Graph Theory

Instructor: Alexander Razborov, University of Chicago
razborov@cs.uchicago.edu
Course Homepage: www.cs.uchicago.edu/~razborov/teaching/spring12.html

Spring Quarter, 2012

You are encouraged to work together on solving homework problems, but please put their names clearly at the top of the assignment. Everyone must turn in their own independently written solutions. Homework is due at the beginning of class.

Homework 2, due April 18

1. Let G be a connected graph with 1984 vertices and 2012 edges. Prove that G contains at least 29 different cycles ${ }^{1}$ and give an example showing that this bound is tight.
2. Let C_{n} be a cycle on n vertices. How should we append one more edge e to C_{n} to maximize the number $\tau\left(C_{n}+e\right)$ of the spanning trees in the resulting graph? Compute this maximal value.
3. Is the number of spanning trees in the graph on Figure 1 even or odd?
4. Prove that the number of different (that is, up to an isomorphism) trees on n vertices is at least $\frac{n^{n-2}}{n!}$.
5. Construct a simple graph G with $\kappa(G)=3, \kappa^{\prime}(G)=4$ and $\delta(G)=5$.

[^0]

Figure 1: Just a nice graph

[^0]: ${ }^{1}$ remember that for the purposes of this class "cycle" always means a cycle in which vertices do not repeat themselves

