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On the minimal density of triangles in graphs

A L E X A N D E R A . R A Z B O R O V†

For a fixed ρ ∈ [0, 1], what is (asymptotically) the minimal possible density g3(ρ)

of triangles in a graph with edge density ρ? We completely solve this problem by
proving that

g3(ρ) =
(t− 1)

(
t− 2

√
t(t− ρ(t+ 1))

)(
t+
√
t(t− ρ(t+ 1))

)2

t2(t+ 1)2
,

where t
def
= b1/(1− ρ)c is the integer such that ρ ∈

[
1− 1

t
, 1− 1

t+1

]
.

1. Introduction

The most famous result of extremal combinatorics is probably the celebrated theorem of
Turán [20] determining the maximal number ex(n;Kr) of edges in a Kr-free graph on n
vertices1. Asymptotically, ex(n;Kr) ≈

(
1− 1

r−1

) (
n
2

)
. The non-trivial part (that is, the

upper bound) of this theorem in the contrapositive form can be stated as follows: any
graph G with m > ex(n;Kr) edges contains at least one copy of Kr. The quantitative
version of this latter statement (that is, how many such copies, as a function fr(m,n) of
r, n,m, must necessarily exist in any graph G) received quite a fair attention in combi-
natorial literature (in more general context of arbitrary forbidden subgraphs, questions
of this sort were named in [7] “the theory of supersaturated graphs”) and turned out to
be notoriously difficult. Erdös [4, 5] computed fr(m,n) exactly when m is very close to
ex(n;Kr); more specifically, when

m ≤ ex(n;Kr) + Crn (1.1)

for some constant Cr > 0. He also completely described extremal graphs for this case.
In this paper we are more interested in the case when m is much larger than ex(n;Kr)

(typically, m = ρ
(
n
2

)
, where the edge density ρ should be thought of as a fixed constant
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strictly greater than 1− 1
r−1 ), and we are interested in the asymptotic behavior of fr(m,n)

as a function of ρ only:

fr

(
ρ

(
n

2

)
, n

)
≈ gr(ρ)

(
n

r

)
.

The main result from [7] then readily implies that gr(ρ) > 0 as long as ρ > 1− 1
r−1 .

It turns out that the values ρ = 1 − 1
t (where t ≥ r − 1 an integer), that is those for

which there exists an almost balanced complete t-partite graph, are critical and play an
extremely critical role in the whole analysis. To start with, the analytical expression of
the best known upper bound on gr(ρ) is different in every interval ρ ∈

[
1− 1

t , 1−
1
t+1

]
.

It corresponds to complete (t+ 1)-partite graphs in which t parts are roughly equal and
larger than the remaining part, and has the form

gr(ρ) ≤ (t− 1)!
(t− r + 1)!(t(t+ 1))r−1

·
(
t− (r − 1)

√
t(t− ρ(t+ 1))

)
·
(
t+
√
t(t− ρ(t+ 1))

)r−1
(
ρ ∈

[
1− 1

t
, 1− 1

t+ 1

])
.


(1.2)

The following conjecture is widely believed.

Conjecture 1. The bound (1.2) is tight.

As for lower bounds on gr(ρ), Goodman [11] (see also [17]) proved that

g3(ρ) ≥ ρ(2ρ− 1), (1.3)

and Lovász and Simonovits [13] (referring to an earlier paper by Moon and Moser [15];
see also [12]) extended this bound to arbitrary r as

gr(ρ) ≥
r−1∏
i=1

(1− i(1− ρ)). (1.4)

It can be easily seen that the lower bound (1.4) matches the upper bound (1.2)
for the critical values ρ = 1 − 1

t . Also, (1.2) is concave in every intermediate interval[
1− 1

t , 1−
1
t+1

]
, whereas (1.4) is convex. In the beautiful paper [1] (for a complete proof

see e.g. [2, Chapter VI.1]) Bollobás proved that in fact the piecewise linear function,
linear in every interval

[
1− 1

t , 1−
1
t+1

]
and coinciding with (1.2), (1.4) at its end points

also provides a lower bound on gr(ρ):

gr(ρ) ≥ t!
(t− r + 1)!

{(
t

(t+ 1)r−2
− (t+ 1)(t− r + 1)

tr−1

)
ρ

+
(
t− r + 1
tr−2

− t− 1
(t+ 1)r−2

)}
.

Lovász and Simonovits [13] proved Conjecture 1 in some sub-intervals of the form[
1− 1

t , 1−
1
t + εr,t

]
, but (in their own words) the constant εr,t is so small that they even

did not dare to estimate ε3,2. On the positive side, their proof sufficiently narrows down
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the search space for extremal graphs to compute the right value of the constant Cr in
(1.1) for which Erdös’s description of extremal graphs still holds: Cr ≥ 1

r−1 , and this is
best possible.

Finally, Fisher [9] proved2 Conjecture 1 for r = 3, t = 2. His result was independently
re-discovered by Razborov [19] with the help of a totally different method.

In this paper we enhance this latter proof with one more inductive argument and
establish Conjecture 1 for r = 3 and arbitrary values of t. Like the “base” proof, this
extension was worked out entirely in the framework of flag algebras developed in [19],
and it is presented here within that framework. Our arguments in favour of this approach
were carefully laid out in [19].

2. Notation and preliminaries

All graphs considered in this paper are undirected, without loops and multiple edges.
V (G) is the vertex set of a graph G, and E(G) is its edge set. Kn, Pn are an n-vertex
clique and an n-vertex path (of length n − 1), respectively. Ḡ is the complement of G
(on the same vertex set). All subgraphs are by default induced, and for V ⊆ V (G), G|V
is the subgraph induced on V and G − V

def= G|V (G)\V is the result of removing the
vertices V from the graph. A graph embedding α : H −→ G is an injective mapping
α : V (H) −→ V (G) such that (v, w) ∈ E(H) iff (α(v), α(w)) ∈ E(G).

[k] def= {1, 2, . . . , k}. A collection V1, . . . , Vt of finite sets is a sunflower with center C
iff Vi ∩ Vj = C for every two distinct i, j ∈ [t]. V1, . . . , Vt are called the petals of the
sunflower. Following [6], random objects appearing in this paper are always denoted in
math bold face.

2.1. Flag algebras
In this section we give a digest of those definitions and results from [19] that are necessary
for our purposes. But we warn the reader that it is not our intention to make this paper
self-contained (we actually do not see any reasonable way of achieving this goal): the main
purpose is simply to indicate which parts of the general theory are really needed here.
Although for intuition and illustrating examples we mostly refer to [19], many definitions
and results are presented at the level of generality suitable for our proof (for example,
we are exclusively working with undirected graphs rather than with arbitrary universal
first-order theories as in [19]). Hopefully, this will also be helpful for better understanding
of their intuitive meaning.

All notation in this section is strictly consistent with [19], and all references by default
also refer to [19].

We letMn denote the set of all graphs on n vertices up to an isomorphism. A type is a
graph σ with V (σ) = [k] for some non-negative integer k called the size of σ and denoted

2 The proof in [9] was incomplete since it implicitly used the fact that the clique polynomial of a graph
has an unique root of the smallest modulus. This missing statement was established only in 2000 [10].
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by |σ|. In this paper we, with one exception, will be interested only in the (uniquely
defined) types 0,1 of sizes 0,1, respectively, and in the type E of size 2 corresponding to
an edge. For a type σ, a σ-flag is a pair F = (G, θ), where G is a graph and θ : σ −→ G

is a graph embedding. If F = (G, θ) is a σ-flag and V ⊆ V (G) contains im(θ), then
the sub-flag (G|V , θ) will be denoted by F |V . Likewise, if V ∩ im(θ) = ∅, we use the
notation F − V for (G − V, θ). A flag embedding α : F −→ F ′, where F = (G, θ) and
F ′ = (G′, θ′) are σ-flags, is a graph embedding α : G −→ G′ such that θ′ = αθ (“label-
preserving”). F and F ′ are isomorphic (denoted F ≈ F ′) if there is a one-to-one flag
embedding α : F −→ F ′. Let Fσ be the set of all σ-flags (up to an isomorphism), and
Fσ`

def= {(G, θ) ∈ Fσ |G ∈M` } be the set of all σ-flags on ` vertices (thus, M` can, and
often will, be identified with F0

` ). Fσ|σ| consists of the single element (σ, id) (id : σ −→ σ

the identity embedding) denoted by 1σ or even simply by 1 when σ is clear from the
context. When G ∈ M`, and a type σ with |σ| ≤ ` is embeddable in G and has the
property that all σ-flags resulting from such embeddings are isomorphic, we will denote
this uniquely defined σ-flag by Gσ. Additionally, the edge K2 viewed as an element of
F0

2 will be denoted by ρ, and the corresponding 1-flag ρ1 ∈ F1
2 will be denoted by e.

Fix a type σ of size k, assume that integers `, `1, . . . , `t ≥ k are such that

`1 + · · ·+ `t − k(t− 1) ≤ `, (2.1)

and F = (G, θ) ∈ Fσ` , F1 ∈ Fσ`1 , . . . , Ft ∈ F
σ
`t

are σ-flags. We define the quantity
p(F1, . . . , Ft;F ) ∈ [0, 1] as follows. Choose in V (G) uniformly at random a sunflower
(V1, . . . ,Vt) with center im(θ) and petals of sizes `1, . . . , `t, respectively (the inequality
(2.1) ensures that such sunflowers do exist). We let p(F1, . . . , Ft;F ) denote the probability
of the event “∀i ∈ [t](F |V i ≈ Fi)”. When t = 1, we use the notation p(F1, F ) instead of
p(F1;F ).

Let RFσ be the linear space with the basis Fσ, i.e. the space of all formal finite linear
combinations of σ-flags with real coefficients. Let Kσ be its linear subspace generated by
all elements of the form

F̃ −
∑
F∈Fσ

`

p(F̃ , F )F, (2.2)

where F̃ ∈ Fσ˜̀ and ` ≥ ˜̀. Let

Aσ def= (RFσ)/Kσ.
For two σ-flags F1 ∈ Fσ`1 , F2 ∈ Fσ`2 choose arbitrarily ` ≥ `1 + `2 − |σ| and define their
product as the element of Aσ given by

F1 · F2
def=

∑
F∈Fσ

`

p(F1, F2;F )F. (2.3)

F1 · F2 does not depend on the choice of ` (modulo Kσ) and defines on Aσ the structure
of a commutative associative algebra with the identity element 1σ (Lemma 2.4)3. Aσ

3 On the notational side, superscripts 0 and 1 always refer to the corresponding types, and 2, 3, . . . refer

to powers in these algebras. We realize that this solution is not perfect, but this is the best compromise
we have been able to achieve without making the notation unnecessarily clumsy.



On the minimal density of triangles in graphs 5

is free, that is, isomorphic to the algebra of polynomials in countably many variables
(Theorem 2.7).

Given a type σ of size k, k′ ≤ k and an injective mapping η : [k′] −→ [k], let σ|η
be the naturally induced type of size k′ (that is, (i, j) ∈ E(σ|η) iff (η(i), η(j) ∈ E(σ))).

For a σ-flag F = (G, θ), the σ|η-flag F |η is defined as F |η
def= (G, θη). We define the

normalizing factor qσ,η(F ) ∈ [0, 1] as follows. Let F = (G, θ); generate an injective
mapping θ : [k] −→ V (G), uniformly at random subject to the additional restriction
that it must be consistent with θ on im(η) (that is, θη = θη). We let qσ,η(F ) be the
probability that θ defines a graph embedding σ −→ G and the resulting σ-flag (G,θ) is
isomorphic to F . We let

JF Kσ,η
def= qσ,η(F ) · F |η.

J·Kσ,η gives rise to a linear operator J·Kσ,η : Aσ −→ Aσ|η (Theorem 2.5). When k′ = 0,
J·Kσ,η is abbreviated to J·Kσ.

In the same situation, let D def= [k]\ im(θ) and d def= k−k′ = |D|. For a σ-flag F , we let

F↓η
def= F |η − θ(D)

(thus, the only difference between F↓η and F |η is that not only we unlabel vertices in
θ(D) but actually remove them from the flag).

For F ∈ Fσ|η` , let

πσ,η(F ) def=
∑{

F̂ ∈ Fσ`+d
∣∣∣∣ F̂y

η
= F

}
.

πσ,η defines an algebra homomorphism πσ,η : Aσ|η −→ Aσ (Theorem 2.6) that is also
abbreviated to πσ when k′ = 0.

Since A1 is free, we may consider its localization A1
e with respect to the multiplicative

system
{
e` | ` ∈ Z

}
(thus, every element of A1

e can be represented in the form e−`f with
f ∈ A1 and ` ≥ 0). For a graph G ∈ M`, let G+ ∈ M`+1 be obtained by adding a new
vertex v0 connected to all vertices in V (G). Let F+(G) ∈ F1

`+1 be the 1-flag resulting
from G+ by labeling the new vertex v0; define the element πe(G) ∈ A1

e by

πe(G) def= e−` · F+(G). (2.4)

πe defines an algebra homomorphism πe : A0 −→ A1
e (Theorem 2.6).

Hom(Aσ,R) is the set of all algebra homomorphisms from Aσ to R, and Hom+(Aσ,R)
consists of all those φ ∈ Hom(Aσ,R) for which ∀F ∈ Fσ(φ(F ) ≥ 0). For every φ ∈
Hom+(Aσ,R) we actually have ∀F ∈ Fσ(φ(F ) ∈ [0, 1]) (cf. Definition 5), therefore
Hom+(Aσ,R) can be considered as a subset in [0, 1]F

σ

. We endow [0, 1]F
σ

with prod-
uct topology (aka pointwise convergent topology); the resulting space is compact and
metrizable. The same is true for its closed subspace Hom+(Aσ,R) defined in [0, 1]F

σ

by
countably many polynomial equations.

Any continuous function f : C −→ R defined on a closed subset C ⊆ Hom+(Aσ,R)
is automatically bounded and attains (at least one) global minimum. Every f ∈ Aσ can
be viewed as a continuous function on C (given by f(φ) def= φ(f)), and the latter remark
applies to these functions as well as to their (continuous) superpositions.
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We rigorously define the function gr from the Introduction as

gr(x) def= lim inf
n→∞

min {p(Kr, Gn) |Gn ∈Mn ∧ p(ρ,Gn) ≥ x} .

gr(x) is clearly monotone in x, and (by a simple edge-adding argument), it is also con-
tinuous. Alternatively,

gr(x) = min
{
φ(Kr)

∣∣ φ ∈ Hom+(A0,R) ∧ φ(ρ) ≥ x
}
, (2.5)

(Corollary 3.4), and we will be studying it in this form.
The partial preorder ≤σ on Aσ is defined as

f ≤σ g ≡ ∀φ ∈ Hom+(Aσ,R)(φ(f) ≤σ φ(g)).

Felix [8] and Podolski [18] independently proved that ≤σ is actually a partial order
(that is, homomorphisms from Hom+(Aσ,R) can distinguish between any two different
elements of Aσ). We have:

f ≤σ g =⇒ JfKσ,η ≤σ|η JgKσ,η

and

f ≤σ|η g =⇒ πσ,η(f) ≤σ πσ,η(g)

(Theorem 3.1).
Let φ ∈ Hom+(A0,R), and let σ be any type such that φ(σ) > 0. An extension of φ

is a probability measure Pσ on Borel subsets of Hom+(Aσ,R) such that for any f ∈ Aσ
we have ∫

Hom+(Aσ,R)

φσ(f)Pσ(dφσ) =
φ(JfKσ)
φ(〈σ〉)

, (2.6)

where 〈σ〉 def= J1σKσ = qσ,0(1σ) ·σ ∈ A0. In the situations of interest to us the normalizing
factor qσ,0 is equal to 1 and we have:

〈σ〉 =

{
1, if σ = 0 or σ = 1

ρ, if σ = E.

Extensions always exist and are uniquely defined (Theorem 3.5). We usually visualize
the measure Pσ as the random homomorphism φσ chosen according to this measure,
and for an event A, “A a.e.” means P[A] = 1.

If φ1,φE are extensions of the same φ ∈ Hom+(A0,R) and f ∈ AE then

φE(f) ≥ 0 a.e. =⇒ φ1(JfKE,1) ≥ 0 a.e., (2.7)

where in the subscript of JfKE,1 we have abbreviated to 1 the function η : {1} −→ {1, 2}
with η(1) = 1 (Theorem 3.18). Also, for every f ∈ A0 and every type σ,

φσ(πσ(f)) = φ(f) a.e. (2.8)

(Corollary 3.19).
For a type σ, ` ≥ |σ| and G ∈M`, define µσ` (G) ∈ RFσ` as follows:

µσ` (G) def=
∑
{F ∈ Fσ` | F |0 ≈ G}
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(thus, this is the sum of all σ-flags based on G). In general, µσ` does not induce a linear
mapping from A0 to A`.

For G ∈M`, let

∂1G
def= `(π1(G)− µ1(G)).

Let Ē be the other type of size 2 (corresponding to non-edge), and Fill : AĒ −→ AE
be the natural isomorphism defined by adding an edge between the two distinguished
vertices. Let

∂EG
def=

`(`− 1)
2

(Fill(µĒ` (G))− µE` (G)).

Unlike µσ` , ∂1 and ∂E do induce linear mappings ∂1 : A0 −→ A1 and ∂E : A0 −→ AE ,
respectively (Lemmas 4.2, 4.4).

Proposition 2.1 (Theorems 4.3 and 4.5 in [19]). Let
~G = G1, . . . , Gh be fixed graphs, ~a = (a1, . . . , ah) ∈ Rh and f ∈ C1(U), where U ⊆ Rh is
an open neighbourhood of ~a. We let

Grad~G,~a(f) def=
h∑
i=1

∂f

∂xi

∣∣∣∣
~x=~a

·Gi;

this is an element of A0. Assume also that we are given φ0 ∈ Hom+(A0,R) with
φ0(ρ) > 0 such that φ0(Gi) = ai (1 ≤ i ≤ h) and for any other φ ∈ Hom+(A0,R)
with (φ(G1), . . . , φ(Gh)) ∈ U we have

f(φ(G1), . . . , φ(Gh)) ≥ f(~a).

Then for the extensions φ1
0,φ

E
0 of the homomorphism φ0 we have

φ1
0(∂1Grad~G,~a(f)) = 0 a.e.

φE0 (∂EGrad~G,~a(f)) ≥ 0 a.e.

In particular, for every g ∈ A1,

φ0(J(∂1Grad~G,~a(f))gK1) = 0 (2.9)

and for every E-flag F ,

φ0(J(∂EGrad~G,~a(f))F KE) ≥ 0 (2.10)

(Corollary 4.6).

3. Main result

Theorem 3.1. For every integer t ≥ 1 and x ∈
[
1− 1

t , 1−
1
t+1

]
,

g3(x) =
(t− 1)

(
t− 2

√
t(t− x(t+ 1))

)(
t+
√
t(t− x(t+ 1))

)2

t2(t+ 1)2
. (3.1)



8 A. Razborov

Proof. The (easy) upper bound was mentioned in the Introduction. For the lower
bound we proceed by induction on t. If t = 1 then the right-hand side of (3.1) is equal
to 0 and there is nothing to prove. So, we assume that t ≥ 2, and that the desired lower
bound on g3(x) is already proved for all s < t and all x ∈

[
1− 1

s , 1−
1
s+1

]
.

Before starting the formal argument, let us give a general overview of our strategy. First
of all, assuming for the sake of contradiction that there exist elements of Hom+(A0,R)
violating the lower bound in (3.1), we can fix once and for all φ0 ∈ Hom+(A0,R) that
violates it most, i.e., φ0 minimizes the “defect” functional φ(K3) − g3(φ(ρ)) over φ ∈
Hom+(A0,R) with φ(ρ) ∈

[
1− 1

t , 1−
1
t+1

]
. Goodman’s bound (1.3) implies that φ0(ρ)

is an internal point of this interval which allows us to conclude that φ0 satisfies the two
“variational principles” (corresponding to vertex and edge deletion, respectively) from
Proposition 2.1.

A relatively simple calculation in flag algebras leads to the first key inequality (3.6).
Intuitively, it means that Conjecture 1 for r = 4 and any given t implies the same con-
jecture for r = 3 (and the same t), that is exactly what we are proving. Since Conjecture
1 is trivial for r = 4, t = 2, (3.6) already implies Fisher’s result (this part was actually
found a year before its generalization to arbitrary t; see [19, Section 5]).

Unfortunately, despite significant effort we have not been able to prove Conjecture 1
for r = 4 even in the simplest non-trivial case t = 3. What we, however, managed to do
was to show a priori weaker and more complicated lower bound on the density of K4 (see
(3.25)) that, moreover, substantially uses the extremal properties of φ0. Even this lower
bound, however, allows us to put things together.

Even with all numerical simplifications provided by the framework of flag algebras
(where we at least do not have to worry about low-order terms!), proving (3.25), which is
the key part of our argument, still involves rather tedious (but straightforward) analytical
computations. The best way to see why and how it works out is to check all these
calculations and constructions against the “real” extremal homomorphism corresponding
to the (t+ 1)-partite graph with appropriate densities of the parts.

Besides these annoying technicalities, the proof of (3.25) involves only one new combi-
natorial idea, and this is where we use our inductive assumption (on t). In the formalism
of flag algebras this idea is captured by the homomorphism πe defined by (2.4), and
intuitively we do the following. Fix any vertex v in our graph G and consider the sub-
graph Gv induced by its neighbours. Then it turns out that the constraints imposed by
Proposition 2.1 imply that the edge density in Gv is at most

(
1− 1

t

)
(3.15). Hence we

can apply the inductive hypothesis to bound the density of triangles in Gv which is also
the (properly normalized) density of those K4 in G that contain v. Unfortunately, the
resulting bound (3.16) is not linear in the degree of v, and converting it to the linear form
(3.24) is where the most tedious analytical work occurs. After this is done, however, the
required lower bound (3.25) on the density of K4 in G is attained simply by averaging
over v.

We now begin the formal proof. Denote the right-hand side of (3.1) by ht(x), and
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consider the continuous real-valued function f on the closed set

C
def=
{
φ ∈ Hom+(A0,R)

∣∣∣∣ φ(ρ) ∈
[
1− 1

t
, 1− 1

t+ 1

]}
given by f(φ) def= φ(K3) − ht(φ(ρ)). Due to (2.5), we only have to prove that f(φ) ≥ 0
on C. Let φ0 ∈ C be the point where f attains its global minimum. If φ0(ρ) = 1− 1

t or
φ0(ρ) = 1− 1

t+1 then we are done by Goodman’s bound (1.3). Thus, we can assume that
φ0 is internal in C, that is, 1− 1

t < φ0(ρ) < 1− 1
t+1 .

The next part of our argument very closely follows [19, Section 5]. Let a def= φ0(ρ)
and b

def= φ0(K3). In the setting of Proposition 2.1, let h := 2, ~G := ρ,K3, ~a = a, b

and (with slight abuse of notation) f(x, y) = y − ht(x) be the C1-function in the open
neighbourhood U

def=
{

(x, y)
∣∣∣ 1− 1

t < x < 1− 1
t+1

}
of the point (a, b) ∈ R2. Then

Gradρ,K3,a,b(f) = K3 − h′t(a)ρ

∂1Gradρ,K3,a,b(f) = (3π1(K3)− 2h′t(a)π1(ρ))− (3K1
3 − 2h′t(a)e)

∂EGradρ,K3,a,b(f) = h′t(a) · 1E − 3KE
3 .

Let φ1
0,φ

E
0 be the extensions of φ0. Applying Proposition 2.1 and using (2.8) in case

of φ1
0, we get

φ1
0(3K1

3 − 2h′t(a)e) = 3b− 2ah′t(a) a.e. (3.2)

and

φE0 (KE
3 ) ≤ 1

3
h′t(a) a.e. (3.3)

We reserve these two facts for later use, and for the time being we only need their “light”
versions (2.9) (with g := e) and (2.10) (with F := P̄E3 ):

φ0(3JeK1
3 K1 − 2h′t(a)Je2K1) = a(3b− 2ah′t(a)), (3.4)

φ0(JP̄E3 K
E
3 KE) ≤ 1

3
h′t(a)φ0(JP̄E3 KE) =

1
9
h′t(a)φ0(P̄3). (3.5)

Lemma 3.2. 3JeK1
3 K1 + 3JP̄E3 KE

3 KE ≥ 2K3 +K4.

Proof of Lemma 3.2. Both sides of this inequality can be evaluated as linear com-
binations of those graphs in M4 that contain at least one triangle. There are only four
such graphs, and the lemma is easily verified by computing coefficients in front of all of
them.

Applying φ0 to the inequality of Lemma 3.2, comparing the result with (3.4), (3.5)
and re-grouping terms, we get

h′t(a)φ0

(
1
3
P̄3 + 2Je2K1

)
+ b(3a− 2) ≥ 2h′t(a)a2 + φ0(K4).

Next, 1
3 P̄3 + 2Je2K1 = K3 + ρ. This finally gives us

b(h′t(a) + 3a− 2) ≥ a(2a− 1)h′t(a) + φ0(K4).
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The function ht(x) is concave on
[
1− 1

t , 1−
1
t+1

]
and h′t

(
1− 1

t+1

)
= 3(t−1)

t+1 which im-

plies h′t(a) > 3(t−1)
t+1 ≥ 1 and hence h′t(a) + 3a− 2 > 0. Therefore,

b ≥ a(2a− 1)h′t(a) + φ0(K4)
h′t(a) + 3a− 2

. (3.6)

It is easy to check (see the discussion at the beginning of this section) that if we replace
φ0(K4) in the right-hand side of (3.6) by the conjectured value of g4(a) (given in (1.2))
then this bound evaluates exactly to ht(a) and we are done. In other words, Conjecture 1
for r = 4 and any given t implies this conjecture for r = 3 (and the same t). In particular,
since g4(a) = 0 for 1/2 ≤ a ≤ 2/3, the case t = 2 is already solved (this is exactly the
content of [19, Section 5]), and in what follows we will assume t ≥ 3. We can also assume
w.l.o.g. that

b ≤ ht(a) (3.7)

since otherwise we are already done. Let us first apply (2.7) (with f := 1
3h
′
t(a)−KE

3 ) to
(3.3). Since JKE

3 KE,1 = K1
3 and J1EKE,1 = e, we get

φ1
0(K1

3 ) ≤ 1
3
h′t(a)φ1

0(e) a.e. (3.8)

On the other hand, (3.2) allows us to express φ1
0(K1

3 ) as a linear function in φ1
0(e):

φ1
0(K1

3 ) = Aφ1
0(e)−B a.e. (3.9)

where we introduced the notation

A
def=

2
3
h′t(a),

B
def= Aa− b =

2
3
ah′t(a)− b.

(3.7) implies

B ≥ 2
3
ah′t(a)− ht(a) =

(t− 1)
(
t+
√
t(t− a(t+ 1))

)2

t(t+ 1)2
> 0, (3.10)

and, thus, from (3.9) we see that φ1
0(e) ≥

B
A > 0 a.e. On the other hand, from comparing

(3.8) and (3.9), φ1
0(e) ≤ 2B

A a.e. Summarizing,

0 < φ1
0(e) ≤ 2B

A
a.e. (3.11)

Consider now any individual φ1 ∈ Hom+(A1,R) for which (3.9) and (3.11) hold. Since
φ1(e) > 0, φ1 can be extended to a homomorphism from the localization A1

e into the
reals; composing it with the homomorphism πe (given by (2.4)), we get a homomorphism
ψ

def= φ1πe ∈ Hom+(A0,R). By (3.9), we have

ψ(ρ) = φ1(e−2K1
3 ) =

φ1(K1
3 )

φ1(e)2
=
Aφ1(e)−B
φ1(e)2

.
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In order to simplify this expression, we introduce new coordinates

z
def=

φ1(e)
A

, (3.12)

µ
def=

B

A2
.

In these coordinates,

ψ(ρ) =
z − µ
z2

(3.13)

(which, in particular, implies z ≥ µ) and the second inequality in (3.11) is re-written as
z ≤ 2µ.

Before proceeding any further, we need to localize the value of µ to the interval

t

4(t− 1)
≤ µ ≤ (t− 1)

4(t− 2)
. (3.14)

For the lower bound, we use the already known bound (3.10) on B followed by a simple
computation:

µ ≥
2
3ah

′
t(a)− ht(a)(
2
3h
′
t(a)

)2 =
t

4(t− 1)
.

For the other part, we use Goodman’s basic bound b ≥ a(2a−1) (see (1.3)). This implies
µ = aA−b

A2 ≤ aA−a(2a−1)
A2 . Maximizing this expression in A gives us µ ≤ a

4(2a−1) which is
at most t−1

4(t−2) since a ≥ t−1
t .

Now, as a function in z, the right-hand side of (3.13) is increasing in the interval
z ∈ [µ, 2µ]. Therefore,

ψ(ρ) ≤ 1
4µ
≤ 1− 1

t
(3.15)

by (3.14), and we can apply the inductive hypothesis to the homomorphism ψ and con-
clude that

ψ(K3) ≥ hs(ψ(ρ)) = hs

(
z − µ
z2

)
,

where 1 ≤ s ≤ t− 1 is chosen in such a way that

1− 1
s
≤ z − µ

z2
≤ 1− 1

s+ 1
.

But ψ(K3) = φ1(K1
4 )

φ1(e)3 , so we finally get

φ1(K1
4 )

A3
≥ z3 · hs

(
z − µ
z2

)
; (3.16)

recall that φ1 is an arbitrary element of Hom+(A1,R) for which (3.9) and (3.11) hold.
The next step is to linearize this bound in z so that we can average the result according

to the distribution φ1
0, and the main technical complication is that we need our linear

bound not to depend on s at all.
Recall that in the interval z ∈ [µ, 2µ] the function z−µ

z2 is increasing from 0 to 1
4µ ∈[

1− 1
t−1 , 1−

1
t

]
. For 1 ≤ s ≤ t − 1, denote by ηs ∈ [µ, 2µ] the uniquely defined root of
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the equation
ηs − µ
η2
s

= 1− 1
s

(3.17)

(so that η1 = µ), and let also ηt
def= 2µ be the right end of our interval. The right-hand

side of (3.16) is continuous on [η1, ηt], and in every sub-interval [ηs, ηs+1] (1 ≤ s ≤ t− 1)
it is equal to the smooth function

θs(z)
def= z3 · hs

(
z − µ
z2

)
.

The following claim will be needed only for s = t− 1, but the general case is no harder
(and is helpful for understanding the whole picture).

Claim 3.3. For every s = 1, 2, . . . , t− 1, θs(z) is concave in the interval z ∈ [ηs, ηs+1].

Proof of Claim 3.3. First note that
z − µ
z2

≤ ηs+1 − µ
η2
s+1

= 1− 1
s+ 1

,

hence sz2 − (s+ 1)(z − µ) ≥ 0. Denoting

ξ
def=
√
s(sz2 − (s+ 1)(z − µ)), (3.18)

it is easy to check that

θ′′s (z) = −3(4sµ− s− 1)2(s− 1)
2ξ(2ξ − 2sz + s+ 1)2

≤ 0.

Now we are ready to describe our linearization of the bound (3.16). It interpolates
this bound at the point ηt−1 and has the slope 3

2 (1− 2µ). That is, we claim that for all
s = 1, 2, . . . , t− 1 and z ∈ [ηs, ηs+1],

θs(z) ≥
3
2

(1− 2µ)(z − ηt−1) + θt−1(ηt−1)

=
3
2

(1− 2µ)(z − ηt−1) + η3
t−1 ·

(t− 2)(t− 3)
(t− 1)2

.

 (3.19)

We consider separately two cases, z ≥ ηt−1 and z ≤ ηt−1, and it is clearly sufficient to
establish that

θ′t−1(z) ≥ 3
2

(1− 2µ) (z ∈ [ηt−1, ηt]), (3.20)

θ′s(z) ≤
3
2

(1− 2µ) (s ≤ t− 2, z ∈ [ηs, ηs+1]). (3.21)

Proof of (3.20). By Claim 3.3, we may assume w.l.o.g. that z = ηt = 2µ, in which case
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(3.20) simplifies to

θ′t−1(2µ) =
3(t− 2)
(t− 1)t2

(
(t− 1)µ−

√
(t− 1)µ(4(t− 1)µ− t)

)
×
(

8(t− 1)µ− t+ 4
√

(t− 1)µ(4(t− 1)µ− t)
)
≥ 3

2
(1− 2µ).

 (3.22)

Recall from (3.14) that µ ∈
[

t
4(t−1) ,

t−1
4(t−2)

]
, and that by our assumption t ≥ 3. It is easy

to check that (3.22) turns into exact equality at both end points µ = t
4(t−1) ,

t−1
4(t−2) of the

interval (which explains our choice 3
2 (1− 2µ) of the slope), hence we only have to check

that the left-hand side θ′t−1(2µ) of (3.22) is concave as a function of µ. This follows from
the direct computation

d2θ′t−1(2µ)
dµ2

= − 3u1/2(u− 1)
(4uδ + u+ 1)3/2δ1/2(u+ 1)2

×(128u2δ2 + 64u3/2δ3/2(4uδ + u+ 1)1/2 + 16u3/2δ1/2(4uδ + u+ 1)1/2

+16u1/2δ1/2(4uδ + u+ 1)1/2 + 48u2δ + 48uδ + 3u2 + 6u+ 3) ≤ 0,

where u def= t− 1 and δ
def= µ− t

4(t−1) ≥ 0.

Proof of (3.21). Using the previous notation (3.18), we can re-write the inequality
(3.21) as

3(s− 1)
s(s+ 1)2

(sz + ξ)(s+ 1− sz − ξ) ≤ 3
2

(1− 2µ). (3.23)

Since s ≤ t−2, we have µ ≤ s+1
4s and z ≤ 2µ ≤ s+1

2s . It is easy to see that for µ = s+1
4s we

have ξ = s+1
2 − sz and (3.23) becomes equality; also, the right-hand side is decreasing in

µ. Thus, we only have to prove that its left-hand side is increasing in µ as long as µ ≤ s+1
4s .

This is easy: first, ξ is clearly increasing in µ. Second, µ ≤ s+1
4s implies ξ ≤ s+1

2 − sz, and
then (sz + ξ)(s+ 1− sz − ξ) is also increasing as a function of ξ.

We have proved both bounds (3.20) and (3.21) on the derivatives, and they imply
(3.19). Substituting this into (3.16), and recalling the meaning (3.12) of z, we find

φ1(K1
4 ) ≥ A3

(
3
2

(1− 2µ)
(
φ1(e)
A
− ηt−1

)
+ η3

t−1 ·
(t− 2)(t− 3)

(t− 1)2

)
. (3.24)

This conclusion holds for any φ1 ∈ Hom+(A1,R) for which we know (3.9), (3.11). In
particular, we can apply it to the random homomorphism φ1

0; averaging the result (and
recalling that E

[
φ1

0(K1
4 )
]

= φ0(K4) and E
[
φ1

0(e)
]

= φ0(ρ) = a by (2.6)), we finally get
the bound

φ0(K4) ≥ A3

(
3
2

(1− 2µ)
( a
A
− ηt−1

)
+ η3

t−1 ·
(t− 2)(t− 3)

(t− 1)2

)
. (3.25)
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Comparing (3.6) with (3.25) (and recalling that h′t(a) = 3
2A), we get

b

(
3
2
A+ 3a− 2

)
− 3

2
a(2a− 1)A

≥ A3

(
3
2

(1− 2µ)
( a
A
− ηt−1

)
+ η3

t−1 ·
(t− 2)(t− 3)

(t− 1)2

)
.


(3.26)

For analyzing this constraint we once more recall that µ ∈
[

t
4(t−1) ,

t−1
4(t−2)

]
, and let

µ =
t− 1

4(t− 2)
− σ2

4(t− 1)(t− 2)
,

where σ ∈ [0, 1]. Inverting the function h′t(a), we get

a =
At(4(t− 1)−A(t+ 1))

4(t− 1)2
.

Also,

b = aA− µA2,

and, solving the quadratic equation (3.17),

ηt−1 =
t− 1− σ
2(t− 2)

.

Substituting all this into (3.26), we, after simplifications and cancelations, get a polyno-
mial constraint of the form

(σ − 1)
A2W (t, A, σ)

8(t− 1)2(t− 2)2
≥ 0, (3.27)

where, moreover, the polynomial W (t, A, σ) is linear in A. We claim that

W (t, A, σ) > 0. (3.28)

Indeed, due to the concaveness of ht,
3(t−1)
t+1 = h′t

(
1− 1

t+1

)
≤ h′t(a) ≤ h′t(1− 1

t ) = 3(t−1)
t ,

which implies A ∈
[

2(t−1)
t+1 , 2(t−1)

t

]
. Since W is linear in A, it is sufficient to check (3.28)

only at the end points of this interval, and calculations show that

W

(
t,

2(t− 1)
t+ 1

, σ

)
=

2(t− 1)
t+ 1

(−2σ2t+ (σ + 1)(t2 − 3t+ 4))

W

(
t,

2(t− 1)
t

, σ

)
= 2(t− 1)(−2σ2 + (σ + 1)(t− 1)).

Both quadratic (in σ) polynomials appearing here have negative leading terms, and at the
end points σ = 0, 1 they attain strictly positive values t2−3t+4, 2(t−2)2, t−1, 2(t−2)
(remember that we assumed t ≥ 3). This proves (3.28), and, therefore, (3.27) implies σ ≥
1, and (since σ ∈ [0, 1]), σ = 1. Which means µ = t

4(t−1) and b = aA− t
4(t−1)A

2 = ht(a).
Theorem 3.1 is proved.
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4. Latest developments

4.1. An exact bound
As observed by the referee of this paper, the standard blow-up trick provides for an easy
conversion of asymptotic results into exact bounds which, in our opinion, narrows the
gap between analytical and discrete methods even further. In our framework this trick
can be re-casted as follows.

Every finite graph G gives rise to a homomorphism φG ∈ Hom+(A0,R) that intuitively
corresponds to its “infinite blow-up”. φG can be described in two ways, one is combinato-
rial and another is analytical. Combinatorially, let us denote by G(k) the ordinary (finite)
blow-up of G, that is the graph on V (G)× [k] defined by ((v, i), (w, j)) ∈ E(G(k)) if and
only if v 6= w and (v, w) ∈ E(G). Then the sequence {G(k)} is convergent as k → ∞
(that is, for every fixed H the sequence p(H,G(k)) is convergent) and φG is the limit of
this sequence. Analytically, every finite graph G gives rise to a zero-one valued graphon
WG : [0, 1] −→ {0, 1} that is a stepfunction (see e.g. [3]). φG is the homomorphism
naturally corresponding to this graphon.

Either way, the values φG(H) are easy to compute by an explicit formula that in the
case of complete graphs has a particularly simple form

φG(Kr) =
n(n− 1) · . . . · (n− r + 1)

nr
· p(Kr, G) =

r!
nr
cr(G),

where cr(G) is the number of complete subgraphs on r vertices. Applying to the homo-
morphism φG our main result, we immediately get

Theorem 4.1. f3(m,n) ≥ n3

6 g3( 2m
n2 ).

4.2. Larger values of r
After the preliminary version of this paper had been disseminated, V. Nikiforov [16]
proved Conjecture 1 for r = 4. Like Fisher [9] and us, Nikiforov’s proof very substantially
uses analytical methods (although, instead of optimizing over the whole set Hom+(A0,R),
he optimizes over its closed subset corresponding to the stepfunctions with a fixed number
of steps). The problem of finding a purely combinatorial proof of Conjecture 1 remains
open even in the simplest non-trivial case r = 3, 1/2 ≤ ρ ≤ 2/3.
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