Honors Discrete Mathematics

Instructor: Alexander Razborov, University of Chicago
razborov@math.uchicago.edu
Course Homepage: www.cs.uchicago.edu/~razborov/teaching/autumn19.html
Autumn Quarter, 2019

Prove all of your answers with reasonable degree of mathematical rigor. If you work with others put their names clearly at the top of the assignment. Everyone must turn in their own independently written solutions. Shopping for solutions on the Internet is strongly discouraged: if you do it nonetheless, you *must* cite your source and, as the very least, explain the solution in your own words.

Homework is due at the beginning of Wednesday class unless submitted by e-mail as a PDF file prepared from a TeX source. Electronic submissions conforming to these standards (no scans please!) are encouraged and accepted until Wednesday midnight by Leo at lenacore@uchicago.edu.

Homework 4, due November 6

1. Give a closed form expression for the number of unordered ${ }^{1}$ pairs (A, B), where $A, B \subseteq[n]$ are such that $|A \cap B|=5$.
2. Prove that

$$
\binom{n}{0}-\binom{n}{2}+\binom{n}{4}-\ldots
$$

is equal to $2^{n / 2}$ if $8 \mid n$, is equal to $-2^{n / 2}$ if $n \equiv 4(\bmod 8)$ and is equal to 0 if $n \equiv \pm 2(\bmod 8)$.
3. Prove the inequality

$$
S\left(m_{1}+m_{2}, n\right) \geq \sum_{n_{1}=1}^{n-1} S\left(m_{1}, n_{1}\right) S\left(m_{2}, n-n_{1}\right)
$$

[^0](like with binomial coefficients, we set $S(m, n) \stackrel{\text { def }}{=} 0$ whenever $n>m$).
4. Let $A_{i}\left(i \in \mathbb{Z}_{5}\right)$ be such that for any $i \in \mathbb{Z}_{5}$ we have $\left|A_{i}\right|=100, A_{i} \cap$ $A_{i+1}=\emptyset$ and $\left|A_{i} \cap A_{i+2}\right|=10$. Compute $\left|A_{0} \cup A_{1} \cup \ldots \cup A_{4}\right|$.
5. Prove that $p_{n}(m)$ (the number of partitions of m using at most n numbers) is also equal to the number of partitions of $m+n$ using exactly n numbers.

[^0]: ${ }^{1}(A, B)$ and (B, A) are considered the same, A and B need not necessarily be different

