Graph Theory

Instructor: Alexander Razborov, University of Chicago
razborov@cs.uchicago.edu
Course Homepage: www.cs.uchicago.edu/~razborov/teaching/spring12.html

Spring Quarter, 2012

You are encouraged to work together on solving homework problems, but please put your names clearly at the top of the assignment. Everyone must turn in their own independently written solutions. Homework is due at the beginning of class. To earn full credit, you must prove all of your answers.

Homework 7, due May 23

1. Calculate ${ }^{1} \chi\left(C_{5} \times{ }_{\ell} C_{5}\right)$.
2. Compute the chromatic polynomial of the graph on Figure 1

Figure 1: Just a graph.
3. For a finite set of points V on the plane, let G_{V} be the graph on V in which u and v are adjacent if and only if they are at (Euclidean) distance 1 from each other.
Give an example of a set V with $\chi\left(G_{V}\right)=4$.

[^0]4. Prove that the graph on Figure 2 is not planar.

Figure 2: Petersen graph with a missing edge
5. Let G be a graph on n vertices such that G has K_{k} as a minor, but G is minimal with this property, i.e. no proper subgraph of G has K_{k} as a minor. Prove that G has $n+\frac{k(k-3)}{2}$ edges.

[^0]: ${ }^{1}$ recall that \times_{ℓ} stands for the lexicographic product of graphs

