Quantum Computing

Instructor: Alexander Razborov, University of Chicago.
razborov@cs.uchicago.edu

Course Homepage: www.cs.uchicago.edu/~razborov/teaching/autumn15.html

Autumn Quarter, 2015

Homework 3, due December 1

1. By analogy with communication complexity, let us define the composition of two total functions\(g : \{0, 1\}^m \to \{0, 1\}, \ h : \{0, 1\}^n \to \{0, 1\} \) by
\[
(g \circ h)(x^1, \ldots, x^m) \overset{\text{def}}{=} g(h(x^1), \ldots, h(x^m)),
\]
where all \(mn \) variables \(x^1, \ldots, x^m \) are pairwise different.

(a) Prove that \(C(g \circ h) \leq C(g) \cdot C(h) \), where \(C(f) \) is the certificate complexity of \(f \).

(b) Is this bound always tight?

2. Let
\[
f(x, y) = \begin{cases}
1 & \text{iff } x \leq y \leq x + 2015 \\
0 & \text{otherwise}
\end{cases}
\]
(we view \(x \) and \(y \) as integers in \(\{0, 1, \ldots, 2^n - 1\} \)). Prove that the randomized communication complexity of this function is \(O(\log n) \).

3. Consider the following statement \(P(k) \) (\(k \geq 1 \) an integer):

Let \(n \geq 1 \) be an integer, and let \((p_1, |\phi_1\rangle), \ldots, (p_k, |\phi_k\rangle) \) and \((q_1, |\psi_1\rangle), \ldots, (q_n, |\psi_n\rangle) \) be two mixed states in the same Hilbert space that have the same density matrix. Then for every \(1 \leq i \leq k \) there exists \(1 \leq j \leq n \) and a real \(\theta \) such that \(|\phi_i\rangle = e^{i\theta} |\psi_j\rangle \) (i.e., these two states differ only by a global phase).

Describe those \(k \) for which \(P(k) \) is true.
4. Compute explicit representation of the one-qubit depolarizing channel
\(\mathcal{E}_\eta(\rho) = (1 - \eta)\rho + \frac{\eta}{2} I \) in the operator form \(\sum_k p_k (U_k \rho U_k^\dagger) \), where \(U_k \in \{I, X, Y, Z\} \) are Pauli matrices.