. Finally we present some open questions in Section 5.



2 Preliminaries

Fix an arbitrary field F. We will be working in the F-algebra S, (F) which
results from factoring the polynomial ring F|xy,. .., z,] by the ideal gener-
ated by the polynomials z? — z; (1 < i < n). Every element f € S, (F)
has a unique representation as a multi-linear polynomial (which determines
its degree deg(f)), and a unique representation as a F-valued function on
{0,1}™. We will be alternately exploiting both representations. All polyno-
mials considered in this paper (unless the opposite is stated explicitly) will
be multi-linear so we sometimes omit this word.

For a polynomial f, Vars(f) will denote the set of its essential variables.
An assignment to f is a mapping « : Vars(f) — {0,1}.

For historical reasons, when studying a system of algebraic equations
one is interested in the set of its roots. Thus an assignment a satisfies a
polynomial f iff « is the root of f. Accordingly, every Boolean function g
uniquely defines the multi-linear polynomial p, which is equal to 0 on the
assignment « if g(a) =1 and to 1 if g(a) = 0.

A restriction of f is a mapping p : Vars(f) — {0,1,x}. We denote by
|p| the number of assigned variables, |p| = |p71({0,1})|. The restriction of
f by p, denoted f|,, is the polynomial obtained from f by setting the value
of each x € p~'({0,1}) to p(z), and leaving each z € p~'(x) as a variable.

If ¥ = {vi,...,v} is a tuple of variables, and € € {0, 1}* then by x&(%)
we denote the multi-linear polynomial which is equal to 1 if ¥ = € and to
0 otherwise (formally, xz(7) o [Ticpy(1 — vi — & + 2v;6;)). The following
identity is obvious but extremely useful:

F= ) xel®) - (flo=e) (1)

ec{0,1}*

(7' = €1is the restriction which assigns all v; to ¢; and leaves all other variables
unassigned).

Let Span(fi,..., fx) be the ideal generated by fi,..., fr. We say that
fis- -+, fx semantically imply g (denoted fi,..., fr E g), if g equals zero on
the set of roots of ideal Span(fi, ..., fr) (ie. Ya € {0,1}V(fi(a) = --- =
fr(a) =0= g(a) =0), where V- = Vars(f;) U...UVars(fi) UVars(g)).

Denote by T, the set of all multi-linear terms, i.e., products of the form

Ty Tiy -y, with 1 <dy < iy < ... <ig <n. The degree deg(t) of a term t

is the number of variables occurring in it. Let 7, 4 dof {t €T, |deg(t) <d},

d
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and S, 4(F) def FT, 4 be the linear space of all multi-linear polynomials of

degree at most d. We write t € f if a term ¢ is contained in polynomial f
with non-zero coefficient.
For a positive integer n, let [n] def {1,2,...,n}.

2.1 Polynomial Calculus

Definition 2.1 ([CEI96]) Every line in a polynomial calculus proof is an
element of S, (F), and it has two inference rules (called addition and multi-
plication, respectively):
f g
af + By

fi 3)

where f,g € S,(F); o,8 € F, and z is a variable. For fi,..., fm,g9 €
Sn(F), a polynomial calculus proof of g from fi,..., fm is a proof in which
initial polynomials are among fi,..., f,,, and the final polynomial is g. A
polynomial calculus refutation of fi,..., fm is a polynomial calculus proof of

1 from fi,..., fim.

(2)

and

Clearly, g has a polynomial calculus proof from fi,..., f,, if and only if
g € Span(fi,..., fm). In particular, (fi,..., fn) is refutable if and only if
1 € Span(fi,..., fm), and if and only if (see e.g. [BIKPRS96, Theorem 5.2])
the system f; = fo = ... = f,,, = 0 has no 0-1 solutions.

The degree of the addition inference (2) is max{deg(f), deg(g)}, and the
degree of the multiplication inference (3) is deg(f) + 1. The degree of a proof
is the maximum of the degrees of all its inferences.

2.2 Tautologies induced by expanders

In this section we define the general structure of our tautologies. We use the

notion of expander matrix introduced in [CS83, ABSRWO00b].

Let A be an (m X n) 0-1 matrix, and J;(A4) o {j €n]|a;=1}.

Definition 2.2 ([ABSRWO00b]) For a set of rows I C [m] in the matrix
A, we define its boundary 04(I) as the set of all j € [n] (called boundary



elements) such that {a;; |7 € I'} contains exactly one 1. We say that A is
an (r, s, c)-expander if |J;(A)| < s for all ¢ € [m] and VI C [m|(|I| < r =
04(D)] = ¢ - |1)).

This notion generalizes the notion of expander hypergraphs from [CS88]
(they considered expanders with ¢ = 1/2). We discuss the construction of
good expanders in Section 4.1.

Let X;(A) € {z;]j € Ji(A)} and fi(z1,...,20), -, fm(21, ..., Tn) be
polynomials such that Vars(f;) C X;(A). We will be interested in the system
of equations

fi(zy,...,2,) =0
. (4)
fm(z1, .. 2n) = 0.

[ABSRWO0O0b] proved that if (the characteristic functions of the set of roots of)
fi’s posses certain hardness property called robustness and A is a sufficiently
good expander, then the system (4) is hard for Resolution. Based upon the
machinery developed in [Gri98, BGIP99], they also showed that the system
(4) is hard for Polynomial Calculus when f;’s correspond to the PARITY
functions and char F # 2. In this paper we introduce a general hardness
condition on f; which will imply that this system is hard for Polynomial
Calculus.

Definition 2.3 A polynomial f is called £-immune iff for any non-zero poly-
nomial g, f = ¢g implies deg(g) > ¢. A Boolean function g is (-immune over
a field if its associated polynomial p, over this field is /-immune.

This definition says that a polynomial is hard iff it has no non-trivial
semantic corollaries of small degree. Clearly, a polynomial is /-immune if
and only if the characteristic function of the set of its roots is so.

Let us now relate immunity over fields of positive characteristic p with
the following notion:

Definition 2.4 ([Gre00]) The weak MOD,-degree of a Boolean function
g(x1,...,2,) is the smallest degree of a non-zero multi-linear polynomial
f(z1,...,x,) with integer coefficients such that g(a) = 0 = f(a) = 0 mod p,
for all o € {0,1}".

We need one elementary lemma.



Lemma 2.5 A polynomial f(x1,...,x,) over a field F is (-immune if and
only if for any non-zero multi-linear polynomial g(x1,...,z,) with integer
coefficients [ = g implies deg(g) > /.

Proof. Part “only if” is obvious. For another direction, suppose for the
sake of contradiction that gy € S, (F), f = go and deg(gy) < ¢. We want to
find an integer polynomial g with the same properties.

Introduce F-valued variables g;, where t € T,,, corresponding to the (un-
known) coefficients of g. The condition f = g is equivalent to the system
of linear equations {3, .. git(@) = 0| f(e) =0} over g, with integer coeffi-
cients. Let us add the conditions g; = 0 for all terms ¢ with deg(t) > ¢ and
g1, # 0 for an arbitrary term ¢, appearing in g.

We defined the system of uniform linear equations and inequalities with
integer coefficients which has a solution in F. It follows from the basics of
algebra that it also has a solution over integers, and this solution defines the
desired ¢g.m

Corollary 2.6 1. A Boolean function is (-immune over a field F with
char F =p > 0 if and only if the weak MOD,-degree of its negation s
at least (.

2. A Boolean function g(x1, ..., x,) is (-immune over a field F with char F =
0 if and only if the smallest degree of a non-zero multi-linear polynomial
f(x1,...,x,) with integer coefficients such that Vo € {0,1}"(g(a) =
1= f(a) =0) is at least ¢.

Thus, in positive characteristic immunity is the same (up to negation)
as weak degree, and the main reason why we introduced this new terminol-
ogy is because the usage of the term “weak degree” in characteristic 0 (see
[ABFR94]) is totally incompatible with our purposes.

The following simple lemma shows that the notion of immunity behaves
well with respect to restrictions.

Lemma 2.7 1. If f is (-immune then, for any restriction p, f|, is (¢ —
|p|)-immune.

2. LetV C Vars(f), and assume that for every restriction p with p~!(x) =
V., fl, is L-immune. Then f is (-immune.



Proof. Part 1) Suppose that p assigns vy, ..., v, t0 €1,. .., €, and assume
the contrary, that is f|s—¢z = ¢, where g # 0 and deg(g) < ¢ — k. We can
assume w.l.o.g. that Vars(g) N{vy,..., v} = 0. Then, clearly, f = x«(?) - g
and yz(7) - g # 0, a contradiction.

Part 2) Assume the contrary, that is f = g, where g # 0 and deg(g) < /.
Pick up an arbitrary restriction p with p~*(x) = V and such that g|, # 0.
Then f|, = g|,, contrary to the assumption that f|, is f-immune.m

2.3 Local strategy for PC lower bounds

Now we briefly describe how the idea of locality can help in proving lower
bounds on the degree of PC refutation. First, let us recall some standard
notions from commutative algebra (adapted to the special case of the ring

Sn(F))-
Definition 2.8 An ordering < of T, is admissible if:
1. ‘v’tl,tQ € Tn(deg(tl) < deg(tg) =t < t2)

2. If t; <ty and t € T}, does not contain any variables from ¢,%,, then
tt1 <X tio.

Fix an admissible ordering < on T,,. For f € S, (F), LT(f) € T, is the
leading term of f w.r.t. <. Part 1 of Definition 2.8 implies that deg(LT(f)) =

deg(f).

Definition 2.9 For an ideal V' the term ¢ is called reducible mod V' (and
with respect to some admissible ordering <) if V' contains some polynomial
f such that LT(f) = t. The set of irreducible terms A is linearly independent
modulo V' and the algebra S, (F) can be represented as the direct sum

S.(F) =FA & V.

The operator of projection onto the first coordinate, called reduction operator
(and denoted Ry ) maps each term ¢ to the unique polynomial Ry () € FA
such that t — Ry (t) € V.



[CEI96] were the first to consider these classical notions in the case when
V' is a pseudo-ideal, i.e. not necessarily closed under the multiplication rule.
This leads to the following chain of definitions.

For fi,..., fm € Sna(F), denote by Vi, a(fi,..., fm) the set of all g €
Sn.q(F) that are provable from fi,..., f, by a polynomial calculus proof of
degree at most d. Due to the presence of the addition rule, V,, 4(fi1, ..., fm)
is a linear subspace in S, 4(F). A term ¢t € T, 4 is called reducible if t =
LT(f) for some f € Vou(fi,..., fm), and irreducible otherwise. Denote
by Ana(fi,..., fm) the set of all irreducible terms in 7, 4. Terms from
Apa(fi,..., fm) are linearly independent modulo  V,4(f1,...,
fm), and analogously with the classical case we have the representation

Sn,d(]F) - ]FAn,d(fla sy fm) S Vn,d(fla BRI fm) (5)

of S,,.4(F) as the direct sum. Denote the projection onto the first coordinate
(also called reduction operator) by Ry a ... fm-

In order to prove that 1 € V}, 4(f1, ..., fm) one has to show that

R fi,eofn (1) 7 0.

For doing that it suffices to produce a non-trivial linear operator R on S,, 4(FF)
which is stronger than R, 4, ., in the sense that

Ker(Ry a,f,,...1m) C Ker(R)

and show that Ker(R) # S, 4(F). The following lemma states what need be
checked for that.

Lemma 2.10 ([Raz98]) Suppose that fi, ..., fm are azioms, and d < n. If
there exist a linear operator R # 0 on S, 4(F) such that:

1) Vi R(f;) = 0;
2) Vt,x; (deg(t) < d— R(z;-t) = R(x; - R(t)))

then there is no PC refutation of {fi,..., fm} with degree less or equal than
d.

[Raz98| proposed to construct the operator R from the previous lemma
locally:

R(t) = Ry (t), (6)

9



where Ry is the classical reduction operator of the ordinary ideal V'(t)
generated by some “small” subset of axioms dependent on ¢. The advantage
we gain in this way is that the structure of classical reduction operators is
much better understood, and, unlike their counterparts for pseudo-ideals,
they can be also studied by semantical means.

If R is any operator satisfying assumptions of Lemma 2.10, then every
polynomial f = Y".a;t; derivable from {f,..., f,,} in degree < d can be
alternatively represented as the sum

If, moreover, R(t) is given by (6), then t;’s are leading terms in (¢, — R(t;)),
there is no cancellation between them, and each polynomial ¢; — R(¢;) is a
corollary of a “small” number of axioms. Thus the idea of locality says that
any polynomial in V,, 4(fi1, ..., fm) can be represented by the sum of corollaries
of small number of axioms without leading terms cancellation or, informally,
everything we can infer in small degree we can also infer locally.

3 Main results

In this section we prove that for any (r, s, ¢)-expander A and /-immune f;’s
any PC refutation of the system (4) has degree greater than r(¢/4 — (s —
¢)) (Theorem 3.8). This bound presumes that ¢ > 4(s — ¢) and thus it
is not applicable to expanders with small constant s and ¢. We managed
to strengthen the degree lower bound to r¢/2 in the case when f;’s have
maximal immunity s (Theorem 3.13). This bound will allow us to estimate
the hardness of refutation of the random k-CNF for small £ in the fields of
characteristic 2 (Section 4.3).
The heart of our proof is the following theorem.

Theorem 3.1 Suppose that ¢, 7, Z is a partition of {x1, ..., T, }; P= 13(37, ),
Q = Q(7, 2) are polynomials over UV, TUZ respectively, where Q is (2|0]4+1)-
immune. Suppose that a term t(y, V) free of z-variables is reducible mod
Spcm(ﬁ, Q) w.r.t some fized admissible ordering. Then t is reducible mod

Span(P) w.r.t. the same ordering.

Proof. The naive idea would be to apply an arbitrary homomorphism

—

of the form p : Z — f(¥) which kills @ to 0 and therefore has the property
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t = p(Rgpun(p,g)(t)) mod Span(P) (such a homomorphism always exists since
@ is (JU| + 1)-immune and hence none of xz(7) in > xz(¥)Qls—e = @ is
its corollary). This does not work in general because the degree of some
terms in R 5 o (t) may increase under p and become more than deg(t).
Still as we show below this idea suffices in the partial case when () has the
maximal immunity (Lemma 3.14). But in the general case we have to use
more complicated methods.

In Definition 3.2 and the following chain of lemmas we assume that
7, v, Z, ]3, @ satisfy assumptions of Theorem 3.1, and all reduction operators

are taken w.r.t. some fixed admissible ordering <. Let k & 7).

Definition 3.2 (Operator R?) The linear operator R? is defined on T}, in
the following way:

def _,
RUHZE D Xel®) - Rspan(Qlos) (=),

ec{0,1}*
and extended to S, (F) by linearity.

The intuitive meaning of the operator R? is that it tries to reduce z-
degree of the term ¢ locally and independently within the subcubes specified
by all possible assignments to . It ignores y-variables (since they do not
appear in @)), but it can in general increase the number of v-variables.

Lemma 3.3 For any polynomial f, f = R?(f) mod Span(Q).

Proof. Due to linearity, we only need to prove that Q | t — R?(t) for
every term ¢. This semantic inference holds if and only if for any tuple € the
polynomial @ |5—z implies

(t — R2(t))|o=z = (t|s=¢ — Rspan(Qls_s)(tli=2));

and the latter clearly takes place.m
Lemma 3.4 If |Vars(t) N z] < k then R9(t) = t.

Proof.

11



We need to check that two polynomials ¢ and R? (¢ ) are equal. For this it
is sufficient to check the equality of ¢|—z and R?(t)|s—¢ = Rspan(ql,_s) (t|s=2)
for each tuple € € {0, 1}*. But since Q is (2k + 1)—immune Qls=c is (k +1)-
immune by Lemma 2.7(1); therefore the term ¢|z—z of degree < k is irreducible
mod Span(Q|s=¢).m

The following lemma is the heart of the whole argument.

Lemma 3.5 Suppose that f is a polynomial and P,Q = f. Then P =
RO(f).

Proof.  As usual, we only have to prove that for any tuple € Pl E
RO(f)|s=e Since P,Q k= f, by Lemma 3.3 we have P,Q = R2(f), hence

Pli—z, Qlo=z = R2(f)]s—z-
Fix an arbitrary tuple é for 7 such that Ply_+(d) = 0. We have

Qlio—e = R (f)ly—z s (7)
and we have to show that
RQ(f)|~:g,*:5
is actually equal to 0. But R?(f)]|,_. eg=5 = Rspan(Qls—s) ([ |i=¢)| ;=5 Since all

terms in Rspan(gl;_s) (f|i=e) are 1rredu(:1ble mod Span(Q|s=z), and the set of
irreducible terms is closed downward, the same is true for

Rspan(Qla—s) (f lo=¢) | 5—5-

Along with (7) this implies R?(f)|
Lemma 3.5.m

= = 0 and completes the proof of

T=8,j=6

Lemma 3.6 Suppose that P = fot+) .. czzifi, where fo is free of z-variables.
Then P = fo.

Proof. Apply the restriction which maps all z; to 0.m

Let us now finish the proof of Theorem 3.1. Let f & Rgpon(p,0)(t) and

< RO(f). )
By Lemma 3.5, P E R%(t — f), and by Lemma 3.4, R?(t) = t. Thus,
P = (t — f'). Our goal is to show that all terms in f" are either less than

12



t or contain some z-variables, after that we can apply Lemma 3.6 and show
that ¢ can be reduced mod Span(P).
Let us divide the terms in f into two groups:

Gi = {t.||Vars(t)nz] <k}
Gy = {ti||Vars(t)ynz] >k}.

Consider some monomial ¢} € f’ such that [Vars(t}) N z] = (. Clearly,
t, € R9(t,) for some term ¢; € f. If ¢, € G, then, since G, is invariant
under R? by Lemma 3.4, t) =, < t. Assume that t; € Gy. Then deg(t}) =
\Vars(ty) Nv]+ [Vars(t)) Nyl < k+ [Vars(t)) Ny = k+ [Vars(ty) Nyl <
|Vars(ty) Nyl + [Vars(t;) N 2] < deg(t;) < deg(t).

Thus all monomials in f’ which are free of z-variables either are contained
in f or have degree less than deg(t). Hence Lemma 3.6 implies that ¢ is
reducible by P. Theorem 3.1 is proved.m

Corollary 3.7 Under the assumptions of Theorem 3.1,
RSpan(ﬁ,Q)(t) = RSpan(ﬁ) (t)

Proof. Obviously, all terms in Ry, .5, (t) are free of z-variables. Therefore,
by Theorem 3.1 all of them are irreducible also mod Spcm(ﬁ, Q).m

Theorem 3.8 Assume that A is an (r,s,c)-expander, { is an integer such

that s < r(l/4 — (s —¢)) and fi,..., fm are L-immune polynomials over an
arbitrary field such that Vars(f;) C X;(A). Then any PC refutation of the
system fi = ... = fm =0 has degree greater than r({/4 — (s — c)).

Proof. The idea of the proof is to construct a linear operator R which
behaves locally like the reduction operator modulo the corresponding ideal,
and use Lemma 2.10 after that. To describe R it is sufficient to define it on
the set of terms ¢ with deg(t) < r(¢/4 — (s — ¢)). First we need to give some
more notation.

Definition 3.9 Assume that A is an (m x n)-matrix and fi, ..., f,, are poly-
nomials with Vars(f;) C X;(A). For a term ¢ denote by J(¢) the index set

{J|t contains x;}. For a set of rows I C [m] let Span([) o Span({fili € I}).
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Now we are ready to define our linear operator R. Fix
A f1yo oy fmy 1, S, ¢, £ satisfying assumptions of Theorem 3.8. For a term ¢
we define a set of axioms Sup(t) C [m] and then reduce ¢t mod Span(Sup(t)):

Definition 3.10 For a term ¢ define the following inference relation F; on
the set [m] of rows of A:

14
THi=|J(A)N > (8)

Uyus (t)]

el

Let the support Sup(t) of t be the set of all rows which can be inferred via

- from the empty set. Define R(t) def Rspan(sup(e)) ().

The rest of the proof is devoted to checking that R satisfies conditions 1)
and 2) of Lemma 2.10. First we need to estimate the cardinality of Sup(t).

Lemma 3.11 For a term t with deg(t) < r(¢/4 — (s —¢)), |Sup(t)| < r.

Proof. Assume the contrary. Then there exists a set I = {iy,...,i,} of
distinct rows such that {iy,...,i, 1} 4, (1 <v <r). By Definition 2.2 it
has at least ¢r boundary elements. By (8), each row ¢ € I has strictly less
than s — ¢/4 boundary elements not contained in J(¢). Thus, J(¢) has more
than cr —r(s—¢/4) = r(¢/4— (s —c)) elements. We got contradiction, which
proves Lemma 3.11.m

Lemma 3.12 Assume that s —c < £/4, t is a term and I is a set of rows
such that T O Sup(t) and |I| < r. Then

Rspan(1)(t) = Rspan(sup(ty) (t)-

Proof. Let us apply the expansion property to the set I\ Sup(t). It will
yield a row i € I\ Sup(t) with at least ¢ boundary elements. In other words,

Ji(A) N [Upen supugin Jir(A)] < s —c.
Also, since Sup(t) is closed under F;, we have

Ti(A) N [Uresupi T (A) U J(1)] < /4.
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Altogether it implies that
Ji(A) N [Upengay Jo (A) U J(1)] < (s —¢) +£/4 < {]2.
Let us now set in Theorem 3.1
{1, @} \ Ji(A)
= JZ(A) N [ eI\ {i }JZ/ (A) U J(t)]
= Ji(A)\ [Uren g Jo (A) U J(1)]
= {fv|i" € I\{i}}
= fi;
and apply in this situation its Corollary 3.7. We conclude that Rgpen(r)(t) =

Rspan(r\fip)(t).  We continue this elimination process until we descend to
Rgupt ( ).m

Q W oy gy
I i

Now we finish the proof of Theorem 3.8. We have produced an operator
R on T,, and we consider its restriction on T}, »(¢/4—(s—c)). Let us check that

it indeed satisfies the conditions of Lemma 2.10.

To see that R(f;) = 0 for each axiom f;, let o [TX:(A). Recall that

deg(t;) < s <r(l/4— (s —c)). Thus |Sup(t;)| < r (by Lemma 3.11) and for
any term ¢ in f; clearly Sup(t) C Sup(t;). Next, i € Sup(t;). By Lemma 3.12,
R(fi) = Rsup(t,)(fi) = 0. Thus 1) is satisfied.

To check the second condition, consider a term ¢ with deg(t) < r(¢/4—(s—
c¢)) — 1 and a variable z;. By Lemma 3.11, |Sup(z;t)| < r. By Lemma 3.12,
Rsup(ty(t) = Rsup(a;0)(t). For any term t' € Rgup(r)(t), Sup(z;t’) C Sup(w;t).
To see this, it is sufficient to notice that J(¢') C Ul resup(ry T (A)UJ(t). Thus
Rsup(a;) (@51") = Reup(an (z;t') and

R(z;R(t)) = Rsup(a;1)(TjRsup(e;1)(t) = Rsup(z;1)(75t),

where the last equality follows from the fact that x; Rgyp,(t) and z;t are
equal modulo the ideal Span(Sup(z;t)).

Finally, |J;(A)] > ¢ for every ¢ € [m] (since f; is ¢-immune), hence
Sup(1) =0 and R(1) =

Theorem 3.8 is proved.m

The bound proved in Theorem 3.8 is not applicable in the case when ¢
is small (say, ¢ < 1). We will see in Section 4.1 that for sufficiently large
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constant s “good expanders” (that is, with ¢ close to s) do exist but for small
s the question about the hardness of the system (4) remains open even for
random matrices. When ¢ is small, we succeeded in proving lower bounds
only in the partial case, when all f; have the maximal immunity ¢ = s. It
is easy to see that the class of polynomials with maximal immunity consists
exactly of polynomials having the form a - xz(¥), a € F*.

Theorem 3.13 Assume that A is an (r, s, c)-ezpander and let &) € {0, 1}
(i € [m]). Then any PC refutation of the system { xai(X;(A))|i € [m]} has
degree greater than (rc/2).

Proof. Analogous to the proof of Theorem 3.8, but in this partial case
the statement of Theorem 3.1 can be strengthened while the proof becomes
trivial:

Lemma 3.14 Suppose that §, U, Z is a partition of {x1, ..., Ty }; P= 13(37, ),
Q = Q(U, 2) are polynomials over U, TUZ respectively, where Q is divisible
by (z — €) for some z € Z, € € {0,1}. Suppose that a term t(y,v) free of
z-variables is reducible mod Spcm(ﬁ, Q) w.r.t some fized admissible ordering.
Then t is reducible mod Span(P).

Proof. Consider any polynomial f s.t. P,Q = f and t = LT(f). Applying
the restriction z = €, we obtain P|,—, Q|,— = f|.=. Since P does not depend
on z and Q|,— =0, P = f|.=, and clearly t = LT(f|,—).m

Now we build our operator R in the same way as in Definition 3.10, but
this time we use another inference relation (notice that this relation infers a
set of rows at a time rather than a single row):

Definition 3.15 For a term ¢ define the following inference relation F; on
the set [m] of rows of A:

[l_t [1 = |[1| S 7"/2 A 8A(Il) g

i) J(t)] . )

el

Let the support Sup(t) of t be the set of all rows which can be inferred

via I from the empty set, and R(t) def Rspan(sup(e)) (t)-
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Lemma 3.16 For a term t with deg(t) < (er/2), |Sup(t)| < r/2.

Proof. Assume the contrary, and choose a chain of subsets I,..., I, ...
such that L U... U, 1+ I, and |U, I,| > r/2. Let k be the smallest index

for which ‘Ul]le I,| > r/2. Then, clearly, UIZZI I,| <r (since |I,| < r/2).
04 (Uff:1 I,,)‘ > (re/2). On the other hand, (9) implies that
every new boundary element that results from appending via ; some set of
rows must belong to J(t), therefore 04 (UIZ:1 T,,) C J(t). This contradiction
with the assumption deg(t) < (c¢r/2) proves Lemma 3.16.m

Therefore,

The following is analogous to Lemma 3.12.

Lemma 3.17 Assume that t is a term, and I is a subset of rows such that
I D Sup(t) and |I| < r/2. Then

Rspan(1)(t) = Rspan(sup(ty) (t)-

Proof. Since Sup(t) t/; I\ Sup(t), by (9) some row i € I\ Sup(t) contains
an element from d4(7)\ J(¢t). Thus we can remove i by Lemma 3.14. In such
a way we consequently get rid of all the axioms in I\ Sup(t).m

The rest of the proof is quite analogous to that of Theorem 3.8.m

4 Applications

In this section we describe some concrete lower bounds that can be proved
using the results of Section 3.

4.1 Constructions of expanders

[CS88] in their work introduced the notion of a sparse hypergraph which
in our language (rows correspond to edges, columns correspond to vertices)
looks as follows: an (m x n) 0-1 matrix A is (x, y)-sparse if for every .J C [n]
with |J| < zn we have |{i € [m]|J;(A) CJ} < y-|J|. They also es-
tablished (implicitly and for the case ¢ = 1/2) the following connection
between sparsity and expansion (union bound) which was later utilized in
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2n O k+c

which every row contains exactly k ones is an (r, k, ¢)-expander, for arbitrary
parameters r, k, c.

[CS88, Lemma 1] gave a sufficient condition for a random (An x n) matrix
(in which every row has exactly k ones) to be (x,y)-sparse. They considered
only the case when the parameters &, y, A (the latter is denoted in [CS88| by
c) are constants. We need the following simple generalization of their lemma.

Let k be an integer constant, y = y(n) be any real parameter such that
(k—1)y > 1 and A = A(n) be an arbitrary integer parameter satisfying

BP96, BKPS98, ABSRW00b]: any (m x n) (2£+2 2 ) _sparse matrix in
[ y

A=o (n(k’l’yfl)) : (10)

Then a random (An x n) matriz in which every row has exactly k ones is
(Q (A=¥/(=Dy=1)) ")) -sparse with probability 1 — o(1).

The proof literally follows the proof of [CS88, Lemma 1]; we only need to
change the values of their bounds f(n), g(n) to

Y
fin) & e <E> p(=Dy=1/2  Aw/2

1/2

gn) & (n- A0 D)

The necessary asymptotics f(n) — 0, g(n) — oo then follow from (10).

Putting things together by setting y o we have:

2
k+c’
Lemma 4.1 Assume that k > 3 is a fized integer constant, 0 < ¢ = ¢(n) <
k — 2 is an arbitrary real parameter, and A = A(n) is an arbitrary integer
parameter satisfying A = o (n(k_c_z)/Q). Then a random (An X n) matriz A
in which each line J;(A) is chosen from all (}) k-subsets of [n] independently
and at random is (Q (W) k, c)—expander with probability 1 — o(1).

Now let us turn to another source of good expanders. For an ordinary
graph G = (V, E) and r > 1 let

of . e(UV-=U
CE(“G)%%”E( 0] :

where e(U, W) is the number of edges between U and W. This is a minor gen-
eralization of the edge-expansion coefficient cg(G) = cg(|V]/2, G) previously
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studied in graph theory (see e.g. [Alo98] and the literature cited therein).
Clearly, the incidence matrix Ag of a graph G is an (r,d(G),cg(r,Q))-
expander for an arbitrary r (cf. [ABSRWO00b, Example 4]), where d(G) is
the maximal degree of a vertex.

Suppose now that the graph G is d-regular. Then, clearly, cp(r,G) =
d — maxy|<, ad(G|y), where G|y is the subgraph induced on U, and ad is
the average degree. [BCST78| proved the following bound on this quantity in
terms of the second eigenvalue \y(G) of the graph G:

Ul(d = X(G))

<
ad(G|U) = |V|

This implies
cp(r,G) > d (1 - |7"7|> —(G).

Recall that a Ramanujan graph is a d-regular graph G with A\ (G) <
2V/d — 1; explicit constructions of such graphs were given in [LPS88, Mar88|.
Summing up the above, we have:

Lemma 4.2 The incidence matriz of any d-reqular Ramanujan graph G on
n vertices is an (r,d, d(1—r/n)—2+/d — 1)-expander for any parameter r > 0.

4.2 Tseitin tautologies: Boolean version

A Tseitin tautology is an unsatisfiable CNF capturing the basic combinatorial
principle that for every graph, the sum of degrees of all vertices is even. These
tautologies were originally used by Tseitin [Tse68] to present the first super-
polynomial lower bounds on refutation size for a certain restricted form of
Resolution (regular resolution).

In the sequence of works [Gri98, BGIP99, BI99] their authors studied the
hardness of Tseitin tautologies for Polynomial Calculus. This research was
essentially dependent on the fact that the tautologies can be written in the
form of binomial ideals. Then the arguments proposed in [BGIP99] (and
simplified in [BI99]) show that any PC-refutation of Tseitin tautologies has
degree Q(n).

[BGIP99] generalized Tseitin tautologies to the case when each vertex
in the graph contains M OD, function and used them to lower bound the
refutation degree of the counting principle C'ount,. Their definition, stated
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informally in terms of a flow on a graph, says the following: each directed
edge e has the corresponding variable x, which ranges over {0, ...,p —1}; the
intuitive meaning of z, is the value that flows along the edge e. The mod,
Tseitin principle says that the sum of flows in all vertices is equal to 0 mod p.

This definition is a natural generalization of the usual mod,; Tseitin tau-
tologies. [BGIP99| proved an Q(n) lower bound on the refutation degree of
these tautologies in the version of Polynomial Calculus in which the relations
2?7 — z; (hardwired in our definition of S, (F)) are weakened to x? — x;. They
also observed that a Boolean version can be obtained by repeating every edge
of the underlying graph p times. We would like to propose another Boolean
version which is more straightforward and does not involve any encodings.

In our variant the variable x, written on the directed edge e can have only
Boolean values 0 and 1. There are two different constants Fy and F; from
{0,...,p— 1} which define the amount of flow along e when =z, is equal to 0
and 1 respectively. One can easily see (by applying an affine transformation)
that the exact choice of constants is not essential; for definiteness we set
Fy:=0, Fi :=1.

Definition 4.3 (mod, Tseitin Formulas) Let G be a finite oriented graph
and o : V(G) — {0,...,p — 1} be an arbitrary function. Assign a distinct
Boolean variable z, to each directed edge e € E(G). For v € V(G) denote
by MOD,(G,o,v) the following Boolean predicate:

Z Tcww> — Z T<vw> = 0'('U) mod p.

{w| <w,w>eE} {w] <v,w>€E}
The mod,, Tseitin formula of G' and o is defined as

def

T,(G.0) <\ {MOD,(G,0,v)}.

veEV(Q)

It is easy to see that T5(G, o) coincides with ordinary Tseitin tautologies.
We prove that for graphs G with sufficiently large edge-expansion 7,(G, o)
requires large refutation degree in fields F with char F # p.

Theorem 4.4 The Boolean function in d wvariables which outputs 1 on
ai,...,oq if and only if Z?Zl ejoj = omodp, where ¢, € {£1} and
o€{0,1,...,p— 1} are arbitrary, is Lﬁj—immune over any field B with
char F # p.
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Proof. We can assume w.l.o.g. €, =€ =...=¢€5, =1, €4,0.1 = ... = €5 =
—1land d, > d/2. Given Corollary 2.6(1), the main result from [Gre00] (The-
orem 3.4) implies that for every o € {0,1,...,p—1}, MOD, ,(x,...,xq4) is
Lz(;inJ > Lﬁj—immune over any field with char F ¢ {0, p}. By Corollary
2.6(2), this bound can be also extended to fields F with char F = 0. Theorem

4.4 now follows from Lemma 2.7(2) applied to V/ o {Tag, 41y 24} m

Theorem 3.8, Lemma 4.2 and Theorem 4.4 imply

Corollary 4.5 For any fized prime p there exists a constant dy = dy(p)
such that the following holds. If d > dy, G is a d-reqular Ramanujan graph
on n vertices (augmented with an arbitrary orientation of its edges), and
char F # p, then for every function o every PC refutation of T,(G,0) over
F has degree Q(dn).

4.3 Random k-CNF in characteristic 2

An interesting test for a propositional proof system is how effective it behaves
on the random input.

Definition 4.6 (Random k-CNF’s) Let F ~ F/"® denote that F is a
random k-CNF formula on n variables and A - n clauses, chosen by picking
A -n clauses independently and at random from the set of all (Z) -2F clauses,
with repetitions. A is called the clause density.

[CS88] showed that the random 3-CNF with n variables and A -n clauses
requires exponential refutation in Resolution, for an arbitrary constant A.
[BI99] proved that the random 3-CNF requires Polynomial Calculus refuta-
tion of degree Q(n) over any field F with char F # 2, provided A = A(n) is
small enough. They used binomial technics proposed in [BGIP99] and the
fact that the random CNF has good expansion properties proved in [CS88].
[BI99] conjectured that the same lower bound on the degree holds for 3-
CNEF’s over the fields F with char F = 2 as well. We give a positive answer
to their conjecture.

Using Theorem 3.13 and Lemma 4.1 with ¢ = 1/ In(A+2) we immediately
get the following

Corollary 4.7 Let F ~ ]-",?’A, where k > 3 is a fized integer and A = A(n)
s an arbitrary parameter satisfying A < o (n(’“_Z)/Q). Then every Polynomial
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Calculus refutation of F over an arbitrary field F has degree 2 (M)
with probability 1 — o(1).

4.4 Collapsable functions and flow tautologies

In this section we define a wide class of collapsable functions and prove that
they have strong immunity. Then we introduce the analog of Tseitin tautolo-
gies in characteristic zero, in which each vertex contains a linear inequality
over R. The principle says that the flow can not be positive in all vertices of
the graph. We call this family flow tautologies.

Definition 4.8 A Boolean function f is ¢-collapsable iff for any subset of
variables S C {x1,...,x,} with |S| < ¢ there exists a restriction p which
leaves variables from S unassigned and such that f|, = 1. A polynomial is
(-collapsable iff the characteristic function of the set of its roots in {0, 1} is
(-collapsable.

In other words, a polynomial f € S,(F) is ¢-collapsable iff for any choice
of n — £+ 1 variables we can satisfy it (make equal to 0) by some restriction
of these variables to 0 and 1. It turns out that collapsable polynomials have
strong immunity.

Theorem 4.9 FEvery (-collapsable polynomial f is £-immune.

Proof. Assume that f | ¢ and deg(g) < ¢. Let us choose any term ¢

in g of maximal possible degree. Let S &ef Vars(t). By the definition of /-
collapsable polynomial, there exists a restriction p which sends f (and hence
g) to 0 and does not touch ¢. But g, still contains ¢ and hence is non-zero.
This contradiction proves Theorem 4.9.m

One good example of collapsable functions is made by threshold functions
Soi,x; > k. In particular, the majority function MAJ, defined by the
predicate Y x; > n/2 is n/2-collapsable. To see that, assume that a
subset of variables S with |S| < n/2 is given. Assign the rest of variables
to 1, it will satisfy the function. Thus, we have shown that M A.J, is n/2-
immune over any field (another, more direct proof of this result can be also
easily extracted from the proof of [Tsa96, Theorem 4.1])
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Now we are ready to define the analog of Tseitin principle in the char-
acteristics 0. Recall that in the case of mod, Tseitin tautologies we have an
oriented graph GG with Boolean variables corresponding to its edges, and the
axioms in each vertex v saying that its flow is equal to o(v) mod p. If instead
of fixing the flow mod p we demand that it is positive in each vertex, we get
flow tautologies.

Definition 4.10 (Flow tautologies) Let G be a finite oriented graph. As-
sign a distinct Boolean variable z. to each directed edge e € E(G). For
v € V(G) denote by PosFlow(G,v) the following Boolean predicate:

> A= 2mes) > Y (L= 220,

{w| <ww>€E} {w|<v,w>€E}

The Flow tautology of G is defined as (the negation of)

FI(G) o /\ PosFlow(G,v).
veEV(Q)

It is easy to see that, up to negating some variables, PosFlow(G,v)

coincides with the majority function in d(v) variables and hence is d(v)/2-
collapsable. Thus by Theorem 4.9 and Lemma 4.2 we have

Corollary 4.11 If G is a d-reqular Ramanujan graph on n vertices with
d > 255 (augmented with an arbitrary orientation of its edges) then every
PC refutation of FI(G) over an arbitrary field has degree Q(dn).

4.5 Extended Pigeonhole Principle

In this section we prove degree lower bounds for PC refutations of Extended
Pigeonhole principle defined in [BW99].

The Pigeonhole principle with m pigeons and n holes states that there
is no 1-1 map from [m] to [n], as long as m > n. This can be stated by a
formula on mn variables x;;, where z;; = 1 means that ¢ is mapped to j.

Definition 4.12 PHP]" is the conjunction of the following clauses:

def .
o P = V1§j§nxij for1<i<m

i def _ _ . . .
o I}, =7V for1 <i<i'<m,1<j<n.
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The problem with this classical definition is that the clauses P; can not be
expressed as polynomials of low degree. That is why in case of Polynomial
Calculus one usually considers a stronger version of PHP" in which no
pigeon can simultaneously “fly” into two different holes (which in particular
implies that the big disjunction can be replaced with a linear function, see
e.g. [Raz98]). There is, however, still another way to state PH P in order
to express it by a family of low degree polynomials which is perhaps more
natural in the framework developed in [ABSRWO00b] and in the current paper.

Definition 4.13 ([BW99]) For f(Z) a Boolean function, a nondeterminis-
tic extension of f is a function ¢(Z, %) such that f(¥) = 1 iff Jy g(Z,7) = 1.
Z-variables are called original variables and g-variables are called extension
variables.

EPHP" is obtained from PHP]" by replacing every row axiom F; with
some nondeterministic extension CNF formula F P; using distinct extension
variables 7; for distinct rows.

Now, we express Pigeonhole principle as a family of polynomials by en-
coding every clause C' of EPHP" with the corresponding polynomial pc.
Since E'P; can be chosen as 3-CNF, this eliminates the problem with the
degree of axioms.

Our main result in this section is the new proof of the following theo-
rem. The advantage of this new proof is that it does not use any specific
calculations.

Theorem 4.14 Form = O(n) any Polynomial Calculus refutation of EPH P!
must have degree Q(n).

Proof.

Let us consider some PC refutation P of EPHP,". Choose any m X n
(r, s, c)-expander A with constant s, ¢ and r = Q(n) (for example, we can
take the random expander from Lemma 4.1). Let us restrict our Pigeonhole
principle so that the pigeon ¢ may “fly” only into holes j € J;(A). Namely,
let us apply to P the restriction p that sets x;; =0 for all j & J;(A).

Our next goal is to eliminate all extension variables from the proof. For
that, consider the ith extension axiom EP;|, in the refutation P|,. By defi-
nition, P;(%;) = 1 iff 3y; EP,(%;,y;) = 1. Clearly the dependence of 7; on ;
can be made deterministic in the sense that there exist functions h; (7) s.t.
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P|,(Z;) = 1iff (EP;)|,(;, hi(x;)) = 1. Since we restricted all but s variables
of Z; to zero, every FLZ essentially depends on at most s variables. Let us
replace in the proof P|, each extension variable y;; € ¢; with the polynomial
1 — pp,,. Clearly the degree of P|, will increase by at most a factor of s.
Thus in order to prove the theorem it is sufficient to estimate the degree of
this new refutation.

It is easy to see that initial polynomials corresponding to the axioms E P,
will be mapped into the polynomials that semantically correspond to the
clauses VjeJi(A) x;;. Thus w.l.o.g. we can assume that they are mapped into

polynomials f; o [Tcs.(a)(1 —ij) so we have a PC refutation of the system

{fl, ceey fm} U {l‘i]‘ . l‘i’j | 7 7é i,, ] € JZ(A) N JZI(A)}

that has degree at most s - deg(P).

In order to finish the proof, we need a multi-valued version of Theorem
3.13 (cf. [ABRWOOal). Namely, suppose that instead of Boolean variables z;
we have multi-valued variables &; € {1, ...,d} that are represented by tuples

of Boolean variables &; = (1, ..., 4;) with the intended semantical meaning

Ty; o (; = ). Like in the boolean case, for a tuple € € {1,...,d}* let

Xel 1, Ty ooy @) S TTELL (1 — e, ).

Suppose that at the top of equations fi(Z1, ..., %) = ... = fu(Z1, ..., Ty)
0 with the same meaning as before our system additionally contains the equa-
tions xyxp; = 0 for all j € [n],1 < ¢ < ¢ < d. We adjust Definition 3.9 for
the multi-valued case as follows:

J(t) o {j|t has a non-empty intersection with z;}

and

Span(I) = Span({f;li € I} U {zgzeslj € | Ji(A), 1 <0< < d}).
il
Then the analogue of Theorem 3.13 in this multi-valued framework looks like
this:

Assume that A is an (1, s, c)-expander, and let &) € {1, ...,d}Y. Then
any PC refutation of the system {xz(X;(A))|i € [m]}U{zyzp;|j € [n], 1 <
¢ <0 < d} has degree greater than (rc/2).

In this form Theorem 3.13 can be directly applied to our case (the multi-
valued variable @; runs over {i € [m]|j € J;(A)}). Theorem 4.14 follows.m
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4.6 Relation between robustness and immunity

In this section we discuss the relation between the hardness condition con-
sidered in [ABSRWO0O0b] and that of our paper. We show that every (s — k)-
robust function (see the definition below) is also w(1)-immune in the fields
of characteristic 0 (k = const, s — o0). This estimate is extremely week but
still even sufficiently large constant immunity gives non-trivial lower bounds
on the degree of PC refutations.

Definition 4.15 ([ABSRWO0O0b]) A Boolean function f is ¢-robust if every
restriction p such that f|, = const, satisfies |p| > /.

This notion is clearly invariant under negations. In order to compare it
with non-invariant immunity let us call the function f ¢-semi-robustif f|, =0
implies |p| > ¢. Thus, a Boolean function is ¢-robust iff it is ¢-semi-robust
and so is its negation. Every /-immune Boolean function is /-semi-robust by
Lemma 2.7(1), therefore the notion of immunity is stronger. As the example
of the MOD, function shows, in positive characteristic immunity can be a
much stronger requirement than (semi-)robustness.

In the opposite direction the following estimate holds:

Theorem 4.16 Assume that char F = 0, k is a constant. Then every (s—k)-
semi-robust Boolean function f in s variables has immunity w(1) when s —
00.

Proof. By Corollary 2.6(2), we may assume w.l.o.g. that F = Q. We will
need the following classical definition of Ramsey numbers.

Definition 4.17 The Ramsey number Ry (l,... 1) is the smallest n such
that if all k-subsets of [n] are coloured in r colours, then there exists a colour
v and an /,-subset of [n] all of whose k-subsets have colour v.

Let Ni(d) be the smallest s such that for every non-zero polynomial g €
Q[z1,...,xs] with deg(g) < d there is a restriction p such that [p| < s—k—1
and g|, does not have (0 —1) roots. Thus, this is the inverse function to what
we are studying: namely, if g is a semantic corollary of the polynomial p;
(where f is a (s—k)-semi-robust Boolean function), then Ni(deg(g)) > s. Ni
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is monotone and we need to prove that Vd Ny (d) < oo. Clearly, N;(0) = k+1.
Our result follows from the following recursive bound:

Ni(d) < Rg(2"*'d,2""d, Ny,(d — 1)).

In order to see this, let s > Rq(25"1d, 2¥*1d, N;(d — 1)) and suppose that
deg(g) < d. Colour all d-subsets of [s] in three colours, 4+, —, 0, according to
the sign of the coefficient in front of the corresponding monomial in g. Let
us denote m = 2Ft'd. According to the definition of Ramsey numbers, we
have two cases.

Case 1. For some m wvariables, say, x1,...,Tm, g contains all mono-
mials x; with I € [m]¢, and it contains them with the same sign. Consider
k + 1 variables ., 1, Tmi2, .-, Tmakr1- 1f there exists a restriction p to all
variables except Ty41, Tm+2, .o, Tmikt1 S-t. g|, does not have (0 — 1) roots,
then our recursive bound follows. Otherwise for any assignment of Vars(g)\
{Tmi1, Tma2, -, Tmaks1} there exist values for 41, Tmaia, oo, Tmaks1 Which
map ¢g to 0. In other words, at least one of the functions

g|(Im+1:€1,~~~,l‘m+k+1:€k+1)

is equal to 0 on the chosen assignment or, equivalently,

H g|($m+1=61,---,$m+k+1=€k+1) =0 in SS(Q)

e {0,1}k+1

This, however, is impossible since all monomials z; with I € [m]? still appear
in all g|(zs1=e1,tmirs1=erss) With the same sign, and therefore the monomial
[T, z; has a non-zero coefficient in this product.

Case 2. For some Ni(d — 1) varaiables, say, x1,..., %N, (1), g contains
no monomial x; with I € [Ni(d — 1)]%. In this case we simply apply any
restriction to the remaining variables that does not kill g completely (which
reduces the degree), and then apply the inductive assumption.

Theorem 4.16 is proved.m

According to the convention made in Section 2 (cf. Definition 2.3), we
say that a polynomial f is /-semi-robust if the characteristic function of the
set, of its roots is so.

Theorem 4.18 For any fixed integers k,« there exists an integer sy s.t.
for any s > so, (r,8,s — «)-expander A and f1,..., fm (s — k)-semi-robust
polynomials over an arbitrary field of characteristic 0 with Vars(f;) C X;(A),
any PC refutation of the system f; = ... = f,, =0 has degree Q(r).
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This theorem follows from Theorems 3.8 and 4.16. Using the construction
of random expanders from Lemma 4.1 we can build various families of hard
tautologies based on (s — k)-semi-robust functions.

5 Open questions

The most interesting of remaining questions is what can be said about the
system (4) in the case of small expansion factor ¢ > 07 Can one show its
hardness provided that f; are sufficiently immune, otherwords is it possible
to combine our Theorems 3.8, 3.13 into one general statement?

Does there exist a relation between robustness and immunity stronger
than that of Theorem 4.167
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