Honors Discrete Mathematics

Instructor: Alexander Razborov, University of Chicago razborov@math.uchicago.edu
Course Homepage: www.cs.uchicago.edu/~razborov/teaching/autumn18.html

Autumn Quarter, 2018

Prove all of your answers with reasonable degree of mathematical rigor. If you work with others put their names clearly at the top of the assignment. Everyone must turn in their own independently written solutions. Shopping for solutions on the Internet is strongly discouraged: if you do it nonetheless, you *must* cite your source and, as the very least, explain the solution in your own words.

Homework is due at the beginning of Wednesday class unless submitted by e-mail as a PDF file prepared from a TeX source. Electronic submissions conforming to these standards (no scans please!) are encouraged and accepted until Wednesday midnight by Leo at lenacore@uchicago.edu.

Homework 4, due November 7

1. Solve the following system of congruences:

$$
\left\{\begin{array}{l}
x \equiv 1(\bmod 2) \\
x \equiv 2(\bmod 3) \\
x \equiv 1(\bmod 5) \\
x \equiv 2(\bmod 7) \\
x \equiv 1(\bmod 11) \\
x \equiv 2(\bmod 13) .
\end{array}\right.
$$

2. Let X, Y be non-empty finite sets. Call a function $f: X \longrightarrow Y$ beautiful if for any function $g: Z \longrightarrow Y$ with $|Z| \leq 2018$ there exists an injective function $h: Z \hookrightarrow X$ such that $g=f \circ h$. Call f co-beautiful
if for any $g: X \longrightarrow Z$ with $|Z| \leq 2018$, there exists a surjective $h: Y \rightarrow Z$ such that $g=h \circ f$.
Give an intrinsic ${ }^{1}$ description of beautiful and co-beautiful functions.
3. Give a close form expression for the number of unordered (that is, (A, B) and (B, A) are considered the same) pairs (A, B) such that $A \cup B=[n]$.
4. Prove the identity

$$
\sum_{k=2018}^{n}\binom{k}{2018}\binom{n}{k}=\binom{n}{2018} \cdot 2^{n-2018}(n \geq 2018)
$$

5. Let $A_{i}\left(i \in \mathbb{Z}_{6}\right)$ be sets such that for any $i \in \mathbb{Z}_{6}$ we have $\left|A_{i}\right|=50$, $\left|A_{i} \cap A_{i+1}\right|=20, A_{i} \cap A_{i+2}=\emptyset$ and $\left|A_{i} \cap A_{i+3}\right|=5$, where all additions are $\bmod 6$. Compute $\left|A_{0} \cup \ldots \cup A_{5}\right|$.
[^0]
[^0]: ${ }^{1}$ contact us if unsure about the meaning of this word

