
Computability and Complexity Theory

Instructor: Alexander Razborov, University of Chicago
razborov@math.uchicago.edu

Course Homepage: www.cs.uchicago.edu/˜razborov/teaching/winter17.html

Winter Quarter, 2017

You may work together on solving homework problems, but please

put all the names clearly at the top of the assignment. Everyone

must turn in their own independently written solutions. If you

find any of the solutions on-line, it is OK but then you must completely

understand the proof, explain it in your own words and include the

URL.

Homework 3, due March 7

1. Let L be a language that is Cook reducible1 to the language
{(

x, 1(2|x|)
)
| x ∈ L

}
.

Prove that L ∈ P.

2. A perfect matching in a graph with 2n vertices is a set of n edges such
that every vertex is incident to exactly one edge in a set. BIPARTITE
PERFECT MATCHING is the language that consists of all (encodings
of) bipartite graphs that possess at least one perfect matching.

Show that BIPARTITE PERFECT MATCHING is in NP ∩ co − NP
be exhibiting explicit, direct and combinatorial many-one poly-time
reductions to SATISFIABILITY.

The remaining problems were kindly contributed by Prof. Babai.
We study the communication complexity of certain Boolean functions

f(x, y). C(f) denotes the deterministic communication complexity, Dµ
δ (f)

the δ-error distributional complexity under a probability distribution µ on

1Cook reducibility is a polynomial analog of the Turing reducibility, see [AroraBarak,
Exercise 2.14]

1



the set of inputs, and Rδ(f) the δ-error randomized communication com-
plexity with public randomness (Alice and Bob both have access to a shared
infinite random binary string r1r2 . . . , where the ri are independent uniform
random bits).
Comparing rates of growth. Recall that for functions g, h : N→ R satisfying
g(n), h(n) ≥ 0 we say that g(n) = O(h(n)) if there exists a constant c such
that g(n) ≤ c · h(n) for all sufficiently large n; and h(n) = Ω(g(n)) means
g(n) = O(h(n)). So “O” indicates an upper bound and “Ω” a lower bound.

3. (Randomized complexity of equality)

(a) Let x, y ∈ Fn2 be column vectors of length n over the field of order
2. Fix x 6= 0 and choose y uniformly at random from Fn2 . Prove:
Pr(xT y = 0) = 1/2, where T denotes “transpose.”

(b) Let EQ denote the “equality” function over the domain X =
{0, 1}n, i. e., for x, y ∈ X we set EQ(x, y) = 1 if x = y and
EQ(x, y) = 0 otherwise. Prove: Rδ(EQ) ≤ dlog2(1/δ)e.

4. (Complexity of inequality) Let GE denote the “greater or equal” func-
tion on n-bit integers, i. e., for 0 ≤ x, y < 2n we set GE(x, y) = 1 if
x ≥ y and GE(x, y) = 0 otherwise.

(a) Prove: C(GE) = n.

(b) Prove: Dunif
δ (GE) = O(log(1/δ)) where “unif” denotes the uni-

form distribution.

(c) Prove: Rδ(GE) = O(log n(log log n+ log(1/δ))).

5. (Complexity of forest) Notation: A graph G = (V,E) consists of a set
V of vertices and a set E of edges. (E is a set of unordered pairs of
vertices.) A graph that has no cycles is called a forest.

Alice and Bob share a set V of n vertices. Alice’s input is a graph
X = (V,A) and Bob’s input is a graph Y = (V,B). Alice and Bob
wish to decide whether or not the graph X ∪ Y := (V,A ∪ B) is a
forest. Let us call this problem “FOREST.”

(a) Prove: C(FOREST) = O(n log n).

(b) Prove: C(FOREST) = Ω(n log n).

(c) Prove: for some constant δ > 0 we have Rδ(FOREST) = Ω(n).
(Hint: Use the fact that for some constant δ > 0, the δ-error
randomized complexity of “disjointness” of subsets of a set of n
elements is Ω(n).)

2


