
Complexity Theory

Instructor: Alexander Razborov, University of Chicago.
razborov@cs.uchicago.edu

Scribe: Yakov Shalunov, University of Chicago.
Course Homepage:

https://people.cs.uchicago.edu/~razborov/teaching/spring25.html

Spring 2025

https://people.cs.uchicago.edu/~razborov/teaching/spring25.html

Contents

1 Uniform Models 2
1.1 History . 2

1.1.1 Introduction . 2
1.1.2 Digression: Kolmogorov complexity (A success story) 4
1.1.3 Machine-independent complexity . 4

1.2 Deterministic Time . 5
1.2.1 Deterministic Time Classes . 5
1.2.2 Hierarchies . 6
1.2.3 Reductions . 9

1.3 Nondeterministic time, NP-completeness, and Cook–Karp–Levin theorem 10
1.3.1 Nondeterministic time . 10
1.3.2 NP-completeness and satisfiability . 12

1.3.3 The importance of P
?
= NP . 15

1

Part 1

Uniform Models

Lecture 1
Date: March 25th, 2025

1.1 History

1.1.1 Introduction

Historical lecture, many people date complexity theory back to one particular paper [1], but we’ll
cover some older things first.

Discrete computations can be represented as functions f : {0, 1}∗ → {0, 1}∗ taking finite binary
strings to finite binary strings. You can encode arbitrary structures using binary strings.

Remark (Alphabets). We are choosing the alphabet Σ = {0, 1}, rather than working in an arbitrary
alphabet. In computability theory, it is typical to use Σ = {1} and, e.g., represent n ∈ N in the
unary encoding 1n.

In computability theory, this makes no difference, but in complexity theory, this makes an
enormous difference, since for n ∈ N, the unary representation has length x and the binary repre-
sentation has length approximately log2 x.

The exponential difference is enormous, covering the span of most complexity theory.
Any other fixed finite alphabet Σ, e.g., {0, 1, . . . , 9}, this will not change much because then the

length of x is about log10 x, which is a constant factor difference from log2 x, which is immaterial
to complexity theory.

Remark (Constant factors). We use ”big-O” notation, where f = O(g) if ∃C ∈ R+, N ∈ N such
that ∀n ≥ N , f(n) ≤ C · g(n). We generally do not care about these constant factor differences
and will generally make these constants implicit via big-O rather than explicit.

Similarly, f = Ω(g) if ∃C ∈ R+, N ∈ N such that ∀n ≥ N , f(n) ≥ C · g(n).
Finally, f = Θ(g) if f = O(g) and f = Ω(g).

Remark (Machine independence). Due to ignoring constant factors, most results are machine/language
and technology independent.

We are interested in lower-bounds and upper-bounds on how hard problems are. Upper-bounds
are generally proven by providing algorithms which solve the problem and then proving that those
algorithms have some complexity, bounding the complexity of the problem.

2

On the other hand, lower-bounds require a variety of more conceptually distinct techniques and
are generally harder to come by.

Mostly for historical reasons, we use the model of ”Turing machines,” though it is functionally
equivalent for our purposes to, e.g., Python.

Definition 1 (Turing machine). A Turing machine consists of two finite alphabets, Σ (the ”symbol
alphabet”) and Q the ”internal alphabet” or ”set of states.” We presume that there is are a
distinguished ”blank” symbol s0 ∈ Σ, a ”start state” q1 ∈ Q, and a ”halt state” qh ∈ Q.

While Turing machines can be defined many ways, we will assume that there is a single, infinite
tape on which the machine can write symbols. All but finitely many symbols of the tape will always
be the ”blank” symbol s0.

The machine has a ”head” located at some position on the tape and is in some internal state q ∈
Q. The Turing machine then has a program or ”transition function,” T : Σ×Q → Q×(Σ∪{L,R}).

The transition function governs how the machine evolves from one time step to the next. The
machine reads the symbol s ∈ Σ under the head, and then combined with the current internal state
q ∈ Q, it outputs a new state and either a new symbol s′ ∈ Σ to write to the tape or one of L and
R, representing left and right movements of the head along the tape.

One standard alphabet is Σ = {0, 1, s0} (where s0 is often written as an underscore). To run
the machine on an input x ∈ {0, 1}∗, the tape is initialized such that it contains x surrounded by
infinite cells containing s0 and the head is placed on the first character of x.

The machine then evolves according to T until it reaches qh, at which point the output is the
contents of the tape with all s0 removed. Note that a Turing machine is permitted to never reach
qh, in which case the output is undefined.

Correspondingly, every Turing machine M computes a partial function M : {0, 1}∗ → {0, 1}∗,
where M(x) is undefined if M on input x never reaches qh and is otherwise the output.

Definition 2 (Halting problem). The problem Halt : {0, 1}∗ → {0, 1}∗ is defined to be 1 on a
description of a Turing machine M and input x to that machine if M halts on x, and 0 otherwise.

Theorem 1 (Halting problem). There is no Turing machine computing Halt.

Proof. Suppose H computes Halt. Let

H ′(M) =

{
output 0 if H(M,M) = 0

loop forever if H(M,M) = 1

Observe then that if H ′(H ′) halts, H(H ′, H ′) = 1, so H ′(H ′) loops forever. Conversely, if
H ′(H ′) loops forever, H(H ′, H ′) = 0, so H ′(H ′) = 0 halts. Thus, we have a contradiction and so
can conclude H cannot exist.

However, for our purposes, we are interested in Turing machines running in bounded time. We
can consider our machines to keep a running clock and once the clock elapses, they halt regardless
of other state of the computation.

We are in particular interested in decision problems, which are equivalent with only a ”moder-
ate” slowdown to arbitrary computational problems.

Definition 3 (Decision problems and languages). A computational problem f : {0, 1}∗ → {0, 1}∗
is a decision problem if the image of f is 0, 1.

The corresponding language L ⊆ {0, 1}∗ is f−1(1).
We will often use decision problems and their corresponding languages fairly interchangeably.

3

Definition 4 (Time and space complexity of a Turing machine). Given a Turing machine M , we
can define the time complexity tM (x) to be the number of steps the machine runs for before halting,
and we define the space complexity sM (x) to be the number of distinct cells that the machine reads
during its execution.

If M(x) is undefined, so are tM (x) and sM (x).

These metrics, and the trade offs between them, are of primary interest to complexity theory.
We have defined time and space complexity of a specific Turing machine. But we would also

like to define them for a computational problem f : {0, 1}∗ → {0, 1}∗.

Definition 5 ((Naive) complexity of a function). We define the complexity of a computable f :
{0, 1}∗ → {0, 1}∗ to be the complexity of the “best” machine computing f , where “best” depends
on specific property we’re interested.

Unfortunately, as we will see in Theorem 3 below, “best” is impossible to define.

1.1.2 Digression: Kolmogorov complexity (A success story)

Rather than computing anything on x, we will divert to the task of reproducing x with minimal
information.

Definition 6 (Kolmogorov complexity with respect to a machine). If we fix a Turing machine M ,
the Kolmogorov complexity with respect to M is KM (x) = min {|y| : M(y) = x}.

We can think of M as a decompression algorithm, and KM measures the compressibility of x.

It turns out that in this case, the “best” machine does exist.

Theorem 2 (Kolmogorov). There exists a universal machine U such that for any other M ,
KU (x) ≤ KM (x) + cM .

Proof. The universal machine U takes an encoded pair (M,x) and simulates M(x). Then if
KM (y) = x, KU (y

′) = x for y′ = (M,y), where |y′| ≤ y + cM . (We can choose an encoding
of pairs which makes |(M,y)| = cM + y.)

We can fix a standard enumeration of all Turing machines M1,M2, . . . ,Me, . . ., and then let
U(e, x) = Me(x). (It is convenient to identify the Turing machine Me with its description/identifier
e.)

We can then define Kolmogorov complexity in terms of KU .

1.1.3 Machine-independent complexity

Introduced by Blum in [2].
Note that the enumeration M1, . . . ,Me, . . . gives a fixed enumeration of all partial computable

functions φ1, . . . , φe, (Note that this list has a large number of duplicates, since there are many
Turing machines computing a given function.)

Definition 7 (Abstract complexity measure). An abstract complexity measure is a sequence of
functions Φ1, . . . ,Φe, . . . satisfying Blum’s axioms:

1. dom(Φe) = dom(φe).

4

2. The predicate (in 3 arguments) Φe(x) = y is decidable.

Example 1 (Time complexity). The sequence t1, . . . , te, . . . where te = tMe represents an abstract
complexity measure. The first axiom is trivial, since the domain of time complexity is the same as
the domain of underlying machine.

The second axiom is satisfied since we can simply simulate machine Me on input x for exactly
y steps to see if te(x) = y.

Similarly, s1, . . . , se, . . . is an abstract complexity measure, with the first axiom again trivial
and the second following from the fact that if we bound the machine to using s cells, it only has
|Σ|s · |Q| · s distinct full configurations (the state of the tape, the internal state, and the location of
the head), and if the configuration ever repeats, computation must proceed exactly the same way
from it as it did the first time, so it must then loop forever. By pigeon hole principle it suffices to
simulate the machine for |Σ|s · |Q| · s steps.

Theorem 3 (Blum’s speedup theorem). Assume that Φ is any abstract complexity measure and
s(n) is an arbitrary total computable function such that lim

n→∞
s(n) = ∞.

Then there exists a total computable f such that the following holds:
For any e such that φe = f , there exists another e′ such that φ(e

′) = f and for almost all x,
Φ′
e(x) ≤ s(Φe(x)).

Given the previous theorem, on the “problem-complexity plane” there does not really exist
a function that assigns to every problem its complexity in any reasonable sense. In Complexity
Theory we usually change the axe in a way somewhat akin to the theory of Lebesgue integration:
start with a complexity bound and look at the set of all problems solvable by at least one algorithm
obeying that bound. This leads to the concept of complexity classes, defined in terms of resource
“budgets.”

1.2 Deterministic Time

1.2.1 Deterministic Time Classes

We will talk for now about time complexity. The worst-case time complexity of a machine M is
tM (n) = max|x|≤n tM (x).

Sometimes we will be interested in complexity in terms of some structural parameters of the
input rather than just length, e.g., for graph algorithms, we may be interested in complexity in
terms of the number of vertices or edges, rather than total description size (which depends on the
representation).

Definition 8 (Deterministic time). For an arbitrary monotone function t(n), we define the class
deterministic time t(n) to be

DTIME [t(n)] = {f |∃M computing f s.t. tM (n) ≤ O(t(n))}

It is worth noting that for low levels of the hierarchy, e.g., DTIME [n], we do actually care about
the details of the model, such as number of heads and tapes.

5

We then have DTIME [n] ⊊ DTIME
[
n logO(1) n

]
where the O(1) in the exponent is taken to

mean DTIME
[
n logO(1) n

]
=

⋃
k∈NDTIME

[
n logk n

]
. We have

DTIME [n] (linear time)

⊊DTIME
[
n logO(1) n

]
(quasilinear time)

⊊DTIME
[
n2

]
(quadratic time)

⊊DTIME
[
nO(1)

]
= P (polynomial time)

⊊DTIME
[
2O(n)

]
= E (simply exponential time)

⊊DTIME
[
2n

O(1)
]
= EXP (exponential time)

· · ·

where the fact that the inclusions are proper follows from Theorem 5 (next lecture).

Lecture 2
Date: March 27th, 2025

We can prove an even stronger (in a sense) form of Blum’s speedup Theorem 3, which seems
even more damning, since rather than merely producing a single function which can be sped up, it
tells us that there exist entire deterministic time classes which can be sped up:

Theorem 4 (Borodin–Trakhtenbrot Gap Theorem [3, 4]). Let s : N → N be an arbitrary computable
function satisfying s(n) ≤ n and lim

n→∞
s(n) = ∞. Then there exists a computable time bound T (n)

such that
DTIME [s(T (n))] = DTIME [T (n)] .

This seems like a final nail in the coffin of complexity theory, but it turns out that T (n) needs
to be pathological in order for this to happen, and this isn’t an issue with “reasonable” functions
T (n).

1.2.2 Hierarchies

Definition 9 (Time constructible). A function T (n) is time constructible if there exists an algo-
rithm computing the function 1n 7→ T (n) that runs in time O(T (n)).

Definition 10 (Little-O notation). We have f = o(g) if lim
n→∞

f(n)
g(n) = 0.

Theorem 5 (Time Hierarchy Theorem [1]). Suppose we have two time bounds g(n) and t(n) such
that

1. t(n) ≥ n is time constructible.

2. g(n) = o
(

t(n)
log t(n)

)
.

Then
DTIME [g(n)] ⊊ DTIME [t(n)]

6

Proof. The proof is by diagonalization, constructing a machine which differs from every DTIME [g(n)]
machine on at least one input but runs in time O(t(n)).

We need two ingredients. Throughout, define n = n(x) = |x|.
First, fix a function p : {0, 1}∗ → {0, 1}∗ such that:

(a) p ∈ DTIME [n],

(b) p is infinite-to-one, i.e., ∀x,
∣∣p−1(x)

∣∣ = ∞, and

(c) |p(x)| ≤ log n.

(The third condition is not strictly necessary but it will make the proof simpler.)
Second, we need our universal function U satisfying U(e, x) = φe(x).
We are interested in U(p(x), x) but need to address that U is nontotal. To do so, we simulate

T (n) =
⌊

t(n)
log t(n)

⌋
tacts of the machine Mp(x), and we define f to be

f(x) =

{
1 if computation halts in T (n) steps and outputs 0

0 otherwise

We claim f ∈ DTIME [t(n)] \ DTIME [g(n)].

f ̸∈ DTIME [g(n)] Assume towards contradiction that it is. Then f is computed by some machine
e. By condition 2. of the theorem, we have that there is some N ∈ N such that if n ≥ N , U(e, x)
halts in g(n) < T (n) steps. On the other hand, since p is infinity-to-one, we can pick an arbitrarily
large x such that p(x) = e. Choose some x such that |x| ≥ N and p(x) = e. Then f(x) ̸= U(e, x),
which is a contradiction.

f ∈ DTIME [t(n)] We need to bound the simulation overhead of simulating U(e, x), where |e| ≤
log |x|, for T (n) steps of machine e. It is easy to do quadratic overhead by simply passing back and
forth between the machine description e and head location.

In order to get down to logarithmic, we will do a couple of tricks. By using a larger alphabet,
we can simulate any constant number k tapes, as long as the head position is the same on all
of them (specifically, to simulate tapes with alphabets Σ1, . . . ,Σk, we use 1 tape with alphabet
Σ1 × · · · × Σk).

We will need 3 tapes. The first tape is the “computational tape,” simulating the single work
tape of Me as it is simulated. The second is the “instruction tape,” containing the description
e, and the final tape is the “clock tape,” containing the number of simulation steps taken so far,
written in binary.

We note that by the assumption |e| ≤ log |x|, the content of the instruction tape is of length
O(log n) ≤ O(log T (n)), and the length of the step counter is also O(log T (n)).

This has not yet solved our problem, since with one head, we’d still need to go back and forth
between the start where the instruction and counter are and the head location.

The second idea, and key trick, is the “turtle principle:” we let the main simulation head “carry
all its baggage.” Whenever we want to move the simulation head, we first move the contents of
the clock and instruction tape with it, thus incurring only a O(log T (n)) overhead on running the
machine.

Thus, the running time of f is O(T (n) log T (n)) = O(t(n)) as desired.

7

Remark. As mentioned above, the condition |e| ≤ log |x| can be dropped but this makes the proof
significantly more complicated, see [5, Theorem 1.9] for details.

For the sake of completeness, let us give a similar statement for the space complexity.

Definition 11 (Space-constructible function). A function S(n) is space constructible if there exists
an algorithm computing the function 1n 7→ S(n) that runs in space O(S(n)).

Theorem 6 (Space Hierarchy Theorem). Suppose we have two space bounds g(n) and s(n) such
that

1. s(n) ≥ log n is space constructible.

2. g(n) = o(s(n)).

Then
DSPACE [g(n)] ⊊ DSPACE [s(n)] .

Proof. This proof is similar, except that we don’t need to worry about simulation overhead.

Remark. In the space regime, it turns out that it makes sense to consider sublinear space, in
particular the class L = DSPACE [log n].

This is defined by having separate “read-only” memory for the input, “write-only” memory for
the output, and a small work tape; we will talk more about it in a couple of weeks.

Space and time interleave:

L ⊆ P ⊆ PSPACE ⊆ EXP ⊆ EXPSPACE

The reason for the space-in-time containments is that, as mentioned when justifying that space
is an abstract complexity measure, is that a machine using only s bits of space only has roughly
|Σ|s · |Q| · s possible distinct configurations, and if a configuration repeats, it must loop forever.

The time-in-space containments follow from the fact that a machine running in time t touches
t total cells and thus at most t distinct cells.

Remark (Open Problems). We know by space and time hierarchy theorems that L ⊊ PSPACE and
P ⊊ EXP. Thus, we know that either L ⊊ P or P ⊊ PSPACE and similarly either P ⊊ PSPACE or
PSPACE ⊊ EXP.

However, in neither case do we know which, though we suspect both.

We have some examples of lower bounds, where we know the problems are decidable but that
they do not belong to the lower levels of the hierarchy.

Definition 12 (Presburger Arithmetic). The Presburger arithmetic is the formal theory with the
symbols ⟨0, 1,+⟩ (like arithmetic which is undecidable, but with multiplication removed) interpreted
over the integers.

We define the language PresburgerArithmetic to be the set of all encodings of true first
order statements made in this language.

Theorem 7. PresburgerArithmetic ∈ TRIPLE EXP and there exists ε > 0 such that any
program solving PresburgerArithmetic runs in time Ω

(
22

εn)
, so PresburgerArithmetic ̸∈

EXP.

8

Definition 13 (Tarski’s Algebra). The Tarski’s algebra is the formal theory in the language
⟨0, 1,+,×⟩, interpreted over the reals.

We define the language TarskiAlgebra to be the set of all encodings of true first order
statements made in this language.

Surprisingly, passing to the real numbers makes this easier. Not only is it decidable (unlike
realizing the same formal language with multiplication over the naturals), it is more efficient than
Presburger arithmetic.

Theorem 8. TarskiAlgebra ∈ DOUBLE EXP and there exists ε > 0 such that any program
solving TarskiAlgebra runs in time Ω(2εn), so TarskiAlgebra ̸∈ P.

Lower bounds in Theorems 7 and 8 are proved by ad hoc simulations of an arbitrary time-
bounded machine in the respective theories, followed by a straightforward application of Theorem
5; we refer to [6, Theorem 6] for further details. In modern complexity theory, however, we crucially
depend on more systematic concept of reductions that make one of its main tools.

1.2.3 Reductions

We start with Cook-Turing reductions even if they are used less frequently that many-one Karp
reductions. We will assume going forward that all machines are equipped with a clock and halt in
some time such that they are total.

Definition 14 (Oracle Turing Machine). An oracle Turing machine is a Turing machine with an
extra “oracle tape” and 3 designated states, qask, qyes, and qno.

When the Turing machine enters state qask, it “asks” an “oracle” whether the contents of the
oracle tape belongs to some language L, and it branches to one of the states qyes or qno depending
on the answer.

If M is an oracle machine then ML is the realization of the oracle machine with a language
L ⊆ {0, 1}∗ for the oracle.

If we write something like PPSPACE, it is important to remember that P here is a class of machines
whereas PSPACE is a class of languages, i.e.,

PPSPACE =
{
ML : M polytime oracle machine, L ∈ PSPACE

}
.

Definition 15 (Cook-Turing Reduction). We say that L reduces to L′, and write L ⪯p L′, if
L ∈ PL′

.

Example 2. If L1 ̸∈ P and L1 ⪯p L2 then we must have that L2 ̸∈ P (if L2 ∈ P then L1 ∈
PL2 ⊆ PP = P (a polynomial oracle doesn’t help a polynomial machine, since it can simply use a
subroutine to simulate the oracle)).

Lecture 3
Date: April 1st, 2025

Cook–Turing reductions is one possibility but in complexity theory we generally care about a
simpler and more restricted form of reductions called Karp reductions or many-one reductions.

For the first time, it is critical that we are talking about languages rather than arbitrary
problems.

9

Definition 16 (Many-one reduction). We say that L many-one reduces to L′ (generally just say
“reduces”) and write L ≤p L′ if and only if ∃f : {0, 1}∗ → {0, 1}∗ such that f ∈ P and ∀x,
x ∈ L ⇐⇒ f(x) ∈ L′).

Remark (Cook–Turing reductions vs Karp reductions). Karp reductions are clearly no stronger
than Cook–Turing reductions, since if L ≤p L′ by a function f ∈ P, we can take the machine M
computing f and modify it to simply write f(x) to the oracle tape, then query the oracle and
output whatever the oracle says.

Conversely, L ⪯p L′ need not imply that L ≤p L′, since L ⪯p co-L trivially (simply write the
input to the oracle tape, then output the negation of the oracle’s answer) while if we take any
computably-enumerable-complete language L, it does not hold that L ≤p co-L.

Definition 17 (Hard and complete languages). Given a complexity class C, a language L is called
C-hard if for every language L′ ∈ C, L′ ≤p L.

L is called C-complete if L is C-hard and L ∈ C.

Remark (Existence of complete languages). Most “reasonable” complexity classes have complete
languages. This includes all complexity classes discussed so far. In particular, the “universal
machine” type languages work for them.

Remark. Every language in P and smaller classes are complete with respect to polynomial time
reductions. Hence when we consider classes smaller than P, such as linear time or the siblings of
L, we will be interested in weaker reductions like logspace. We will talk about this in due time.

1.3 Nondeterministic time, NP-completeness, and Cook–Karp–Levin
theorem

1.3.1 Nondeterministic time

Definition 18 (Nondeterministic Turing machines). A nondeterministic Turing machine is a Tur-
ing machine with an additional triple of states, q?, qyes, and qno. If the machine enters the state
q?, it nondeterministically transitions to either qyes or qno (it can be thought of as “guessing” the
“correct” answer).

We say that a nondeterministic machine M accepts on x if there exists at least one sequence of
nondeterministic “guesses” such that M(x) reaches an accept state.

Definition 19 (Nondeterministic time). We say that the class of nondeterministic time t(n) languages,
denoted NTIME [t(n)], is the class of languages

{L : ∃ nondeterministic TM M s.t. M decides L and has running time O(t(n))} ,

where the running time of a nondeterministic machine is defined to be the maximum run time
over all paths.

We define the class nondeterministic polynomial time, NP =
⋃

k≥0NTIME
[
nk

]
.

Remark (Relationship of NP to other classes). Clearly, P ⊆ NP since we’ve simply added a feature
which we are not obliged to use. On the other hand NP ⊆ PSPACE (to be explained later, but
roughly because we can simply try each possible sequence of guesses).

10

We know
P ⊆ NP ⊆ PSPACE ⊆ EXP

and we know by time hierarchy theorem that P ⊊ EXP, but have not been able to prove that any
one of these containments is proper.

Theorem 9 (Nondeterministic time Hierarchy Theorem, Cook (1972)). If t(n) is time-constructible
and g(n+ 1) = o(t(n)) then NTIME [g(n)] ⊊ NTIME [t(n)].

Additionally, it is worth noting (we will prove this later) that we need not bother to define
nondeterministic space because:

Theorem 10 (Savitch’s theorem). NSPACE [S(n)] ⊆ DSPACE
[
S(n)2

]
. In particular, NPSPACE =

PSPACE.

Theorem 11 (Characterization of NP). L ∈ NP if and only if there exists a polynomial p(n) and
an “acceptor” language A(x,w) ∈ P such that

x ∈ L ⇐⇒ ∃w ∈ {0, 1}p(n) s.t. A(x,w).

The string w is generally called a “witness,” “certificate,” or “proof” and the acceptor A may
be called the “verifier.”

Proof. =⇒ Given a nondeterministic polynomial time machine, we can modify it such that it is
deterministic and instead takes an extra input sequence of instructions w1, . . . , wp(n) such
that every time the machine enters q?, instead of guessing which state to enter next, it reads
the next bit of w to determine which way to go.

Then any NP machine is equivalent to a P machine with an extra polynomial length (running
time bound) input and the NP machine accepts if and only if there exists any sequence of
guesses, i.e., any witness w, such that the P machine accepts.

⇐= If L has a p(n) and acceptor A(x,w) satisfying these terms then we simply have a nondeter-
ministic machine which first guesses a witness w and then simulates A.

Remark (Characterization of NP). This is generally the easier way to think of NP. This character-
ization of NP describes it as problems where there exists a “proof” that may be hard to find but
easy to check.

Theorem 12. NP ⊆ PSPACE.

Proof. Write down a guess w = 0p(n). Then simulate A(x,w) and accept if it accepts. If it rejects,
erase everything except w and x, increment w, and try again.

If every single guess w rejects, then reject.

11

1.3.2 NP-completeness and satisfiability

Theorem 13 (Levin (73)). The language

UNP =
{
(e, x, 1m, 1t) : ∃u ∈ {0, 1}m s.t. φe(x, u) = 1 within t steps

}
is NP-complete.

Proof. Belongs to NP by alternate characterization more or less immediately. NP-hard because
for every NP problem there exists some machine e, witness length m, and time bound t, both
polynomial in n = |x|, which can be output by the reduction.

Definition 20 (Formulas and conjunctive normal form). A propositional formula is a boolean for-
mula using ¬,∧,∨ on variables x1, . . . , xn. A literal ℓ is an expression of the form xi or ¬xi (which we
also write as x̄i). A clause is a disjunction of literals, e.g., (x3∨x̄7∨x11). A conjunctive normal form
formula or CNF is a conjunction of a set of clauses.

We say that a formula φ is satisfiable if there exists an assignment of variables x1, . . . , xn such
that φ(x1, . . . , xn) is true, and unsatisfiable otherwise.

We define sat to be the set of all satisfiable formulas and 3-sat to the set of all satisfiable CNF
formulas where the clauses consist of at most 3 literals each.

Theorem 14 (Cook (72)). sat is NP-complete.

Proof. It is trivial that sat ∈ NP, since the witness is exactly the candidate assignment of variables,
and evaluating a formula to see if the given candidate assignment is satisfying can be done in
polynomial time.

It remains to show that L ∈ NP =⇒ L ≤p sat. We will do this using locality of Turing
machines (i.e., the fact that the evolution of a given cell on the tape from one time step to the
next depends only on it and the neighboring cells, considering the head to be part of the cell it’s
over). The high level idea is that we will write down a formula where the input is interpreted as a
description of an entire computation history (a list of configurations), and the formula will:

� validate that each individual configuration is valid (i.e., assigns one symbol to each tape cell
and has exactly one head in exactly one state),

� validate that the initial configuration is a legal initial configuration (i.e., the head is at the
beginning of the tape in the start state) and that it matches the hard-coded input being
considered,

� validate that each successive configuration is a legal transition from the previous configuration
1 (i.e., for each cell, if the head wasn’t in one of the neighboring cells, that cell remains
unchanged, and if it was in one of the neighboring cells, that the new state of the cell is one
of the possible ones given the previous state), and

� finally, confirm that the final configuration of the computation history is an accepting config-
uration.

1note that since these are nondeterministic machines, there may be multiple legal transitions; since a nondeter-
ministic machine accepts if there exists any accepting computation history, we allow any one of the legal moves at
each step

12

In more detail, if we want to reduce from a language L ∈ NP: Let M be a machine deciding
L and running in time exactly p(n) (such a machine exists since given any machine M0 deciding
L, we can take any polynomial bounding tM0 and add a clock to the machine counting up to that
polynomial; if the machine would hit a halt state before running out the clock, we just wait to run
out the clock while preserving that halt state). We will construct a CNF formula f(u), where u is
the input.

We use a space-time diagram. We can create a grid of cells, where each row of the table
represents a configuration of the Turing machine at a given time step, each cell storing the symbol
stored there along with whether the head of the machine is in it and, if so, the state of the head.

This grid represents the entire computation history of the machine, and we will write down a
propositional formula expressing that the formula must be a valid accepting computation history.

Note that the height and width of the grid are both p(n), so the whole thing has polynomial
size.

We use i to represent the horizontal coordinate (space) and j for the vertical coordinate (time).
For a symbol s ∈ Σ, we add a variable xijs to represent “the cell i at time j has symbol s.” (Note
that it is just an intuition, this intended meaning will be enforced by the formula.)

Similarly, for q ∈ Q, we let yijq represent “at time j, the head is in state q and the ith cell.”
Then we add the constraints, as described above.

Individual configurations First, we constrain that each cell must have exactly one state: for
every i, j, we write down

∨
s∈Σ xijs and for each s1 ̸= s2 ∈ Σ, we add x̄ijs1 ∨ x̄ijs2 .

Next, we constrain that the head exists in exactly one place and state at each time: for each j,
we write

∨
i,q∈Q yijq and for each (i1, q1) ̸= (i2, q2) we add ȳi1jq1 ∨ ȳi2jq2 .

Initial and final configurations We add clauses xi0ui for i ≤ n and xi0s0 for i ≥ n + 1, and
similarly final condition:

∨
i yi,p(n),qacc (at the final time step, the head is in the accepting state,

wherever it may be).

Transition between configurations Finally, we must constrain that the evolution from one
configuration to the next is valid. Note that we can determine xijs and yijq from xi−1,j−1,s′ , xi,j−1,s′ , xi+1,j−1,s′

(ranging over all s′ ∈ Σ) and yi−1,j−1,q′ , yi,j−1,q′ , yi+1,j−1,q′ (ranging over all q
′ ∈ Q), with potentially

multiple legal options based on nondeterminism. Hence the fact that the transition is locally legal
can be expressed by a Boolean expression depending only on a bounded (i.e. depending only on the
sizes of the alphabets Σ, Q) number of variables. It can be converted to a CNF in a straightforward
way, and the size remains bounded (exponent of a constant is still a constant!).

Our reduction from L to sat on input u produces this propositional formula. Then if M(u)
accepts, there is a valid computational history which accepts and the description of this computa-
tional history will satisfying f(u). On the other hand, if M(u) rejects, there will be no assignment
of variables which represents both a valid and an accepting configuration because we have ensured
that the computation history evolves legally and starts correctly.

The classification of problems into P and NP-complete problems is remarkably successful: for
an enormous number of “reasonable” problems that you may naturally think of, they are ei-
ther straightforwardly in P or straightforwardly NP-complete. The primary tool for showing NP-
completeness is reductions, rather than going directly as we did for sat.

13

Because Karp reductions are transitive (simply compose the reduction functions), if L is NP-
complete and L ≤p L

′ then L′ must also be NP-complete (if L′′ ∈ NP and reduces to L by f and L
reduces to L′ by g then L′′ reduces to L′ by g ◦ f .)

Because we want to reduce our NP-complete languages to other languages, it is easier to work
with “weaker” languages. For example, the language 3-sat is easier to reduce from than sat, since
3-sat is a strict “sub-problem”. But we will show in the next lecture that 3-sat is NP-complete
as well.

Lecture 4
Date: April 3rd, 2025

Recall:

� L ≤p L
′ ≡ ∃f ∈ P such that x ∈ L ⇐⇒ f(x) ∈ L′.

� L is NP-complete iff L ∈ NP and ∀L′ ∈ NP, L′ ≤p L.

� if L ≤p L
′ and L is NP-hard then L′ is NP-hard. Correspondingly, if L′ ∈ NP, then it becomes

NP-complete.

� sat, the language of satisfiable boolean CNF formulas, is NP-complete.

Theorem 15. sat ≤p 3-sat. Correspondingly, 3-sat is NP-complete.

Proof. We will define our reduction f as follows:
Given a clause ℓ1 ∨ · · · ∨ ℓr for some r ≥ 4, we will convert it into several clauses of 3 literals

by introducing additional variables, yC,i for 1 ≤ i ≤ r. The idea will be to constrain the variables
such that yC,i ≡ ℓ1 ∨ · · · ∨ ℓi and then add an additional constraint that yC,i holds.

We will add clauses for yC,1 ⇐⇒ ℓ1 and yC,i ⇐⇒ yC,i−1 ∨ ℓi, and yC,r. Each of these clauses
can be written as 3-CNF (using multiple clauses):

(yC,1 ⇐⇒ ℓ1) ≡ (yC,1 =⇒ ℓ1) ∧ (yC,1 ⇐= ℓ1)

≡ (ȳC,1 ∨ ℓ1) ∧ (yC,1 ∨ ℓ̄1)

(yC,i ⇐⇒ yC,i−1 ∨ ℓi) ≡ (yC,i =⇒ yC,i−1 ∨ ℓi) ∧ (yC,1 ⇐= yC,i−1 ∨ ℓi)

≡ (ȳC,i ∨ yC,i−1 ∨ ℓi) ∧ (yC,1 ∨ yC,i−1 ∨ ℓi)

≡ (ȳC,i ∨ yC,i−1 ∨ ℓi) ∧ (yC,1 ∨ ȳC,i−1) ∧ (yC,1 ∨ ℓ̄i).

Then if φ is satisfiable, we can simply evaluate the values of yC,i for each clause according to
their intended meaning (“do not lie, tell the truth” is a good guiding principle in this direction).
Conversely, if f(φ) is satisfiable then we must have that simultaneously each yC,r is true and
yC,r ⇐⇒ yC,r−1 ∨ ℓr ⇐⇒ · · · ⇐⇒ ℓ1 ∨ · · · ∨ ℓr so φ is satisfiable (“every liar will get
caught”).

For the future, we will assume all 3-sat instances have all clauses of width exactly 3, which we
can do since, e.g., (ℓ1 ∨ ℓ2) is the same as (ℓ1 ∨ ℓ1 ∨ ℓ2).

14

1.3.3 The importance of P
?
= NP

We care about P
?
= NP because an enormous class of varied problems are either in P or NP-

complete (and thus have no efficient algorithm unless P = NP). A constructive proof that P = NP
would potentially imply efficient solutions to all of them, including the problem of checking for the
existence of a short proof of any mathematical theorem. A proof of P ̸= NP (generally expected to
hold) would imply that a broad class of problems are fundamentally hard.

Logic

Consider the Peano arithmetic PA or set theory ZFC. The question of whether PA ⊢ φ is un-
decidable, but the question PA ⊢n φ, i.e., if there exists a proof of length n, posed as (φ, 1n), is
NP-complete.

In order to reduce from sat, we map a given φ(x1, . . . , xn) to (an encoding of)

(∃x1, . . . , xn s.t. φ(x1, . . . , xn), 1
p(|φ|))

for an appropriate polynomial p(n). Then if φ is satisfiable, there will be some suitable short
proof of the statement in the first-order logic based on the satisfying assignment. Conversely, if we
assume that PA is sound then if that φ is unsatisfiable, there will be no proof of any length.

Number Theory

We ask whether a polynomial p(x1, . . . , xn) ∈ Z[x1, . . . , xn] has any integer roots, i.e.,

∃x1, . . . , xn p(x1, . . . , xn) = 0

By pulling out all negative coefficients to the other side, we can rewrite as p(x1, . . . , xn) =
q(x1, . . . , xn) for p, q with positive coefficients.

This is again undecidable, but if we replace q with some positive integer γ and write everything
in binary, we observe that this problem is now in NP: if p(a1, . . . , an) = γ then since all coefficients
are positive, we must have a1, . . . , an ≤ γ, so the total length of the solution is polynomial.

Thus, the problem is in NP.

Theorem 16 (Manders, Adleman [7]). The above problem is NP-complete. Further, φ ∈ sat
reduces to an equation of the form Ax2 +By = r for positive integers A, B, and r.

Proof. Omitted.

Graph Theory

Definition 21 (Independent set). Let G be an arbitrary graph. Let α(G) be the size of the largest
independent set (a set of vertices is independent if no pair of them has an edge between them). We
define the problem IndependentSet to be the set of pairs (G, k) such that α(G) ≥ k.

Theorem 17. IndependentSet is NP-complete.

15

Proof. We will proof by reducing from 3-sat. Given an instance φ ≡ C1∧C2∧· · ·∧Cm where each
Ci ≡ ℓi,1 ∨ ℓi,2 ∨ ℓi,3, we will construct a graph G and a natural number k such that φ is satisfiable
if and only if α(G) ≥ k.

For each clause Ci, we create a triangle Ti of pairiwise connected vertices (i.e. a clique) in the
graph and we set k = m. We will “label” (for our own convenience) the vertices of the triangle Ti

with literals ℓi,1, ℓi,2, ℓi,3.
Then we add an edge (ℓi,a, ℓi′,a′) whenever ℓi,a = ℓ̄i′,a′ . For example, if ℓi,a = xj and ℓi′,a′ = x̄j ,

we will add the edge (ℓi,a, ℓi′,a′). That completes the description of f(φ) = (G, k).
The high level idea is that:

� By connecting the literals in each clause in a triangle, we ensure that at most one of them is
selected in any independent set. By requiring, at the same time, an independent set of size
m, we then ensure that at least one vertex is selected from each clause.

� The additional edges ensure that one cannot select two “inconsistent” literals at the same
time (i.e., literals which are negations of each other).

By ensuring that you must select at least one literal from each clause and at the same time ensur-
ing that you cannot select inconsistent literals, we make independent sets of size k equivalent to
satisfying assignments.

Remark. This is a simple example of what is called a “gadget reduction” where we’ve created
gadgets in the graph to represent the clauses of our instances. Gadget reductions can get much
more complicated.

In more detail: we must show φ ∈ 3-sat ⇐⇒ f(φ) ∈ IndependentSet.

=⇒ If φ is satisfiable, pick any satisfying assignment, and then from each clause Ci arbitrarily
pick one of the satisfied literals. Add the corresponding vertex ℓi,a ∈ Ti to our independent
set S.

Trivially, S has size m since we added one vertex from each of m clauses. Further, S is
independent, since we selected only one vertex from each triangle and we cannot have selected
both ℓi,a and ℓ̄i,a, so we cannot have selected two connected vertices in different triangles.

⇐= Suppose we are given an independent set S of size m. First, we must have exactly one vertex
selected in each Ti, since there are m triangles and we cannot select two vertices in one
triangle.

If a literal ℓi,a appears in S, we assign the underlying variable to make ℓi,a = 1 (i.e., if ℓi,a = xj ,
we assign xj = 1, and if ℓi,a = x̄j then we assign xj = 0).

Observe that this process can never cause us to assign xj = 1 and xj = 0, since if ℓi,a = xj
and ℓi′,a′ = x̄j then we have an edge (ℓi,a, ℓi′,a′) and so cannot have them both in S.

By selecting one from each triangle, we have satisfied a literal in every clause and thus created
a satisfying assignment. If a variable has not been assigned in the process, we can assign it
arbitrarily.

16

Definition 22 (Clique). We define ω(G) to be the size of the largest clique in G. We define

Clique = {(G, k) : ω(G) ≥ k}

Definition 23 (Vertex cover). We define VertexCover to be the set of pairs (G, k) such that
there exists a subset S ⊆ V with |S| ≤ k such that every edge has in E has an end point in S.

Theorem 18. Clique and VertexCover are NP-complete.

Proof. For Clique, simply take graph complement to reduce to IndependentSet.
For VertexCover, simply take k to |V | − k, since if S is an independent set then V \ S is a

vertex cover and if S is a vertex cover then V \ S is an independent set.

Subset Sum Problems

Definition 24 (Subset vector sum). We define

SubsetVecSum =

{
(d, v1, . . . , vn, v0) : vi ∈ Nd ∧ ∃I ⊆ [n] s.t.

∑
i∈I

vi = v0

}

Theorem 19. SubsetVecSum is NP-complete.

Proof. We reduce from IndependentSet. Given a graph G and k, let n = |V |,m = |E|. Let
d = m + 1. We will write down an (m + n) × (m + 1) matrix M as the vertical concatenation of
two matrices M1, M2. M1 is an n× (m+1) matrix which is exactly the incidence matrix of G with
an extra column of 1’s appended on the right. M2 will be the m×m identity matrix with an extra
column of 0’s appended on the right.

Our v1, . . . , vm+n will be the rows of this matrix and our target vector v0 will be (k, 1, . . . , 1).
To see that this reduction is correct, observe:

=⇒ If there is an independent set S of size k, we pick the k row vectors in M1 corresponding to
the vertices in s, which will get us a count of k in the last column and counts of 0 or 1 in
every other column (since a count of ≥ 2 would imply 2 vertices incident to the same edge,
which you can’t have in an independent set). For every 0, we pick the corresponding vector
from the identity matrix in M2 to fill it out.

⇐= If we have a subset vector sum I, it must have exactly k of the rows from M1. We ignore the
rows from M2 and take the vertices corresponding to the k selected rows. Since the sum of
the rows has a 1 in each column, we cannot have 2 vertices which are incident to the same
edge (since the column corresponding to that edge would have a sum ≥ 2 in that case).

Definition 25 (Subset sum). We define

SubsetSum =

{
(ℓ1, . . . , ℓn, ℓ0) : ℓi ∈ N ∧ ∃I ⊆ [n] s.t.

∑
i∈I

ℓi = ℓ0

}

Theorem 20. SubsetSum is NP-complete.

17

Proof. We reduce from SubsetVecSum. While we cannot have an injective homomorphism Nd →
N, we can use instead what in arithmetic combinatorics is called a “Freiman isomorphism”, i.e.
a homomorphism that is as good as injective for our current purposes. Namely, we choose K
“sufficiently large” and map (a1, . . . , ad) 7→φ (a1 + a2K + · · ·+ adK

d−1). In other words, we have
effectively written down our vectors as numbers in some enormous base K.

More specifically, let K > n · maxi,j vi,j . Then the addition of vectors never has any “carry”
(in our base K representation) and so is performed “digit-by-digit.” But this is exactly vector
addition, giving us the desired reduction.

Scheduling Problems

We have a bunch of tasks of lengths ℓ1, . . . , ℓm and a bunch of processors, and dependency relations
between tasks. This yields various families of problems for optimal scheduling.

Definition 26 (Most basic scheduling). A list of m independent tasks of lengths ℓ1, . . . , ℓm and
a time budget t belongs to Scheduling if it is possible to schedule the tasks ℓ1, . . . , ℓm on two
processors to complete all tasks in time t.

Mathematically, does there exist I ⊆ [n] such that
∑

i∈I ℓi ≤ t and
∑

i ̸∈I ℓi ≤ t.

Theorem 21. Scheduling is NP-complete.

18

Bibliography

[1] J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms. Trans. Amer.
Math. Soc., 117:285–306, 1965.

[2] M. Blum. A machine-independent theory of the complexity of recursive functions. Journal of
the ACM, 14:322–336, 1967.

[3] B. A. Trakhtenbrot. The complexity of algorithms and computations. Lecture Notes (Novosi-
birsk University), 1967.

[4] A Borodin. Complexity classes of recursive functions and the existence of complexity gaps. In
Proceedings of the 1st ACM Symposium on the Theory of Computing, pages 67–78, 1969.

[5] S. Arora and B. Barak. Computational Complexity: a Modern Approach. Cambridge University
Press, 2009.

[6] M. J. Fischer and M. O. Rabin. Super-exponential complexity of presburger arithmetic. Tech-
nical Report 43, MIT, February 1974.

[7] K. L. Manders and L. Adleman. Np-complete decision problems for binary quadratics. Journal
of Computer and System Sciences, 16:168–184, 1979.

19

	Uniform Models
	History
	Introduction
	Digression: Kolmogorov complexity (A success story)
	Machine-independent complexity

	Deterministic Time
	Deterministic Time Classes
	Hierarchies
	Reductions

	Nondeterministic time, NP-completeness, and Cook–Karp–Levin theorem
	Nondeterministic time
	NP-completeness and satisfiability
	The importance of ¶=? NP

