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Lecture 1 (Monday, September 26)

I Mathematical Induction

We let P (n) for n ≥ 1 to be some statement. Using mathematical induction, our goal is
then to prove that ∀n, P (n) is true. This consists of two steps:

Base Step: Prove P (1).

Inductive Step: ∀k, show that P (k)⇒ P (k + 1).

Remark. This of course assumes that we have some sort of “guess” as to what P (n) is.
One method to find this, is by inductive induction, which essentially consists of guessing
empirically.

I Sum of the first n integers

Conjecture 1.1. We want to find an equation for the sum 1 + 2 + · · · + n. We begin by
forming a conjecture via inductive induction:

1 = 1

1 + 2 = 3

1 + 2 + 3 = 6

1 + 2 + 3 + 4 = 10

We then see that a reasonable conjecture for the sum of the first n integers is

P (n) =
n(n + 1)

2
=

(
n + 1

2

)
(1.2)

Proof. We proceed by induction.

• Base Step: P (1) = 1(1+1)
2 = 1

• Inductive Step: Assume that P (k) = 1+2+· · ·+k = k(k+1)
2 . Now, given this assumption

(sometimes known as the “inductive hypothesis”), we need to show that our conjecture

holds for P (k + 1) i.e., that P (k + 1) = (k+1)(k+2)
2 . We proceed as follows:

P (k + 1) = 1 + 2 + · · ·+ k + (k + 1)

=
k(k + 1)

2
+ (k + 1) given our inductive hypothesis

=
(k + 1)(k + 2)

2
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Note that another way of obtaining our conjecture is to write:

1 + 2 + · · ·+ n = s

n + (n− 1) + · · ·+ 1 = s

We can then add the two equations together with each lined up term to obtain:

(n + 1) + (n + 1) + · · ·+ (n + 1) = 2s

n(n + 1)

2
= s

Remark 1.3. Often times, there is no way around employing inductive induction (as we’ll
see in the next example). However, this is not the case in most applications of mathematical
induction.

I Sum of the first n cubes

Conjecture 1.4. This time, we want to find an equation for the sum 13 + 23 + · · ·+n3. We
again form a conjecture via inductive induction:

13 = 1

13 + 23 = 9

13 + 23 + 33 = 36

13 + 23 + 33 + 43 = 100

We now conjecture that

P (n) =
n2(n + 1)2

4
(1.5)

While this may appear opaque, one simply needs to revisit our empirical results for the sum
of the first n integers (on the previous page) to see that the sum of the first n cubes appears
to be equal to the square of the sum of the first n integers.

Proof. We proceed by induction.

• Base Step: P (1) = 12(1+1)2

4 = 1s

• Inductive Step: Assume that P (k) = 13 + 23 + · · · + k3 = k2(k+1)2

4 . Now, given this
assumption, we need to show that our conjecture holds for P (k+1) i.e., that P (k+1) =
(k+1)2(k+2)2

4 . We proceed as follows:

P (k + 1) = 13 + 23 + · · ·+ k3 + (k + 1)3

=
k2(k + 1)2

4
+ (k + 1)3 given our inductive hypothesis

= (k + 1)2
(
n2

4
+ (n + 1)

)
=

(n + 1)2(n + 2)2

4
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I Helly’s Theorem

Prior to the statement of the theorem, recall that Rd = {(x1, . . . , xd)
∣∣xi ∈ R}. Also recall

that X ⊆ Rd is convex if for every a, b ∈ X, we have [a, b] ⊆ X. Now, we proceed to the
statement of the theorem.

Theorem 1.6 (Helly’s Theorem). Let X1, . . . , Xn ⊆ Rd be non-empty and convex s.t.
every (d + 1) of them have non-empty intersection. Then, X1 ∩X2 ∩ · · · ∩Xn 6= ∅.

Proof. We’ll prove the theorem for d = 1, i.e., the real number line. We only prove the case
when the sets are open intervals (which is almost the full generality). Let I1, I2, . . . , In be
open intervals on R.

P (1) and P (2) are obvious.

We seek to prove P (3) by contradiction. Suppose that every (d + 1) = 2 of our open in-
tervals I have non-empty intersection but I1 ∩ I2 ∩ I3 = ∅. Now, note that:

I1 ∩ I2 ∩ I3 = (I1 ∩ I2) ∩ I3 (1.7)

Thus, for this expression to be empty, I3 must lie either completely to the left of (I1 ∩ I2)
or completely to the right of it. However, the former implies that I3 ∩ (I1 ∩ I2) = ∅. This,
contradicts our initial condition that every two non-empty convex sets must have non-empty
intersection.

Now, consider P (k) and P (k+ 1). Before we begin, we use a trick by replacing the collection
I1, I2, . . . , Ik, Ik+1 with I1, I2, . . . , Ik−1, (Ik∩Ik+1). We need to check now that Ii∩Ik∩Ik+1 6=
∅ ∀i < k. BUT, we’ve already proved P (3)! So, certainly the desired statement holds, as
required.

Remark. For higher dimensions, while the problem may be harder to visualize, the inductive
step generalizes straightforwardly. The base step in the proof above requires another result
from the convex geometry (Radon’s Theorem) that we do not do here.

I Strong Induction

To prove a statement by strong induction (sometimes referred to as complete induction),
we only have a single step to prove:

* Inductive Step: ∀k,
(
P (1) ∧ P (2) ∧ · · · ∧ P (k − 1)⇒ P (k)

)
.

Remark. Note that we don’t require a base step, since for k = 1, the premise here is always
true, and we obtain P (1) automatically.
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Lecture 2 (Wednesday, September 28)

I Strong Induction (Review)

Recall that to prove something via strong induction, we only need to show that(
P (1) ∧ P (2) ∧ · · · ∧ P (k − 1)

)
⇒ P (k) (2.1)

Similarly, we can show
(∀x < k), P (x)⇒ P (k) (2.2)

I Fundamental Theorem of Arithmetic

Theorem 2.3 (Fundamental Theorem of Arithmetic). Let n ∈ N. Then, ∀n ≥ 1,
we can find a unique prime factorization (pf) of n. I.e., we can find prime numbers
p1, p2, . . . , pz and natural numbers d1, d2, . . . , dz such that

n = pd11 · p
d2
2 · · · · · p

dz
z , (2.4)

and they are uniquely defined, up to a permutation.

Note that, to prove this theorem, we’ll need to prove both existence and uniqueness. We
prove existence below.

Proof. We need to show:

P (n) : n has a prime factorization.

We proceed by cases and strong induction.

Case 1: n is prime. So we can simply write n = n, and we’re done.
Case 2: n is composite. In this case, we can write n = m ·k for m, k ∈ N where 1 < m, k < n.
Then, we take the prime factorizations of k and m, by strong induction, and multiply them.
Thus, we have shown that n must have a prime factorization.

We take note that, had we used “regular” induction as opposed to strong induction, we would
not have been able to perform our proof in this manner, as the factorization of (n− 1) does
not help us to factorize n.

For those of us who are more on the computer-science side of things, the last step may
look a lot like recursion, and it is! In reality,

Recursion ≡ Induction (2.5)

In pseudo-code, the factorization would appear as follows:
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Algorithm 1 Prime factorization pseudocode

1: procedure F(n: non-negative integer)
2: if n is prime then
3: return n
4: else
5: n = m · k, 1 < m, k < n
6: return F (m) · F (n)
7: end if
8: end procedure

I Well-ordering Principle

Principle 2.6 (Well-ordering Principle). Every non-empty set of positive integers has a
minimal element. We say that such a set is well-ordered.

Remark. Note that we use the term “minimal element” and not “least element.” For some
set, say X, y ∈ X is a minimal element if y is not larger than any other element. Either
y ≤ x ∀x ∈ X or x and y are incomparable. A least element, say z ∈ X, is one such that
z ≤ x ∀x ∈ X. This difference in incomparability is one we’ll visit later when we discuss
partially ordered sets. For now, it is immaterial.

To prove the well-ordering principle, we simply employ mathematical induction.

Proof. Let X ⊆ N with X 6= ∅. Also let Xn = X ∩ {1, . . . , n}. It suffices to show

P (n) : Xn = ∅ or Xn 6= ∅ and has a least element (2.7)

Note that since X 6= ∅, Xn 6= ∅ for sufficiently large n.

Now, we proceed by induction.

Base step: P (1) is obvious.

Inductive step: Assume P (n − 1) is true. Then, we can assume Xn 6= ∅ without loss of
generality. We procced by cases:

Case 1: Xn−1 = ∅⇒ Xn = {n} is obvious.

Case 2: Xn−1 6= ∅. Then, we know that Xn−1 must have a minimal element, say a, by
our inductive hypothesis. So, a ≤ n− 1. Clearly then, a < n, and so a must be the minimal
element of Xn as well.

Theorem 2.8. The well-ordering principle implies the principle of strong induction.

Proof. Fix P such that (2.2) holds. Let X be the set of counterexamples, i.e., let X =
{n

∣∣¬P (n)} (recall that ¬ is the logical not operator). Thus, to reach the desired conclusion,
it suffices to show that X = ∅. We proceed by contradiction:
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Assume X 6= ∅. Since N is well-ordered, there exists n ∈ X such that n is minimal. I.e.,
n is our minimal counterexample. BUT, this implies that everything smaller than n doesn’t
violate P . In other words, P (1), P (2), . . . , P (n − 1) are true. BUT, this contradicts the
inductive step of mathematical induction (2.2)! And so, we’re done.

Remark 2.9. The method we employed of “taking a minimal counterexample” is quite
useful, as we’ll see in the following example. Also, we note that since regular induction is a
weaker principle, Theorem 2.8 applies to it as well.

I Finger-pointing Game

Proposition 2.10. Consider a game where we start with a room with a finite number, say
n, of people. Now, each person must point at exactly one other person in the room. It then
follows that there must exist a finite “pointing cycle” in the room. I.e., person 1 points to
person 2 who points to person 3 . . . who points to person m who points to person 1 with
m ≤ n.

Proof. Consider the game with a room of n people. We need to show there exists a finite
cycle within the room. We proceed by contradiction by taking a minimal counterexample.

Suppose that there is no such finite cycle in our room of n people. Now, for the sake of
demonstration suppose that in this room we have a person named Alice. Alice is pointing at
Bob, and anybody who is pointing at Alice (though it isn’t necessary that there actually be
anyone pointing at Alice, it is OK) is named Charlie.

Since this is a minimal counterexample, we know that there must exist a finite cycle in
any room with n − 1 people. Suppose then, that we tell Alice to leave the room and the
Charlies (who may or may not exist), should now all point to Bob. Then, a finite cycle must
exist in the room in one of two ways:

Case 1: A finite cycle exists that does not involve the Charlie’s or Bob. But, this means
that a finite cycle must have existed before Alice left the room, a contradiction to our coun-
terexample.

Case 2: A finite cycle now exists that includes either the Charlie’s or Bob. But, this im-
plies that a finite cycle must have existed when Alice was in the room, but that the cycle
was longer by just one chain (by detouring through Alice), also a contradiction to our coun-
terexample.

Remark 2.11. It is again very easy to see this particular statement directly. It is not the
case, however, in more sophisticated applications.

I Linear Orderings (Total Orderings)

Definition 2.12. Using the axiomatic method, we say that a ground set S is linearly
(totally) ordered if, ∀a, b, c ∈ S, S follows these axioms:
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1. Reflexivity: a ≤ a

2. Anti-symmetry: (a ≤ b ∧ b ≤ a)⇒ a = b

3. Transitivity: (a ≤ b ∧ b ≤ c)⇒ a ≤ c

4. Totality: (a ≤ b ∨ b ≤ a)

Notation 2.13. Before we continue with examples of linearly ordered sets and non-linearly
ordered sets, we make a brief aside regarding notation. We say that m|n if m divides n
evenly. I.e., (a = n

m) ∈ Z.

Examples 2.14. We consider the following sets and determine whether they are linearly
ordered or not.

1. N: X

2. Z: X

3. Q: X

4. C: The complex numbers do NOT form a linearly ordered set, as the set fails totality.
E.g., how would one compare (3 + 6i) and (7 + 2i)?

5. N ordered by divisibility, i.e., x1 ≤ x2 is declared to be true iff x1|x2: This set is NOT
linearly ordered as it fails totality. E.g., how would one compare 4 and 5?

Definition 2.15. A set that satisfies reflexivity, anti-symmetry, and transitivity (but not
necessarily totality) is called a partially ordered set (a.k.a., a poset).

Remark 2.16. Take note, then, that, while the fourth and fifth sets from Examples 2.13
are not totally ordered, they are partially ordered.
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Lecture 3 (Friday, September 30)

We can begin with an example of a partially ordered set (poset):

d

c b

a

This defines a ≤ b, a ≤ c, a ≤ d, c ≤ d, and b ≤ d. The elements c and b are incomparable.

I Linear Extension

It turns out that it is possible to extend any poset to a linear order. To prove this in general
requires the axiom of choice (it seems to be weaker than AC, though). However, we can use
reverse induction to prove this in the finite case.

Usual induction relies on the existence of a least element; the inductive step reduces a problem
to a smaller one (or, in case of strong induction, to several smaller ones). Reverse induction
relies on the existence of a maximum element in a finite set.

Proposition 3.1. Let (S,�) be a partially ordered set. Then there exists some linear order
≤ such that a � b implies a ≤ b. We say that (S,≤) is a linear extension of (S,�).

Proof (finite case). Let (S,�) be a finite poset. Define the cardinality of � to be the number
of pairs of elements that may be compared, | � |. For example, in the above example of a
poset, | � | = 9. Four between the distinct elements represented by the edges of the graph,
the pair (a, d), and since each element may be compared to itself, four more. In general for
a finite set,

| � | ≤ |S|2,

so | � | is finite, and we may use reverse induction.

Suppose | � | = n, and that (S,�) is not already a linear order. Then, there exists two
incomparable elements, a, b ∈ S. Define �′ by (pardon the abuse of notation)

�′=� ∪{c �′ d | c � a, b � d}.

That is, take any c � a and d � b. Define �′ such that c �′ d in addition to preserving the
original order. In particular, c may equal a and d may equal b, so we also have a � b.

We claim that �′ is an order extending � such that | � | < | �′ |. Therefore, we can apply
reverse induction, and �′ may be extended to a linear order ≤, which then also extends �.

It’s easy to see that | � | < | �′ | since �′ compares not only everything � can, but also a
and b, so | � | < | �′ |. All that’s left to do is to show that �′ is an order.

1. Because � is reflexive, so is �′.
2. Suppose c �′ d and d �′ c. If (c, d) and (d, c) are comparable under �, then �′ is

defined to preserve their order; c �′ d and d �′ c implies c � d and d � c. So, c = d.
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If neither (c, d) nor (d, c) are comparable under �, then c �′ d implies c � a and b � d.
Likewise, d �′ c implies d � a and b � c. So,

c � a � b � c

implies a = b = c. Similarly, a = b = d, so c = d.
Without loss of generality, suppose (c, d) is comparable, but (d, c) is not. The latter
then implies the existence of incomparable elements a, b ∈ S such that d � a and b � c.
The former implies c � d. But this then implies b � c � d � a, a contradiction to the
assumption that a and b are incomparable under �. Therefore, in all possible cases, we
have shown c �′ d and d �′ c implies c = d, proving anti-symmetry.

3. Suppose c �′ d and d �′ e. Then either c, d, e are already pairwise comparable under
�, in which case c � d and d � e implies c � e implies c �′ e. Or, one of the pair
(c, d) or (d, e) are not comparable under �. This implies that either d � a or b � d. It
follows that one of the pairs must be comparable. So, it is the case that

[(c � d) ∧ (d � a) ∧ (b � e)] ∨ [(c � a) ∧ (b � d) ∧ (d � e)].

These two cases both imply c �′ e.

This completes the proof.

I Transfinite Induction

Recall that we can prove strong induction from the well-ordering principle; we relied on being
able to find a minimal counterexample. It is this property of natural numbers that allows
strong induction to hold. As an example of a false proof is this:

False Theorem 3.2. Every integer n ∈ Z is greater than or equal to 10.

Proof. We use strong induction. Suppose n − 1 ≥ 10, then n ≥ 10. By strong induction,
n ≥ 10 for all n ∈ Z. Of course, this is wrong; we can’t apply strong induction here because
Z is not well-ordered, unlike N.

Now, why does the same proof not prove that n ≥ 10 for all n ∈ N? Because it might be
the case that n− 1 does not exist. So, we need a separate case for this; this turns out to be
equivalent to the base case in usual induction, n = 0. That doesn’t hold, so this theorem is
false for both N and Z.

Definition 3.3. A linear order (S,≤) is well-ordered if every nonempty subset has a minimal
element.

The well-orderedness of N is the only thing we needed to prove strong induction, so the proof
from Lecture 2 also proves that any well-ordered set permits induction.

Proposition 3.4 (Transfinite Induction). Let S be a well-ordered set and P (x), x ∈ S be any
statement. Then,

(∀y < x)(P (y)→ P (x)) =⇒ ∀xP (x).

We call this transfinite induction.
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Examples of sets that are not well-ordered include Z, Q, R, and even Q+; we can’t apply
transfinite induction to these sets.

However, if we’re given a well-ordered set S, any nonempty subset T ⊂ S is also well-ordered.
For example, N and X = {2, 4, 6, 8, . . . } are both well-ordered. But notice that these are
order-isomorphic. One says that up to isomorphism, N and X are equal. In fact, we give
the equivalence class of posets isomorphic to N a name, ω. Similarly, we let n denote the
equivalence class of posets isomorphic to {1, . . . , n}. ω and n are our first examples of ordinal
numbers, that is equivalence classes of well-ordered sets up to isomorphism.

I Sums of Well-Ordered Sets

We can construct a new well-ordered set by adding a single point to ω, so that it is greater
than everything else. We can call this ω + 1. Continuing, we can construct:

ω

ω + 1

ω + 2

...

ω + ω = ω × 2

ω × 3

...

ω × ω

...

In general, given two well-ordered sets S, T , we can construct a new well-ordered set, S + T ,
where the ground set is StT (or S∪̇T , the disjoint union), the relation between two elements
of S or T are preserved, and s ≤ t for all s ∈ S and t ∈ T .

It’s easy to see that S + T is well-ordered. If ∅ 6= X ⊂ S + T , either X ∩ S 6= ∅, in which
case the minimal element of X ∩S is the minimal element of X, or X ∩S = ∅, in which case
X ⊂ T . Then, the minimal element of X in T is the minimal element of X in S + T .

Remark 3.5. Notice that + is not commutative here. The order 2+ω is distinct from ω+2.
In fact, 2 + ω = ω. However, by inspection, we can see that + is associative.
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Lecture 4 (Monday, October 3)

Recall that an ordinal is an equivalence class of well-ordered sets that are order-isomorphic.
Last time, we had examples of

n, ω, ω + n.

In general, if we are given two well-ordered sets, S and T , we can construct the well-ordered
set S + T . We can also construct the well-ordered set S × T .

I Products of Well-Ordered Sets

Let S and T be two well-ordered sets. We define the set of S×T to be S×T in the usual sense
of the product, and we also define the order ≤ between two points (s1, t1), (s2, t2) ∈ S × T
to be

(s1, t1) ≤ (s2, t2) if and only if (t1 < t2) ∨ [(t1 = t2) ∧ (s1 ≤ s2)].

That is, we compare the second coordinate first; if they are equal, then we compare the first
coordinate. We call this the antilexicographic ordering on S × T . It’s kind of like looking up
a word in the dictionary, except that we look up a word by its last letter first. An example
of the product of two well-ordered sets is ω × 2.

Theorem 4.1. If S, T are well-ordered, then S × T is well-ordered.

Proof. Let X ⊂ S × T be nonempty. Because T is well-ordered, we can consider the subset
X ′ of X containing all elements with the least second coordinate t0. And because S is well-
ordered, we can find the smallest first coordinate s0 in X ′. It’s easy to check that (s0, t0) is
the least element of X, so S × T is well-ordered.

Exercise 4.2. To prove that two well-ordered sets S, T are equal, we need to construct an
order-preserving bijection f : S → T such that its inverse, f−1 : T → S is order-preserving.
Check that ω + ω = ω × 2. Check that ω × 2 6= 2× ω.

The product well-ordered sets gives us an example of double induction, or transfinite induction
on ω × ω. Consider the following chessboard, going off to infinity along the positive x and y
axes.

Imagine a game piece that, at every turn, can only move to the left or down and to the right
(through any number of squares in each case). We claim that no matter where the piece
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starts, after a finite number of moves, it will become stuck at the origin. The proof is just
an application of transfinite induction.

First, we can give the chessboard an order isomorphic to ω × ω. Once we do this, we
realize that the two allowable moves (where defined) are strictly decreasing. This lets us use
transfinite induction: assume that a piece starting at a position less than x will land on the
origin after a finite number of moves. If it starts on x, then after a single move, it will be on
a position less than x, so after a finite number of moves, a piece starting on x will land on
the origin.

Definition 4.3. Let ωω = ω + ω2 + ω3 + · · ·+ ωn + · · · . We can also get ωωω··
·

in this way.

We end our brief foray into this beautiful theory with three facts:

Fact 4.4. Ordinals are themselves well-ordered.

Fact 4.5. Every nonempty set can be well-ordered if you assume the axiom of choice.

Fact 4.6. Any countable ordinal can be order-embedded into R.

I Number Theory

The subject of the next block of the course is number theory.

Recall the statement of the Fundamental Theorem of Arithmetic:

Theorem 4.7 (Fundamental Theorem of Arithmetic). Every integer n ≥ 1 has a unique
prime factorization n = pt11 · · · p

td
d , where ti > 0 and p1 < · · · < pd.

In Lecture 2, we proved the existence claim by strong induction on n. Now we prove unique-
ness, modulo the truth of a ”main lemma.”

Lemma 4.8 (Main Lemma). If p is a prime and p|a1 · · · an, then p|ai for some i.

By the principle of induction, to prove the lemma it suffices to show that p|ab implies p|a
or p|b. The strategy for applying this special case to prove the statement for arbitrary n is
similar to the strategy used in the proof of Helly’s Theorem (Lecture 1).

We will prove the lemma in a later lecture. In the meantime, the student is encouraged
to attempt the proof by himself and discover that it requires ideas beyond those we’ve so
far discussed. Let us now apply the lemma to the proof of the uniqueness claim of the
Fundamental Theorem of Arithmetic.

Uniqueness of prime factorization. Suppose for contradiction that n factors into primes in
two distinct ways n = pt11 · · · p

td
d = qs11 · · · qsee . Without loss of generality, p1, . . . , pd are

pairwise different from q1, . . . , qe. (If any pi equals any qj , then we simply cancel those factors,
and the problem is reduced to the uniqueness claim for smaller n). Since p1|qs11 · · · qsee , the
lemma says that p1 must divide at least one of q1, . . . , qe, which is impossible since p1, q1, . . . , qe
are primes and p1 is not equal to any qi
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